

Performance based design of concrete structures

Dr. J.H.M. Visser

Lecture Adv. Concrete technology, 24-28 feb 2014, Indian Institute of Technology, Madras.

innovation for life

Performance based service life design of concrete structures

2

Contents:

- 1. Introduction: what is service life and what is performance?
- 2. Example: performance in a structural design
- 3. Which performances have to be taken into account?
- 4. Example: design on durability corrosion of the reinforcement
- 5. Optimization of the design
- 6. Performance based design
- 7. Conclusions

innovation

innovation for life

1. Introduction: what is service life?

Service life is that stage of a life of a structure when it is in use

innovation for life

1. Introduction: what is performance

A performance is a task that is executed with a certain quantified result (limit)

4

Example: you want to run the 100 m in 10.5 seconds

innovation for life

1. Introduction: what is performance

A performance is a task that is executed with a certain quantified result (limit state)

Performances for structures are similar to that of a sportsman/woman:

6

1. Introduction: what is performance

TNO innovation for life

1. Introduction: what is performance

Now we know why it is important, but WHICH, HOW, and HOW LONG?

Performance based service life design of concrete structures

8

Contents:

- 1. Introduction: what is service life and what is performance?
- 2. Example: performance in a structural design
- 3. Which performances have to be taken into account?
- 4. Example: design on durability corrosion of the reinforcement
- 5. Optimization of the design
- 6. Performance based design
- 7. Conclusions

innovation

innovation

2. Performance in a structural design

9

Example: beam on two supports

Question: can this bar withstand the load?

- What is the influence of the load F, or rather: the reaction S of the structural element on the load?
- > What is the resistance R against the load?
- Is the rest capacity Z=R-S>0 to that the beam does not fail?

innovation for life

2. Performance in a structural design

- > S= I/2 * F/2
- > R=1/6*b*h² * f_c
- > $Z = R S = bh^2 f_c / 6 IF / 4$

Performance demand:

- > Z>a with a an acceptable limit
- > But what is acceptable?

o innovation for life

2. Performance in a structural design

> But what is acceptable limit?

innovation for life

2. Performance in a structural design

Limit states cannot be calculated on the basis of average variables because the probability that the compressive strength is actually lower is too high (= 50 %)

E.g.: the characteristic compressive strength = the strength with a 5 % (single sided) failure probability

innovation for life

2. Performance in a structural design

Z = R-S >a => calculate!, but the variables are stochastic functions, viz. they vary!!

Compressive strength (N/mm²)

E.g.: the characteristic compressive strength = the strength with a 10 % (single sided) failure probability

innovation for life

2. Performance in a structural design

The chance that Z takes on an unacceptable value must be smaller than a on forehand agreed upon value:

innovation for life

2. Performance in a structural design

- β is called reliability index is need to be upon
- > Its value usually depend on the type of limit states:
 - ultimate limit state: β =3.8
 - service limit state: β =1.5

for life

2. Performance in a structural design

- R and S may be time-dependent (and so is thus Z)
- on the basis of the time dependency the service life can be determined

innovation for life

2. Performance in a structural design: summary

• A performance consists of:

- 1. A behaviour model Z(t) of which Z(t) = 0 the limit state describes
- 2. A pre-defined, agreed upon, reliability index β
- 3. A pre-defined, agreed upon service life L

innovation

2. Performance in a structural design

- The probabilistic calculation of Z is usually not so easy as R and S are functions of many different variables
-) that is why in structural design partial safety factors are used: $Z = R_k / \gamma_R S_k \gamma_S$

innovation for life

2. Performance in a structural design

So why bother?

- what to do if longer or shorter service lives are required than implicitly included in the standards?
- > are the current demands optimal?
- > what to do with new contract forms like DCM?
- > what kind (and amount) of maintenance can be expected?
- > how to judge new materials?

innovation

Performance based service life design of concrete structures

20

Contents:

- 1. Introduction: what is service life and what is performance?
- 2. Example: performance in a structural design
- 3. Which performances have to be taken into account?
- 4. Example: design on durability corrosion of the reinforcement
- 5. Optimization of the design
- 6. Performance based design further advantages & developments
- 7. Conclusions

3. Determining the performances to take into account

innovation for life

Going back to the beam example:

Questions to ask are:

(1) Which loads are working on the structure?

(2) Does it matter?

innovation

3. Determining the performances to take into account

(1) Question 1: which loads?

- all loads that have to be taken into account are prescribed in the standards. In Europe this are the EuroCodes
- Load include:
 - Mechanical loads (self weight; wind, earthquakes, traffic loads,...)
 - Environmental loads (CO₂, CI, sulphates, moisture,)
 - Fire

 Nevertheless, you always have to think if other exceptional loads may play a role

3. Determining the performances to take into account

innovation for life

innovation for life

3. Determining the performances to take into account

(1) Question 1: which loads?

• First: try to assess which of the loads are of importance, now, or **DURING SERVICE LIFE** (e.g. make an event tree)

innovation for life

3. Determining the performances to take into account

(1) Question 2: does it matter?

• Second: check the effect of the load (e.g. use a failure mode and effect analysis (FMEA)

innovation

3. Determining the performances to take into account

(1) Question 2: does it matter?

- Third, and last step (much later on in the process) will be to consider the consequence of the effects of failure (e.g. make a risk analysis):
 - loss of lives / health issues
 - Economical loss
 - Ecological loss etc.

• Risk = probability of an event x the consequences

• Most often, the risks are expressed as costs.

innovation for life

3. Determining the performances to take into account

(1) Question 2: does it matter?

• Often, the consequences are presented as a decision tree:

innovation

3. Determining the performances to take into account

> Recap section 2: performance consists of:

- 1. A behaviour model Z(t) of which Z(t) = a the limit state describes
- 2. A pre-defined, agreed upon, reliability index β
- 3. A pre-defined, agreed upon service life L

3. Determining the performances to take into account

innovation

- Recap which performances and which demands:
 - Step 1: analyse all loads, their effects (and a first order consequence), i.e. Z=R-S
 - Step 2: define the limit state (Z=R-S<a?) especially important with respect to service limit states

innovation for life

3. Determining the performances to take into account

• Recap which performances and which demands:

• Step 3: define the reliability (failure probability)

reliability class	consequences of failure		reliability index β ultimate limit state		
	probability loss of lives	Probability economic damage	Reference period = 1 year	Reference period = 50 years	
1	small	negligeable	5.2	4.3	
2	Medium	small	4.7	3.8	
3	large	large	4.2	3.2	

innovation for life

3. Determining the performances to take into account

• Recap which performances and which demands:

• Step 4: define the time (service life) for which the performance is valid

Category (without large repairs)	Indicative service life (year)	example
1	10	Temporary structures
2	10-25	Replaceable structural elements agricultural buildings
3	15-30	agricultural buildings
4	50	Bridges, sluices & water locks
5	100	Monumental buildings and structures (tunnels, bridges and water defence structures)

innovation for life

3. Determining the performances to take into account

• Result: an overview of all possible failure mechanisms, and their limits

Durability aspect)	Limit state	β
ASR	eliminate	-
Freeze-thawing With de-icing salt	eliminate	-
Initiation corrosion - chlorides	Critical chloride content at reinforcement	SLS = 1.5
Initiation corrosion - carbonation	Carbonation front at reinforcement	SLS=1.5
corrosion	Failure of the beam	ULS=3.8

Performance based service life design of concrete structures

33

Contents:

- 1. Introduction: what is service life and what is performance?
- 2. Example: performance in a structural design
- 3. Which performances have to be taken into account?
- 4. Example: design on durability corrosion of the reinforcement
- 5. Optimization of the design
- 6. Performance based design
- 7. Conclusions

innovation

4. Example: design on durability

- STEP 1: check environmental loads and determine which degradation mechanisms are possible
- STEP 2/3: define limit states and reliability
- > STEP 4: define a service life

innovation for life

Degradation mechanism		Limit state	reliability
Corrosion due to chloride		Onset of corrosion	β=1.5
	carbonation	Onset of corrosion	β=1.5
Dr. J.H.M. Visser			

NO innovation for life

4. Example: design on durability

> STEP 5: validate the first design (example for one demand)

	variables
Performance demand:	x = depth from concrete surface
	x _c = concrete cover
$\{c(x = x_c, t = L) \le c_{crit}\} \le P\{\beta = 1.5\}$	t = time since exposure
	L = service life
	c= chloride concentration
	$c_{crit} = critical chloride content$
Behavioral model for chloride penetration	$c_s = surface chloride concentration$
(diffusion):	erf = error function
(x)	k _e = environmental factor
$c(x,t) = c_s (1 - \text{erf}($	$k_c = curing factor$
$\sqrt{\frac{4k_ek_c\int D(t)dt}{}}$	D = diffusion coefficient
Time dependent diffusion coefficient	D _{inf} = diffusion coefficient at inf.time
(material resistance):	D_0 = diffusion coefficient at ref.time t_0
$D(t) = D_{inf} + (D_0 - D_{inf})(t_0/t)^n$	n = ageing coefficient

4. Example: design on durability

STEP 5a: Determine ALL variables in the model (e.g. by field or lab

measurements)

. Determination of the material resistance:

- in compliance test (standard tests under standard conditions, e.g. temperature, concentrations and rh)
- > measured at different ages ('age-factor')

37

INO innovation for life

4. Example: design on durability

STEP 5a: Determine ALL variables in the model

Influence factor:

- execution: k_c
 - curing (rh/moisture)
 - hardening conditions (under higher / lower temperature)
- environment: k_e e.g. marien:
 - > permanently under water
 - > tidal zone
 - > splash zone
 - atmosferic zone

Complete model: $D(t)=k_ck_eD(t_0)f(t)$

4 . Example: design on durability

Variable No	Parameter	Dimension	μ	σ	Distr. Type
1	x _c – Concrete Cover	[mm]	37	2	Expon. Distr.
2	D _{RCM,0} - Cl ⁻ -Migration Coef.	[10 ⁻¹² m ² /s]	4.75	0.71	Normal Distr.
3	C _{Crit} – Critical Chloride Content	[wt%/binder]	0.70	0.10	Normal Distr.
4	n - Age Exponent	[-]	0.60	0.07	Normal Distr.
5	k _t - Factor Test	[-]	1		Deterministic
6	k _{en} - Factor Environment	[-]	1.00	0.10	Normal Distr.
7	k _{ex} - Factor Execution	[-]	1.00	0.10	Normal Distr.
8	C _S - c(Cl ⁻) - Concrete Surface	[wt%/binder]	4.00	0.50	Normal Distr.
9	t ₀ – Reference Time	[year]	0.0767	-	Deterministic

4. Example: design on durability

> STEP 5b: calculate if the design is durable enough

innovation for life

innovation for life

4. Example: design on durability

- > If the design is durable enough, you are finished. If not:
- > STEP 5c adapt the design.
- > Often, a trade off can be made, e.g. cover thickness versus cover

> Notice: more performance demands play a role that may limit possibilities

Performance based service life design of concrete structures

41

Contents:

- 1. Introduction: what is service life and what is performance?
- 2. Example: performance in a structural design
- 3. Which performances have to be taken into account?
- 4. Example: design on durability corrosion of the reinforcement
- 5. Optimization of the design
- 6. Performance based design further advantages & developments
- 7. Conclusions

innovation

innovation for life

5. Optimization of the design

- Design process =
 - > development of 1 (or more) design alternatives
 - > with a series of performance demands
 - > AND a series of measured both for the design, execution and use

Performance based design

5. Optimization of the design

> Which one to choose?

innovation for life

0

innovation

- Performance based design of structures is an integrated approach which does not only apply to mechanical loads but also to durability and other demands
- It moreover in an integral part of the full framework / contracts for Design – Construct - Maintain
- > In which performances are:
 - > defined in the design stage
 - > realised in the construction stage
 - > monitored during the use stage
 - > and if required improved or changed during the maintenance

innovation for life

45

6. Performance based design – further advantages & developments

- Construct:
 - New performance criteria due to construct methods
 - > Execution methods as part of design (e.g. Curing)

Design depends
on building process

innovation for life

6. Performance based design – further advantages & developments

- > Birth certificate:
 - > Design has to be verified after building
 - > If performance are not met, early measures can be taken

47

6. Performance based design – further advantages & developments

- Management: monitoring & inspection
 - > Easy assessment of the remaining service life

β_{eis}

End service life

without maintenance

demanded

service life

Dr. J.H.M. Visser Performance based design

48

End service life

without maintenance

demanded

service life

6. Performance based design – further advantages & developments Example: Green Heart Tunnel

innovation for life

innovation

5. Conclusions

- > The framework of the performance based DCM(-D) is finished
- > The contents are not fully filled out:
 - > there are not many time-dependent models available
 - > little insights in the effects of repairs on the performance
 - probabilistic calculations are difficult and partial safety factor calculations are not available
- > Nevertheless, it is an efficient and objective method that:
 - > will save quite some money
 - > makes the way free for innovations

TNO innovation for life

Thanks

- I hope you enjoyed the lecture and learned something about the flexibility a performance based design process
- > The process will given you a whole range of alternatives, so I hope you will in your future see ample reason to use it!

