



#### Ins & outs of carbonation of concrete

innovation for life

Dr. J.H.M. Visser

Lecture Adv. Concrete technology, 24-28 feb 2014, Indian Institute of Technology, Madras.







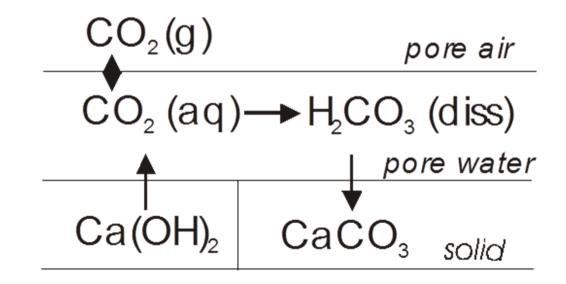
innovation

#### Ins & outs of carbonation of concrete

Contents:

- 1. Introduction: what is carbonation and why should we worry about it?
- 2. The carbonation mechanism
- 3. Testing the resistance against carbonation of concrete
  - influence of the humidity conditions
  - natural versus accelerated testing (CO<sub>2</sub> concentration)
  - Choice of cements
- 4. Designing for sufficient resistance against carbonation:
  - Service life design
  - Design by testing
  - Trading cover thickness for resistance or rather making a green deal?
- 5. Conclusions





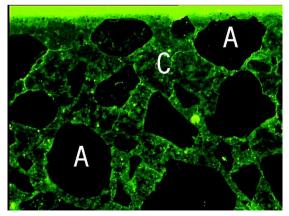

innovation

3

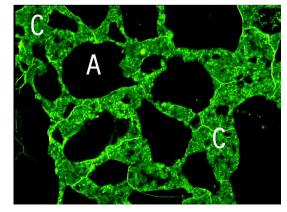
#### 1. Introduction: what is carbonation?

- Carbonation is the chemical reaction of the binder paste ('cement stone') with the CO<sub>2</sub> in the air
- Carbonation starts with diffusion of CO<sub>2</sub>-molecules
- It dissolves in the pore water and forms CO<sub>3</sub><sup>2-</sup> ions
- It is instantly consumed by Ca<sup>2+</sup> in the pore fluid









4

- 1. Introduction: why should we worry about carbonation?
- Carbonation lead to a change in the cement paste (e.g. Ca(OH)<sub>2</sub> into CaCO<sub>3</sub>)
- Carbonation leads to a change in the pore structure (e.g. more dense for OPC, more porous for BFSC)
- Carbonation leads to a change in the pH of the cement stone below pH< 9; this breaks the passivation of the reinforcement when the carbonation front reaches it, leading to corrosion

non-carbonated BFSC









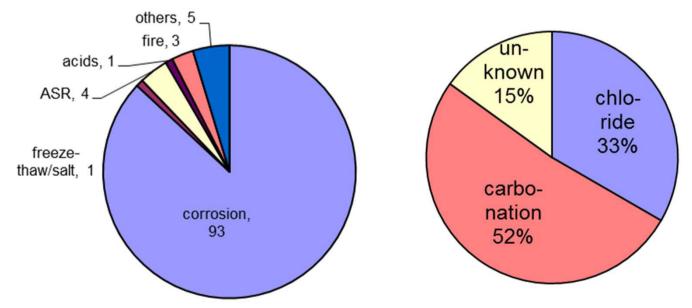


innovation for life

#### **1. Introduction: why is carbonation important?**

- Corrosion = the rusting of the reinforcement
- Corrosion Initiation = the breaking of the passivation (either by a drop in pH or due the presence of chlorides)





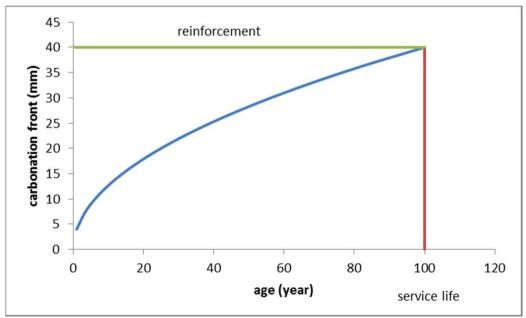



innovation for life

#### **1. Introduction: why is carbonation important?**

- Corrosion of the reinforcement may lead to damage (it is the most often encountered degradation)
- **Damage** include spalling & cracking and loss of rebar diameter
- This may lead to extensive repair & costs or even early end of service life








#### **1. Introduction: why is carbonation important?**

7

- **Service life = time that a structure fulfils its performance demands**
- A performance demand may be: no corrosion within 100 year
- Degradation will reduce the performance of the structure
- When it fails to meet its demands the service life is said to be finished
- We then need to take measures!







innovation

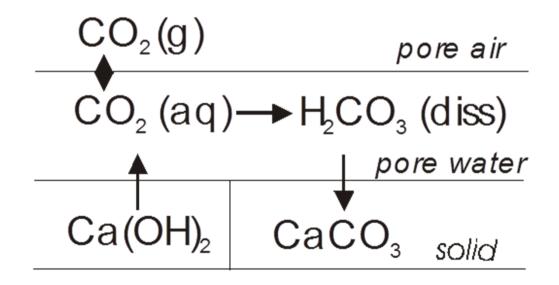
#### Ins & outs of carbonation of concrete

8

Contents:

- 1. Introduction: what is carbonation and why is it important?
- 2. The carbonation mechanism
  - Chemical equilibrium of CO<sub>2</sub> in pore water
  - Stability of the cement phases
  - Buffering capacity of the cement phases
  - Transient effects in carbonation
- 3. Testing the resistance against carbonation of concrete
- 4. Designing for sufficient resistance against carbonation
- 5. Conclusions






innovation

9

#### 2. The carbonation process

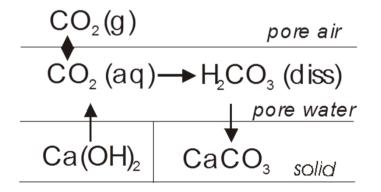
- > Chemical equilibrium:
  - > **Transport** of CO<sub>2</sub> due to concentration difference
  - Dissolution of CO<sub>2</sub> in pore water and formation carbonic acid and dissociated (H<sub>2</sub>CO<sub>3</sub>, HCO<sub>3</sub><sup>-</sup>, CO<sub>3</sub><sup>2-</sup>)
  - > Precipitation CaCO<sub>3</sub> dissolution Ca(OH)<sub>2</sub>





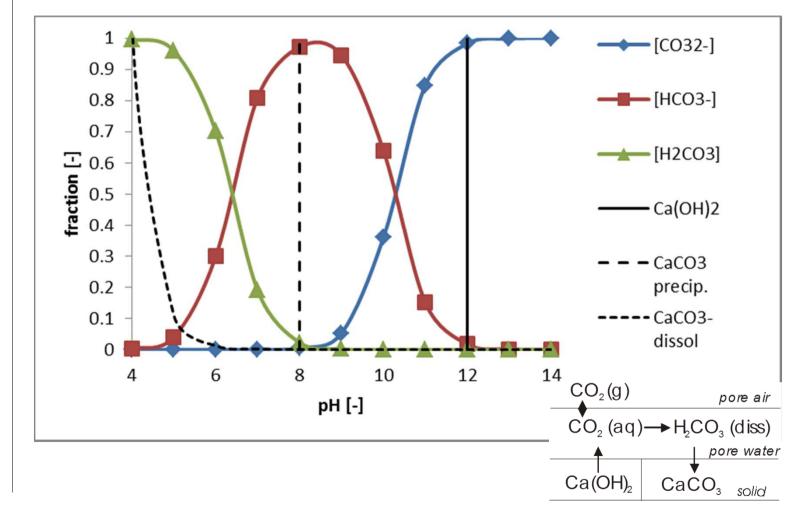


#### 2. Carbonation mechanism: chemical equilibrium


- > Chemical equilibrium in detail:
  - > Dissociation is acidification process

 $H_2CO_3 + H_2O \Leftrightarrow H_3O^+ + HCO_3^-$ 

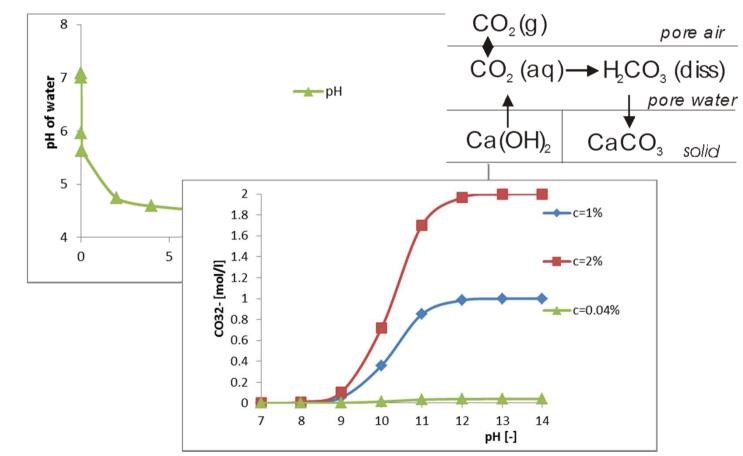
 $HCO_{3}^{-} + H_{2}O \iff H_{3}O^{+} + CO_{3}^{2-}$ 


> Precipitation of Ca<sup>2+</sup> goes to completion:

$$CO_{3}^{2-} + Ca^{2+} \Leftrightarrow CaCO_{3}$$
 (s)






#### 2. Carbonation mechanism: chemical equilibrium





#### 2. Carbonation mechanism: chemical equilibrium

• Equilibrium pH depending on CO2 concentration

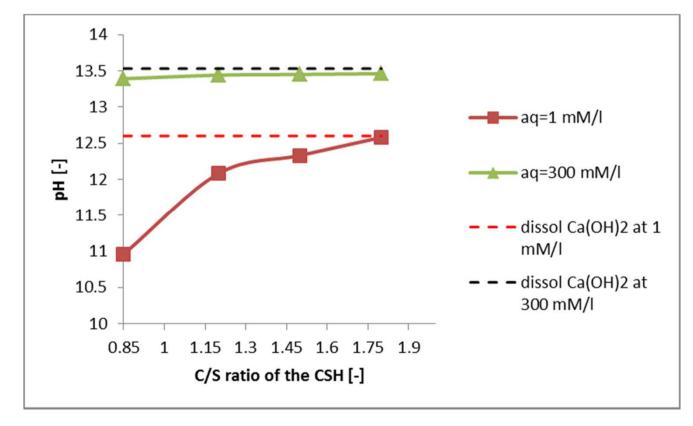






innovation for life

# 2. Carbonation mechanism: stability of the cement phases


• Stability & pH

| Stage       | рН          | stable phases                                                    |  |
|-------------|-------------|------------------------------------------------------------------|--|
| 1 (non-     | >12.6       | $Ca(OH)_2$ , CSH (Ca/Si > 1.8 or at high                         |  |
| carbonated) |             | common ion effect), AFt, AFm                                     |  |
| 2           | 11.6 – 12.6 | CSH (Ca/Si< 1.8), AFt, AFm                                       |  |
| 3           | 10.5 – 11.6 | CSH (Ca/Si< 1.05), AFt, AI(OH) <sub>3</sub>                      |  |
| 4           | 10.0 – 10.5 | CSH ( Ca/Si< 0.85), Fe(OH) <sub>3</sub> , Al(OH) <sub>3</sub>    |  |
| 5 (fully    | < 10        | $SiO_2$ with some CaO, Fe(OH) <sub>3</sub> , AI(OH) <sub>3</sub> |  |
| carbonated) |             | Data from literature, mostly from Lagerblad, 2005                |  |



# 2. Carbonation mechanism: stability of the cement phases

#### • Cascading degradation of CSH



Data CSH from Hong and Glasser, 1999



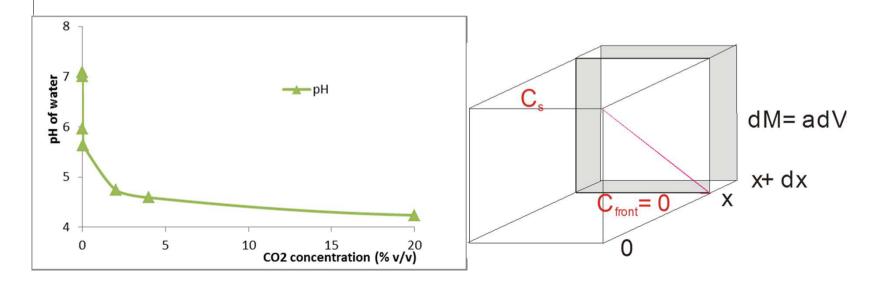


innovation

# 2. Carbonation mechanism: stability of the cement phases

- Buffering capacity of the other cement phases is likewise 100% - no further progress of carbonation until phases are 'consumed'
- Each does so at its own equilibrium pH

| Stage              | рН          | stable phases                                                                  |  |
|--------------------|-------------|--------------------------------------------------------------------------------|--|
| 1 (non-carbonated) | >12.6       | Ca(OH) <sub>2</sub> , CSH (Ca/Si > 1.8 or at high common ion effect), AFt, AFm |  |
|                    |             |                                                                                |  |
| 2                  | 11.6 – 12.6 | CSH (Ca/Si< 1.8), AFt, AFm                                                     |  |
| 3                  | 10.5 – 11.6 | CSH (Ca/Si< 1.05), AFt, AI(OH) <sub>3</sub>                                    |  |
| 4                  | 10.0 – 10.5 | CSH ( Ca/Si< 0.85), Fe(OH) <sub>3</sub> , Al(OH) <sub>3</sub>                  |  |
| 5 (carbonated)     | < 10        | $SiO_2$ with some CaO, Fe(OH) <sub>3</sub> , AI(OH) <sub>3</sub>               |  |






innovation

#### 2. Carbonation mechanism: transient effects

- Carbonation starts with diffusion of CO2-molecules
- At the carbonation front, it dissolves in the pore water
- It is instantly consumed by Ca2+ in the pore fluid
- Buffer capacity of cement phases releases new Ca2+
  - First Ca(OH)2 & high Ca CSH, next the other phases at succ. Lower pHs
- Concentration CO<sub>2</sub> at the front remains 0 until no more buffer







innovation for life

#### 2. Carbonation mechanism: conclusions

- Carbonation of each cement phase occurs at phase stability pH
- No cement phase is stable below  $pH = 7 (c(CO_2) approx. 0)$
- > All cement phases react in a neutral way so can go to completion
- All calcium is consumed: buffer capacity = Ca content of cement



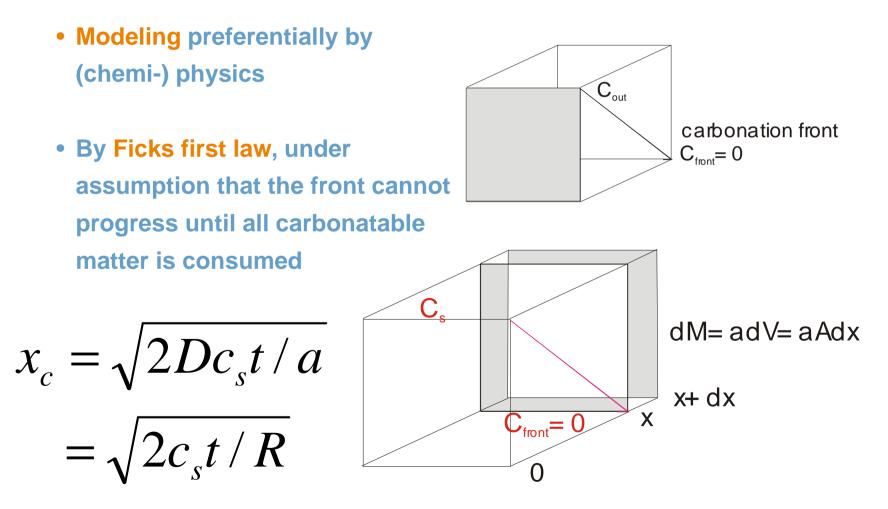




innovation

#### Ins & outs of carbonation of concrete

Contents:


- 1. Introduction: what is carbonation and why should we worry about it?
- 2. The carbonation mechanism
- 3. Testing the resistance against carbonation of concrete
  - designing a test method
  - natural versus accelerated testing (CO<sub>2</sub> concentration)
  - choice of cements
- 4. Designing for sufficient resistance against carbonation
- 5. Conclusions



innovation for life

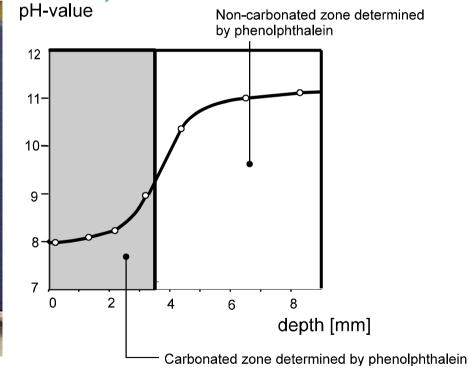
#### 3. Testing the resistance against carbonation of concrete: designing a test method

19








20

# 3. Testing the resistance against carbonation of concrete: designing a test method

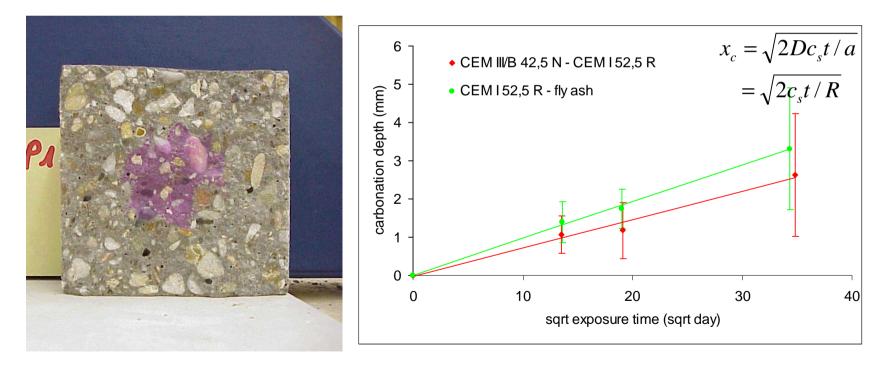
• (Natural) carbonation test with colour reaction to measure xc - t

(at favourable conditions for carbonation)










innovation for life

21

# 3. Testing the resistance against carbonation of concrete: designing a test method

 (Natural) carbonation test with colour reaction to measure xc – t (at favourable conditions for carbonation)





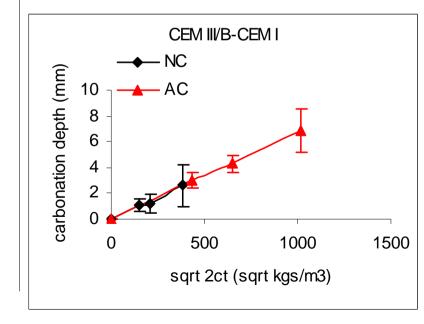


innovation

# 3. Testing the resistance against carbonation of concrete: accelerating the test

- > Carbonation is a very slow process
  - > Testing taking often a year to obtain reliable results
  - > In a design-by-testing a year is too long
  - > Acceleration of the test would be ideal
  - > How to accelerate tests?
    - > Increase driving force (T, c, p)
    - > Compress time
    - > Chose equivalent mechanism with a linear relationship






# 3. Testing the resistance against carbonation of concrete: accelerating the test

> Accelerated test in concentration versus natural tests:

- > Start test at same age (28 days) after same curing
  - (of which 7 days fog room and 21 days at 20/65)
- Concentration at 2 % instead of natural (0.04)

(=50 x increase in concentration)



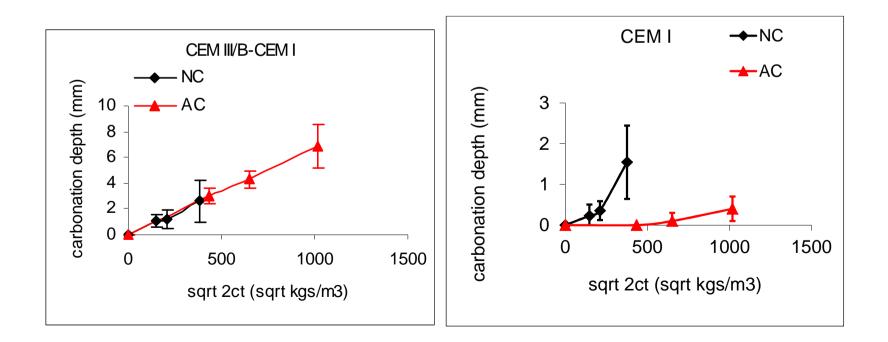
$$x_c = \sqrt{\frac{D}{a}}\sqrt{2ct} = \sqrt{1/R_{carb}}\sqrt{2ct}$$

innovation

E.g. Acceleration concentr.: c= 2 %Natural concentration: c = 0.04 %Acceleration = 2/0.04 = 50 x






innovation for life

24

### 3. Testing the resistance against carbonation of concrete: accelerating the test

- > Draw back of the accelerated tests?
  - > Other mechanisms may become important

This may remain unnoticed!!!





# 3. Testing the resistance against carbonation of concrete: accelerating the test

for life

| concrete | binder                                       | NC       | AC                |
|----------|----------------------------------------------|----------|-------------------|
| fine OPC | CEM I 52.5 R                                 | 1.2 10-2 | ?<br>(not linear) |
| FAC      | CEM I 52.5 R – 30 % fly-ash                  | 4.2 10-4 | 4.5 10-4          |
| BFS      | CEM III/B 42.5 – CEM I 52.5<br>R (50 % slag) | 6.8 10-4 | 7.0 10-4          |



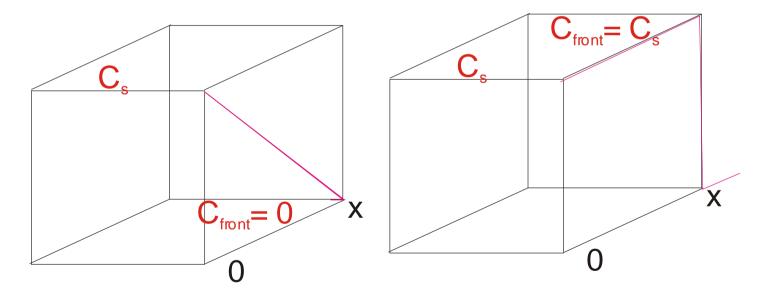


innovation

# 3. Testing the resistance against carbonation of concrete: accelerating the test

Possible causes for misfit for fine OPC:

- 1. carbonation mostly due by  $Ca(OH)_2$ 
  - > precipitation CaCO<sub>3</sub> in pore space
  - > leading to densification and reduction average pore size
- 2. water is formed during carbonation:
- $\mathbf{Ca(OH)}_2 + \mathbf{CO}_2 = \mathbf{CaCO}_3 + \mathbf{H}_2\mathbf{O}$
- Can drying (evaporation) become dominant?
   The carbonation cannot proceed until evaporation is (partly complete)
- > Change the model!






27

# 3. Testing the resistance against carbonation of concrete: accelerating the test

- Model 1: all CO<sub>2</sub> is instantly consumed at the carbonation front
- Model 2: consumption is so slow the concentration of CO<sub>2</sub> is constant (1st Fick over a membrane)



 $q = DA(c_s - c_{front}) / x$ 

 $q = DA(c_s - c_{front})$ 





### 3. Testing the resistance against carbonation of concrete: accelerating the test

Model 1: all CO<sub>2</sub> is instantly consumed at the carbonation front  Model 2: consumption is so slow the concentration of CO<sub>2</sub> is constant (1st Fick over a membrane)

o innovation for life

$$x_c = \sqrt{2c_s t / R}$$
  $x_c = Offset + c_s t / R_{carb}$ 

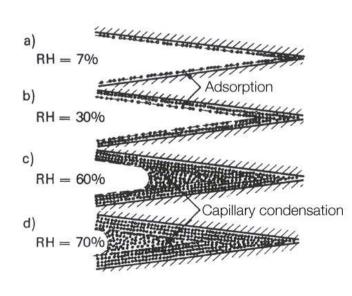
Square root-behavior (with offset = 0)

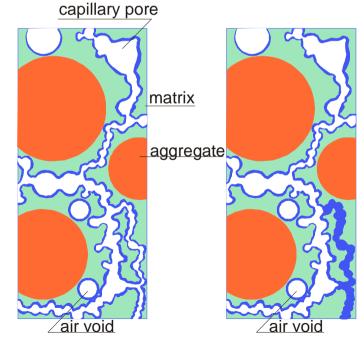
- > Linear behavior
- > (offset non-negligible)



innovation for life

# 3. Testing the resistance against carbonation of concrete: accelerating the test


> Change in model lead to consistent result:


|          |              | NC              | AC                        |
|----------|--------------|-----------------|---------------------------|
|          |              | (sqrt t)        | (linear t)                |
| concrete | binder       | $CO_2$ dominant | H <sub>2</sub> O dominant |
| fine OPC | CEM I 52.5 R | 1.2 10-2        | 1.2 10-2                  |

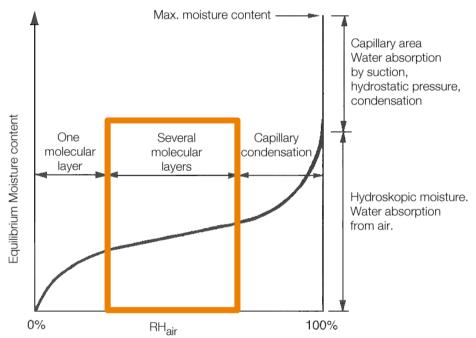



# 3. Testing the resistance against carbonation of concrete: test conditions

- > Carbonation can only take place when
  - > When the CO2 can penetrate (sufficient dry)
  - When the CO2 can dissolve (sufficient wet)









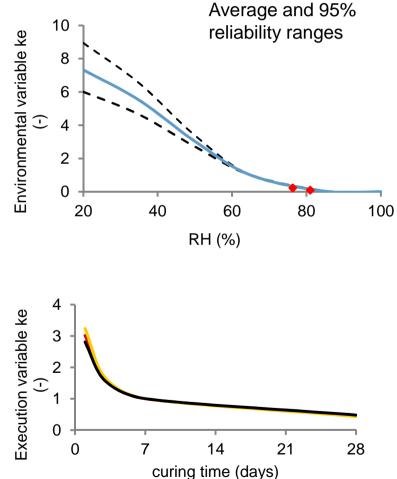

31

# 3. Testing the resistance against carbonation of concrete: test conditions

- Carbonation can only take place:
  - When the CO<sub>2</sub> can penetrate (sufficient dry)
  - When the CO<sub>2</sub> can dissolve (sufficient wet)
- > This condition applies if  $S < S_{crit}$
- Best is to take RH before capillary condensation
- Normally taken constant at RH = 65%
- Model adjusted with k<sub>e</sub> which is 1 at RH = 65%



$$x_c = \sqrt{2k_e c_s t / R}$$




32

### 3. Testing the resistance against carbonation of concrete: test conditions

- Environmental parameter k<sub>e</sub> also depends of T)
- Curing can be a steering parameter
  - (longer curing usually means better quality (higher density)
  - Has therefor its own influence parameter k<sub>c</sub>

$$x_c = \sqrt{2k_c k_e c_s t / R}$$







innovation for life

# 3. Testing the resistance against carbonation of concrete: conclusions

- A good model is available
- > Influence of environment (RH) and curing can be included
- Acceleration is possible, care must be taken!







innovation

# 3. Testing the resistance against carbonation of concrete: conclusions

- A high CO<sub>2</sub> concentration has no effect on the carbonation process
- > The only effect is faster transport to the carbonation front
- Side effects can occur, e.g. coating of Ca(OH)<sub>2</sub> crystals with CaCO<sub>3</sub> and drying out becoming dominant transport







innovation

#### Ins & outs of carbonation of concrete

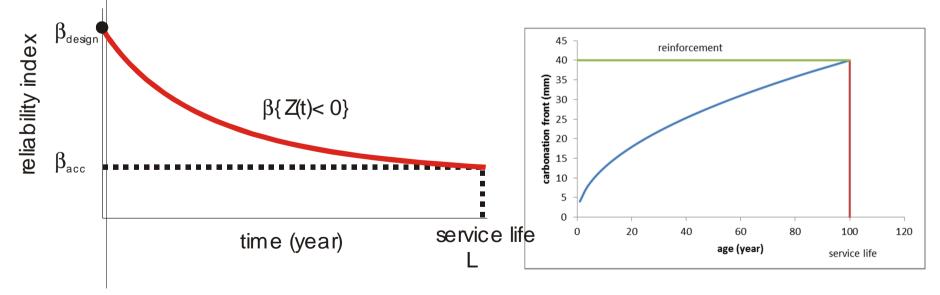
Contents:

- 1. Introduction: what is carbonation and why should we worry about it?
- 2. The carbonation mechanism
- 3. Testing the resistance against carbonation of concrete
- 4. Designing for sufficient resistance against carbonation:
  - Service life design
  - Design by testing
  - Trading cover thickness for resistance or rather making a green deal?
  - Choice of cements
- 5. Summary and conclusions





innovation for life


36

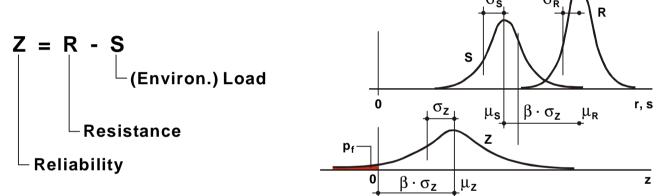
#### 4. Designing for sufficient resistance against carbonation: Service life design

- A service life design consists of:
  - 1. A (time dependent) behaviour model Z(t),

with Z(t) = resistance R(t) - load S(t), (e.g. progress carbonation front)

- 2. A predefined acceptable reliability index  $\beta$  ("risk of failure")
- 3. A predefined service life L (e.g. 50, 100, 200 years)








innovation for life

## 4. Designing for sufficient resistance against carbonation: Service life design

> Reliability and failure probability



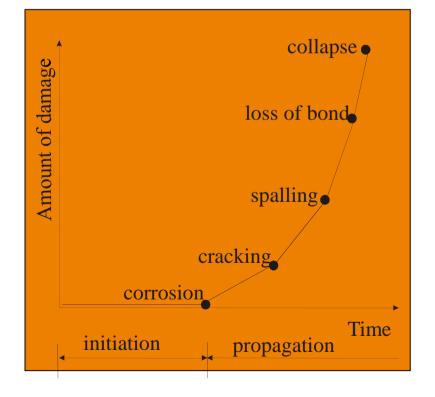
$$p_{f} = \Phi\left(-\frac{\mu_{Z}}{\sigma_{Z}}\right) = \Phi\left(-\beta\right), \text{ with } \mu_{Z} = \mu_{R} - \mu_{S}, \sigma_{Z} = \sqrt{\sigma_{R}^{2} + \sigma_{S}^{2}}$$

$$\begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$





## 4. Designing for sufficient resistance against carbonation: Service life design


38

• Condition for the design: the carbonation front should not reach the reinforcement before the end of the service life (no corrosion initiation):

 $P\{x_c(t) < d_c\}_L < \beta_{acc}$ 

with  $d_c = cover$  thickness and

$$x_c(t) = \sqrt{2k_c k_e c_s t / R}$$



innovation





## 4. Designing for sufficient resistance against carbonation: Service life design

#### > First service life design for carbonation

|                                                                              | variables                                                                                                        |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| Performance demand:                                                          | $x_c = carbonation depth$                                                                                        |  |
| $P\{x_c(t=L) \le d_c\} \le \Phi(\beta)$                                      | $d_c = concrete cover$<br>t = time since exposure<br>L = service life (def)<br>$\beta = reliability index (def)$ |  |
| Behavioral model for carbonation:<br>$x_c$ (t) = $\sqrt{2k_c k_e c_s t / R}$ | $c_s = surface CO_2 concentration$<br>$k_e = environmental factor$<br>$k_c = curing factor$                      |  |
|                                                                              | R = resistance against carbonation                                                                               |  |





innovation

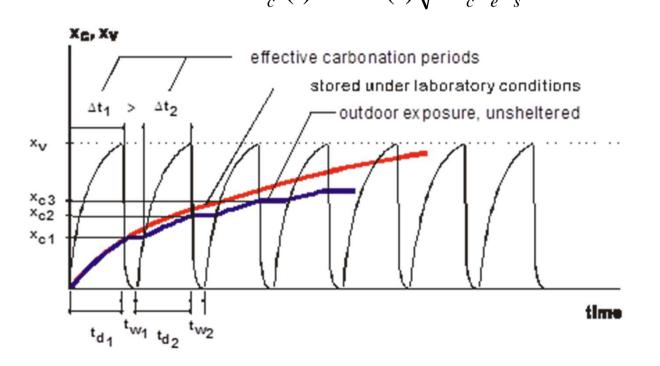
## 4. Designing for sufficient resistance against carbonation: Service life design

40

- Determine ALL variables in the model (e.g. by field or lab measurements):
  - Determination of the material resistance in compliance test (standard tests under standard conditions, e.g. temperature, concentrations and rh)
  - Determine the environmental factor k<sub>e</sub> (or take it from a database)
  - Determine the curing factor  $k_c$  (id)






41



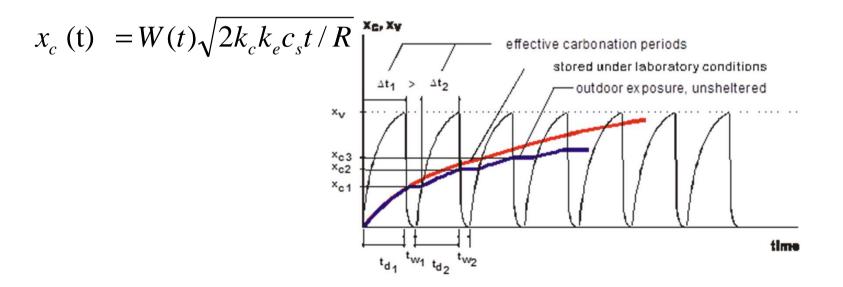
## 4. Designing for sufficient resistance against carbonation: Service life design

**Determine ALL variables in the model** 

- Contrary to LAB teat, the moisture conditions are not constant class'
- > Introducing weathering function (W) to estimate the effective time of carbonation  $x_c$  (t) =  $W(t)\sqrt{2k_ck_ec_st/R}$








42

# 4. Designing for sufficient resistance against carbonation: Service life design

**Determine ALL variables in the model** 

- The weather function W(t)
  - = 1 for sheltered indoor
  - 0 < W < 1 for unsheltered conditions
  - =0 for permanents wet surfaces



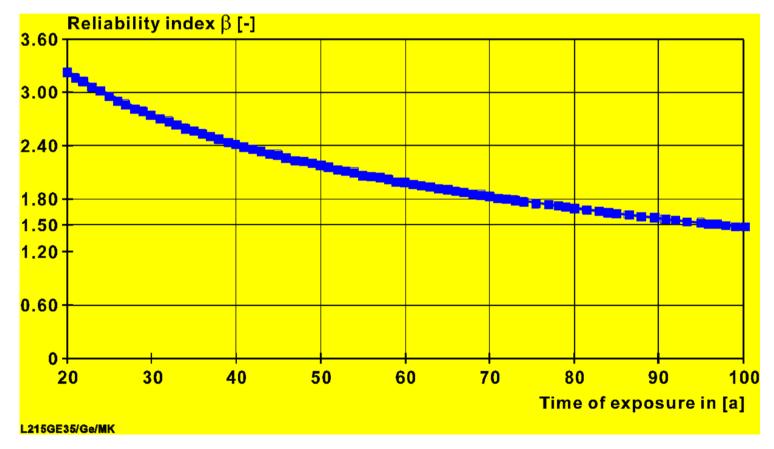




**TNO** innovation for life

#### 4 . Example: design on durability

| variabel no | parameter                | dimension           | istribution<br>type | u         | S           | omega |
|-------------|--------------------------|---------------------|---------------------|-----------|-------------|-------|
| tO          | reference time           | year                | D                   | 0.076712  |             |       |
| t           | exposure time            | year                | D                   | variable  |             |       |
| tc          | curing time              | day                 | D                   | input     |             |       |
| L           | service life             | year                | D                   | 100       |             |       |
| R           | resistance against carbo | mm2/yr/(kg<br>2/m3) | ND                  | input     |             |       |
| cs          | concentration            | kg/m3               | ND                  | 0.000688  | 8.59375E-05 |       |
| RH real     | relative humidity        | %                   | W                   | 76.3      | 12.9        | 100   |
| kc          | curing                   | -                   | ND                  | function1 |             |       |
| ke          | environment              | -                   | w                   | function2 |             |       |
| w           | weather exponent         | -                   | ND                  | function3 |             |       |



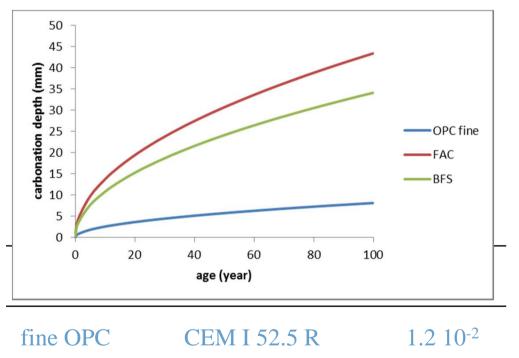



44

#### **NO** innovation for life

- 4. Designing for sufficient resistance against carbonation: Service life design
  - Calculate the reliability with age so verify if the design has sufficiently long service life (with defined beta)









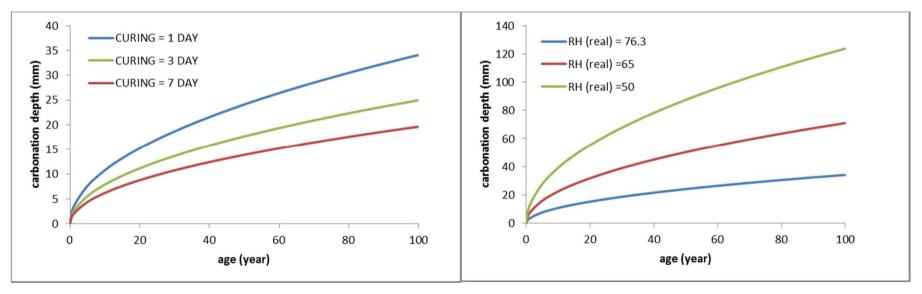

## 4. Designing for sufficient resistance against carbonation: Service life design

- Methodology is useful to determine design elements like the choice of cements
- > (e.g design by testing)
- Calculations for:
   curing time = 1 day
   RH = 75 %



| FAC | CEM I 52.5 R – 30 %<br>fly-ash               | 4.2 10-4 |
|-----|----------------------------------------------|----------|
| BFS | CEM III/B 42.5 – CEM<br>I 52.5 R (50 % slag) | 6.8 10-4 |







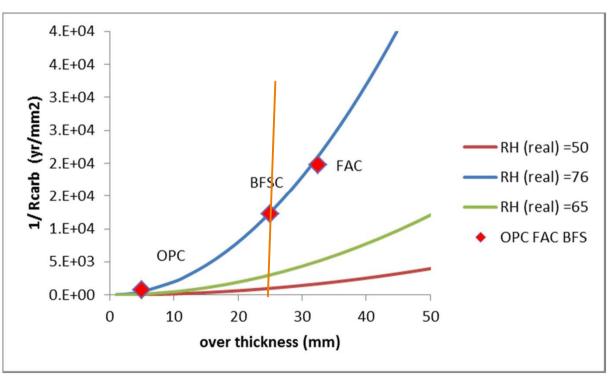

## 4. Designing for sufficient resistance against carbonation: Service life design

- > Influence curing
- (execution steering)
- → (BFS, RH = 75 %)

- Influence RH
- (meso-environment)
- (BFS, 1 day curing)








Dr. J.H.M. Visser Carbonation 47

innovation for life



- > Going green? Trading cover versus cement type
- > From structural design: minimum cover = 25 mm



> Notice: (1) these are examples for illustration only

(2) more performance demands may play a role





### Ins & outs of carbonation of concrete

Contents:

- 1. Introduction: what is carbonation and why should we worry about it?
- 2. The carbonation mechanism
- 3. Testing the resistance against carbonation of concrete
- 4. Designing for sufficient resistance against carbonation:
- 5. Conclusions



innovation for life





innovation

#### **5.** Conclusions

- Carbonation of concrete changes the concrete itself (e.g. porosity, pH reduction)
  - > pH reduction may introduce corrosion, leading to damage;
  - > more than 50 % of the damage in Europe is due to carbo-initiated little insights in the effects of repairs on the performance
- Carbonation is an acifying reaction that start by diffusion of CO<sub>2</sub> into the pore space
  - Its front will not move deeper until the buffering OH<sup>-</sup> from the cement stone has been depleted
  - This is easy to model by Fick's law of transport (& can be accelerated in c<sub>s</sub> accordingly)
  - Take care for a change in transport (water membrane mechanism)





innovation



- > Service life modelling has been developed for carbonation
  - > Progress carbonation front with age can be predicted
  - > Resistance of concrete (type of cement!) and curing is included
  - > Influence of RH and rainfall are taken into account
  - Probability of corrosion due to carbonation with service life can be calculated!
- Optimization of cover thickness, type of cement and curing length can now be made with an efficient and economical design with respect to carbonation