

Performance based design of concrete – durability

1

Dr. J.H.M. Visser

Lecture Adv. Concrete technology, 24-28 feb 2014, Indian Institute of Technology, Madras.

innovation for life

Performance based service life design: durability of concrete

2

Contents:

- 1. Introduction: what is durability?
- 2. Getting a grip on probabilities: structure of concrete
- 3. Degradation mechanisms
- 4. Performance of different binders
- 5. Conclusions

3

1. Introduction: what is durability

- > Durability is the resistance of concrete to degradation
- > Degradation is the decrease in properties of concrete under influence of loads, mostly from the outside
- > Loads include:
- > mechanical loads (e.g. self weight)
- > physical loads (e.g. T)
- > chemical loads (e.g. CO₂)

1. Introduction: why is durability important

• Degradation is most often due to attack of the cement stone but also the aggregates and / or rebars.

4

- Damage include spalling & cracking, loss of cover and loss of rebar diameter up to bending / shear and collapse
- This may lead to extensive repair & costs or even early end of service life

5

TNO innovation for life

1. Introduction: why is it important?

• The most often encountered durability issue is corrosion initiated by chloride or carbonation

Performance based service life design: durability of concrete

6

Contents:

- 1. Introduction: what is durability?
- 2. Getting a grip on probabilities: structure and composition of concrete
- 3. Degradation mechanisms
- 4. Performance of different binders
- 5. Conclusions

7

innovation for life

2. The structure of concrete

- > Formation of hardened cement paste
 - > Phase 1: plastics phase to semi-plastic phase
 - > Phase 2: hardened phase

Phase 1

Phase 2 Growth of reaction products Connecting & Densification

8

TNO innovation for life

2. The structure of concrete

TNO innovation for life

2. The structure of concrete

Interface zone between aggregate and cement stone is often more porous than cement stone itself

9

innovation for life

2. The structure of concrete

As a consequence it is not only the weakest link but also the most permeable part of the concrete

10

> Effect is smaller for fine grounded cements, e.g. CEM I 52.5 R versus CEM I 52.5 N or with fine additions (SF, FA)

11

TNO innovation for life

2. The structure of concrete

Some basics of the concrete's structure that are important to understand degradation:

- > porosity en pore size distribution
- > degree of saturation and moisture distribution
- > Relative humidity and absorption/desorption

2. The structure of concrete

- > Porosity = percentage (interconnected) hollow spaces (in vol%)
- > Pore size distribution depending on concrete composition, used cement and age (degree of hydration)

12

Pore sizes are smaller for lower Ca-containing cement or with the use of additions (e.g. BFSC, FA)

presence of salts

100

2. The structure of concrete

- Degree of saturation = amount of water in the pores (% of total)
- Moisture distribution depending on rh, concrete composition and

13

rlative humidity (%) 80 60 Smaller pores (e.g. BFS cement) are saturated at lower RH 40 bulk water 20 Examples full saturation at 75%: ideal solution, xw = 0.8- ideaal solution, xw=0.6 (1) no salt: r< 6 nm 0 1.E-10 1.E-09 1.E-08 1.E-07 1.E-06 (2) salt 0.2: r< 20 nm porie radius r (m) (N.B. salt is hygroscopic!) OPC BFS

innovation for life

14

3. The structure of concrete – moisture distribution

15

TNO innovation for life

3. The structure of concrete

- > Importance of the structure and the moisture distribution
 - > Durability = transport + (chemical) reactions
 - > Transport rate / type depend on structure and related moisture distribution
- > Transport examples:
- Water/ions at S> S_{crit}
- > water vapour/gas at S <S_{crit}

Performance based service life design: durability of concrete

16

Contents:

- 1. Introduction: what is durability?
- 2. Getting a grip on probabilities: structure of concrete
- 3. Degradation mechanisms
 - Freeze-thawing
 - Alkali-silica reaction (ASR)
 - Carbonation an chloride penetration / corrosion
 - Sulfate and seawater resistance
- 4. Performance of different binders
- 5. Conclusions

3.1 Degradation mechanisms: Freeze-thawing

17

> Mechanism 1: expansion of ice (compared to water approx. 10%)

- Conditions:
- > High enough Sr
- > Low enough temperature
- > Fast enough freezing

innovation for life

for life

cementsteen

3.1 Degradation mechanisms: Freeze-thawing

18

- > Mechanism 1: expansion of ice (compared to water approx. 10%)
- > Mind: the freezing temperate increases with reduction in pore size

innovation for life

3.1 Degradation mechanisms: Freeze-thawing

19

> Mechanisms 2: hydraulic pressure (is why air entrainment works!)

20

 Mechanism 3. Ice over pressure due to transport of vapour pressure and growth
 Cementsteen

innovation for life

21

> Summary mechanisms

> Fast freezing: low-permeable and fully saturated concrete

expansion of ice 10%

innovation for life

Slow freezing (at modest T): any concrete, most damage for small pores transport of vapour to ice – ice over pressure

22

- Main differences types of cements (wcr < 0.45, no AE):
- OPC has larger pores and thus is more sensitive to freeze at moderate freezing temperatures (> -20 oC)

BUT

> Large pores are often not fully saturated

- Especially FA cement is sensitive at young age (not allowed to use after 1th October in NL)
- > Especially carbonated top layer for FA concrete and BFS concrete is sensitive to freezing / thawing (due to increased porosity)

23

- **> BEST CHOICE OF CEMENT:**
- > Cement with very dense cement stone (no capillary pores no freezing)
- > Cement with large pores, enough to accommodate the 10 % expansion of the ice)
- > Prescribed in NL:
- > Wcr < 0.45 (all) OR wcr > 0.55 + AE

innovation for life

3.1 Degradation mechanisms: Freeze-thawing

24

Types of damage (depend on T, c & RH gradients):

> Scaling

> Delamination

> Internal damage

25

3.1 Degradation mechanisms: Freeze-thawing in practice

- At moderate freezing temperatures: detection by either loss of surface cement (scaling) and progressively loosening of aggregates
- > Consequences: loss of cover

innovation for life

innovation for life

26

3.1 Degradation mechanisms: Freeze-thawing in practice

Measures:

- > Do nothing
- > Stop using thawing salts
- > Apply additional concrete layer for restoring cover thickness

> Best way: PREVENT

3.1 Degradation mechanisms: Freeze-thawing in the lab to estimate sensitivity

If scaling is larger than its threshold after freeze-thawing cycles, it is said to be sensitive

INO innovation for life

3.2 Degradation mechanisms: Alkali-Silicate Reaction

> Transport of alkali's (Na en K) from the cement paste OR from outside the concrete and silicas from reactive aggregates react to ASR-gel

28

- > Can take up large amounts of water
- > Consequence: internal pressure due to an expansive gel leading to extensive cracking (crackmapping in case of free expansion, plane parallel cracking in case of constrained cracking)

TNO innovation for life

3.2 Degradation mechanisms: Alkali-Silicate Reaction in practice

Cracked Area

innovation for life

30

3.2 Degradation mechanisms: Alkali-Silicate Reaction

 Detection / confirmation mostly by PFM (Polarisation and Fluorescence Microscopy)

TNO innovation for life

3.2 Degradation mechanisms: Alkali-Silicate Reaction

> Detection / confirmation also by gel around aggregates and cracks along and through aggregates

31

32

3.2 Degradation mechanisms: Alkali-Silicate Reaction in practice

Consequences for the structure

- > crack-mapping with extruding gel
- Swelling and bending
- > Loss of stress bearing capacity

33

3.2 Degradation mechanisms: Alkali-Silicate Reaction in practice

Measures:

> Do nothing

 Hydrophobic treatment with coating (to dry out)

> Limit the loads on the structure

> Demolish

Best way:
AVOID

innovation for life

3.2 Degradation mechanisms: Alkali-Silicate Reaction in the lab

Test methods:

 Concrete compositional limits: alkali content cement and petrographic analysis (amount of reactive aggregates)

34

> Swelling tests (in 1 M NaOH at 40 oC): should not exceed threshold

 Cement choice: alkali content low, cement matrix dense: BFSC > 50 % slag , OPCs, FA (usually high but discussion on binding)

35

NO innovation for life

3.3 Degradation mechanisms: carbonation

> Chemical equilibrium:

- > Transport of CO2 due to concentration difference
- Dissolution of CO2 in pore water and formation carbonic acid and dissociated (H₂CO₃, HCO₃⁻, CO₃²⁻)
- Precipitation CaCO₃ dissolution Ca(OH)₂

3.3 Degradation mechanisms: carbonation

36

Type of damage / structural changes

- Carbonation lead to a change in the cement paste (e.g. Ca(OH)₂ into CaCO₃)
- Carbonation leads to a change in the pore structure (e.g. more dense for OPC, more porous for BFSC)
- Carbonation leads to a change in the pH of the cement stone below pH< 9; this breaks the passivation of the reinforcement when the carbonation front reaches it, leading to corrosion

non-carbonated BFSC

carbonated BFSC

innovation

37

3.3 Degradation mechanisms: carbonation

	degree of hydration	hollow space (% V/V)	carbonation depth (mm)	change from wcr = 0.45
Fine OPC	High	2-5	0.5 - 1	0.40
BFSC	Low	2-5	10 - 15	0.50
FAC	Medium	2-5	10 - 15	0.50

3.3 Degradation mechanisms: carbonation

38

- Carbonation of each cement phase occurs at phase stability pH
- No cement phase is stable below $pH = 7 (c(CO_2) approx. 0)$
- > All cement phases react in a neutral way so can go to completion
- > All calcium is consumed: buffer capacity = Ca content of cement

39

TNO innovation for life

3.3 Degradation mechanisms: carbonation in practice

- > In general has no external signs until corrosion starts
- > Detection by creating fresh surface and spraying with phenolphthalein for colour reaction
- > Consequences for the structure:
- For most SCM binders increase in porosity

3.3 Degradation mechanisms: carbonation followed by corrosion in practice

40

3.3 Degradation mechanisms: carbonation

Measures:

> Cannot be prevented in general, carbonation rate is determined to ensure no corrosion during service life

41

> (Natural) carbonation test with colour reaction to measure $x_c - t$

(at favourable conditions for carbonation)

CHOICE OF CEMENTS - high resistance against carbonation:

- > OPC: Ca(OH)2 -> CaCO3 = densification, high amount of carbonatable matter,
- > FA/BFS: CSH -> CaCO3 = increase in porosity (depend on exact ratio)

TNO innovation for life

3.3 Degradation mechanisms: chloride penetration followed by corrosion

42

- > Chloride penetration is in general not harmful for the concrete, nor will it change its structures
- > Its threat lies in breaking the passivation layer of the reinforcement
- > Testing in LAB by measuring the resistance against chloride penetration
- > Choice of cement: pore size> FA cement
 - > BFSC
 - > OPC

3.3 Degradation mechanisms: chloride penetration - prediction

Measures:

 Ensure a dense & thick enough cover that have sufficient resistance during service life

innovation for life

	Dinf	D0	n	χ^2
model + field	1.2 (0.1)	5.0 (0.2)	1.00 (0.08)	1.000

43 Service life design - durability

44

INO innovation for life

3.3 Degradation mechanisms: corrosion

Recap:

Corrosion – rusting of the reinforcement

- > Rust has a higher volume than the original steel
- It exerts a pressure on the concrete, leading to the largest cracks in the free expansion direction: delamination of the concrete cover

45

NO innovation for life

3.3 Degradation mechanisms: corrosion

Measures:

- > PREVENT
- Cathodic Protection
- > Removal of the cover and replacing it

Testing in LAB for corrosion :

- > Resistivity
- > Potential Measurements

NO innovation for life

3.4 Degradation mechanisms: sulfate attack

46

 Recap, main reactions: Ca(OH)₂+SO₄² → gypsum gypsum + C₃A/C₄AF → ettringite

> main difference OPC / blended cements

- > Portland clinker fraction
 - **)** contents of C_3A/C_4AF
 - > concentration Ca(OH)₂
- > Microstructure (permeability)
- Consequences for concrete:
- > Swelling,
- > Cracking
- > Spalling top layer

TNO innovation for life

0.3 mm

3.4 Degradation mechanisms: sulfate attack

> Change in structure in sodium sulfate

Cement paste

47

A C

a. CEM V/A: demi-water

sodium sulfate

b.

49

TNO innovation for life

3.4 Degradation mechanisms: sulfate attack

sec. 'massive ettringite

3.4 Degradation mechanisms: sulfate attack

> Prevention by using special HS resistance cement = any cement with low C3A content

50

> Some swelling is allowed – testing in LAB for sensitvity

innovation for life

3.4 Degradation mechanisms: sea water attack

51

Main reactions:

 $Ca(OH)_2 + MgSO_4 \rightarrow gypsum (CaSO4) + brucite (Mg(OH)2)$

 $MgSO_4 + CSH \rightarrow MSH + gypsum$

- > main difference OPC / blended cements
 - > Portland clinker fraction
 - contents of C₃A/C₄AF
 - concentration Ca(OH)₂
 - Microstructure (permeability)
- > Change in structure
 - > increase in capillary porosity (0.5-0.55), no/low Ca(OH)₂
 - > high amount of cracks

innovation for life

3.4 Degradation mechanisms: sea water attack

52

a.

b.

- > Prevention by using slag at high content (formation of stable CASH and dense structure)
- > Some swelling is allowed testing in LAB for sensitivity

Performance based service life design: durability of concrete

53

Contents:

- 1. Introduction: what is durability?
- 2. Getting a grip on probabilities: structure of concrete
- 3. Degradation mechanisms
- 4. Performance of different binders for durability
- 5. Conclusions

innovation

4. Performance of different binders for durability

54

In case of cements already accepted by the standards for mechanical properties (27) but not for durability

> Tested against the performance of any, already accepted cement (5)

TNO innovation for life

4. Performance of different binders for durability

55

cements	Slag content	Fly ash content
CEM I 32.5 R	0	0
CEM I 52.5 R	0	0
CEM II/B-F 32.5 N	0	30
CEM III/A 52.5 N	57	0
CEM III/B 42.5 N	76	0
CEM V/A (S-F) 42.5 N	25	25

Concrete composition = wbr = 0.45, total binder = 340 kg/m³, river aggregate, D_{max} = 31.5 mm

Mortar composition = wbr = 0.5, a/b-ratio = 2.25, standard sand, $D_{max} = 4 \text{ mm}$

THO innovation for life

4. Performance of different binders for durability

56

resistance against:	freeze-thaw with deicing salt	carbonation	chloride penetration	Sulfate and seawater
Name test	Scandinavian Slab Test (SST)	Accelerated Carbonation (AC)	Rapid Chloride Migration (RCM)	Sulfate/seawater Resistance Test
Spec. (mm ³)	concrete half cubes 75x150x150 mm ³	concrete prisms 300x100x100	concrete disks D 100 x h 50	Mortar bars 40 x 40 x 160
curing	7 days wrapped 21 days 20/65 3 days 3% NaCl	7 days fog room; 21 day 20/65 and atm. CO ₂	under water	Under demi-water
start test	31 days	28 days	different ages	28 days
execution	Weigth loss after 56 cycles of 24 h - 20/+20 °C	Carbonation front after 6 months 20/65 /2% CO ₂ ,	Chloride penetraton depth after forced penetration under current	Expansion compared to demi- water after 1 year of exposure

4. Performance of different binders for durability Scandinavian Slab Test

innovation for life

58

4. Performance of different binders for durability Accelerated Carbonation

4. Performance of different binders for durability Rapid Chloride Migration

innovation

4. Performance of different binders for durability Sulphate and Seawater Resistance

innovation for life

61

4. Performance of different binders for durability overview performance

cement	carbonation	Chloride penetration	Freeze-thawing	Sulfate attack
CEM I	+++	0	+++	
CEM II/B-F	0/-	+++	[-] (> 28 cycles better)	0
CEM V/A (S-F)	-	+++	[-] (> 28 cycles better)	+++
CEM III	0	++	+++ (not carbonated)	+++

5. Conclusions

> Durability is a container term: many different mechanisms may threat the durability of concrete.

62

- > The mechanisms may be contradictive in concrete or binder demand
- > For each situation therefore the best performance cement may be different.