
The Reactive-tree:
A Storage Structure for a Seamless,

Scaleless Geographic Database

Peter van Oosterom*

TNO Physics and Electronics Laboratory,
P.O. Box 96864, 2509 JG The Hague, The Netherlands.

Email: oosterom@fel.tno.nl

Abstract

This paper presents the first fully dynamic and reactive data structure. Reac 
tive data structures are vector based structures tailored to the efficient storage 
and retrieval of geometric objects at different levels of detail. Geometric se 
lections can be interleaved by insertions of new objects and by deletions of 
existing objects. Detail levels are closely related to cartographic map general 
ization techniques. The proposed data structure supports the following gener 
alization techniques: simplification, aggregation, symbolization, and selection. 
The core of the reactive data structure is the Reactive-tree, a geometric index 
structure, that also takes care of the selection-part of the generalization. Other 
aspects of the generalization process are supported by introducing associated 
structures, e.g. the Binary Line Generalization-tree for simplification. The 
proposed structure forms an important step in the direction of the develop 
ment of a seamless, scaleless geographic database.

1 Introduction

The deficiencies of using map sheets in Geographic Information Systems are well- 
known and have been described by several authors [5, 10]. The obvious answer to 
these deficiencies is a seamless or sheetless database. A seamless database is made 
possible in an interactive environment by using some form of multi-dimensional in 
dexing, e.g. the R-tree [15] or the KD2B-tree [35]. It turns out that the integrated 
storage of multi-scale (scaleless) data in a spatial indexing structure forms the bot 
tleneck in the design of a seamless, scaleless database [14]. A first approach might 
be to define a discrete number of levels of detail and store them separately each with 
its own spatial indexing structure. Though fast enough for interactive applications, 
this solution is not particularly elegant. It introduces redundancy because some

*A part of this work was done while the author was at the Department of Computer Science, 
University of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands.

393



a. Scale 1:25,000 b. Scale 1:50,000

Figure 1: The Map Generalization Process

objects have to be stored at several levels. Apart from the increased memory usage, 
another drawback is that the data must be kept explicitly consistent. If an object is 
edited at one level, its "counter part" at the other levels must be updated as well. 
In order to avoid these problems we should try to design a storage structure that 
offers both spatial capabilities and multiple detail levels in an integrated manner: 
a reactive data structure. Two spatial data structures, that provide some limited 
facilities for multiple detail levels, are known: the Field-tree [9, 11] and the reactive 
BSP-tree [33, 34]. However, these are not fully dynamic.
First, we will discuss some of the fundamental problems associated with detail levels 
in a multi-scale database. The concept of multiple detail levels can not be defined 
as sharply as that of spatial searching. It is related to one of the main topics in 
cartographic research: map generalization; that is, to derive small scale maps (large 
regions) from large scale maps (small regions). Figure 1 illustrates the generalization 
process by showing the same part of a 1:25,000 map and of an enlarged 1:50,000 map. 
A number of generalization techniques for geographic entities have been developed 
and described in the literature [26, 30, 31]:

• simplification (e.g. line generalization);
• combination (aggregate geometrically or thematically);
• symbolization (e.g. from polygon to polyline or point);
• selection (eliminate, delete);

• exaggeration (enlarge); and

• displacement (move).

Unlike spatial searching, which is a pure geometric/topologic problem, map gener 
alization is application dependent. The generalization techniques are categorized 
into two groups [23, 26]: geometric and conceptual generalization. In geometric 
generalization the basic graphic representation type remains the same, but is, for 
example, enlarged. This is not the case in conceptual generalization in which the

394



a. The global data b. The detailed data

Figure 2: The Place of Global and Detailed Data

representation changes, e.g. change a river from a polygon into a polyline type of 
representation.

Generalization is a complex process of which some parts, e.g. line generalization 
[21, 22], are well suited to be performed by a computer and others are more diffi 
cult. Nickerson [25] shows that very good results can be achieved with a rule based 
expert system for generalization of maps that consist of linear features. Shea and 
McMaster [31] give guidelines for when and how to generalize. Miiller [24] also ap 
plies a rule based system for selection (or its counterpart: elimination) of geographic 
entities. Brassel and Weibel [4] present a framework for automated map general 
ization. Mark [20], Miiller [23], and Richardson [29] all state that the nature of the 
phenomenon must be taken into account during the generalization in addition to 
the more traditional guidelines, such as: the graphic representation (e.g. number of 
points used to draw a line) and the map density. This means that it is possible that 
a different generalization technique is required for a line representing a road than 
for a line representing a river. It is important to note that the spatial data structure 
with detail levels, presented in this paper, is only used to store the results of the 
generalization process.

The guideline that important objects must be stored in the higher levels of the 
tree, is the starting point for the design of the Reactive-tree. This guideline was 
derived during the development of the reactive BSP-tree [33, 34] and is illustrated 
in Figure 2: the global data are stored in the top levels of the tree (gray area in 
Figure 2a) and the detailed data of the selected region are stored in the lower lev 
els of the tree (Figure 2b) in nodes which are "quite close" to each other. The 
Reactive-tree is an index structure, which supports geometric searching at different 
levels of importance. The properties of the Reactive-tree are described in Section 2, 
together with a straightforward Search algorithm. Insert and Delete algorithms are 
given in the subsequent section. Support for the generalization technique simplifi 
cation is provided by representing polygonal or polyline objects by a Binary Line 
Generalization-tree, see Section 4. Support for the generalization techniques aggre 
gation and symbolization is discussed in Section 5. In Section 6 the Alternative 
Reactive-tree is presented, not based on the guideline stated above. This paper is 
concluded with an evaluation of the presented structures.

395



2 The Properties of the Reactive-tree

In the following subsection, it is argued that importance values associated with ob 
jects, are required. The two subsequent subsections give an introduction to the 
Reactive-tree and a formal description of its properties, respectively. The last sub 
section describes a geometric Search algorithm, which takes the required importance 
level into account.

2.1 Importance Values

Generalization is, stated simply, the process of creating small scale (coarse) maps out 
of detailed large scale maps. One aspect of this process is the removal of unimportant 
and often, but not necessarily, small objects. This can be repeated a number of 
times, each time resulting in a smaller scale map with fewer objects in a fixed region. 
Each object is assigned a logical importance value, a natural number, in agreement 
with the smallest scale on which it is still present. Less important objects get low 
values, more important objects get high values. The use of importance values for 
the selection of objects was first published by Frank [8].

Which objects are important is depends on the application. In many applications 
a natural hierarchy is already present. In the case of, for example, a road map 
these are: highways, major four-lane roads, two-lane roads, undivided roads, and 
dirt roads. Another example can be found in WDB II [12] where lakes, rivers, and 
canals are classified into several groups of importance. Typically, the number of 
levels is between five and ten, depending on the size and type of the geographic data 
set. In a reasonable distribution the number of objects having a certain importance 
is one or two orders of magnitude larger than the number of objects at the next 
higher importance level; a so called, hierarchical distribution.

2.2 Introduction to the Reactive-tree

Several existing geometric data structures are suited to be adapted for the inclusion 
of objects with different importance values, for example the R-tree [15], the Sphere- 
tree, and the dynamic KD2B-tree [35]. In this paper, the Reactive-tree is based on 
the R-tree, because the R-tree is the best known structure. However, if orientation 
insensitivity is important, then one of the other structures mentioned must be used. 
The Reactive-tree is a multi-way tree in which, normally, each node contains a 
number of entries. There are two types of entries: object-entries and tree-entries. 
The internal nodes may contain both, in contrast to the R-tree. The leaf nodes of 
the Reactive-tree contain only object-entries. An object-entry has the form

(MBR, imp-value, object-id)

where MBR is the minimal bounding rectangle, imp-value is a natural number that 
indicates the importance, and object-id contains a reference to the object. A tree- 
entry has the form

(MBR, imp-value, child-pointer)

396



= importance 1 

= importance 2

Figure 3: The Scene and the Rectangles of the Reactive-tree

where child-pointer contains a reference to a subtree. In this case MBR is the 
minimal bounding rectangle of the whole subtree and imp-value is the importance 
of the child-node incremented by 1. The importance of a node is defined as the 
importance of its entries. Note that the size of a tree-entry is the same as that of 
an object-entry. When one bit in the object-id/'child-pointer is used to discriminate 
between the two entry types, then there is no physical difference between them in 
the implementation. Each node of the Reactive-tree corresponds to one disk page. 
Just as in the R-tree, M indicates the maximum number of entries that will fit in 
one node, and m < IM/2] is the minimum number of entries. Assume that the 
page size is 1024, then M is 48 in a realistic implementation.

2.3 Defining Properties

In this subsection the defining properties of the Reactive-tree are presented. The 
fact that the empty tree satisfies these properties and that the Insert and Delete 
algorithms given in Section 3 do not destroy them, guarantees that a Reactive-tree 
always exists. The Reactive-tree satisfies the following properties:

1. For each object-entry (MBR, imp-value, object-id), MBR is the smallest axes- 
parallel rectangle that geometrically contains the represented object of impor 
tance imp-value.

2. For each tree-entry (MBR, imp-value, child-pointer), MBR is the smallest 
axes-parallel rectangle that geometrically contains all rectangles in the child 
node and imp-value is the importance of the child-node incremented by 1.

3. All the entries contained in nodes on the same level are of equal importance, 
and more important entries are stored at higher levels.

4. Every node contains between m and M object-entries and/or tree-entries, 
unless it has no brothers (a pseudo-root).

397



\
r

.15,
r
W

' \
r
S17

r
W

r
^

r
s20,

r

*
r
8

r
9

r ^— >
.10

r ^~>
.11,

^

r '-> r-— >,

^\
\

r 
^

r ^~> r̂
 — v

r
12

r
13

^_

r—\
30

/
r '-->
ii

•^

r <->
s31,

^
r r
S^.33.

r̂
-v

S34j
r
^

Figure 4: The Reactive-tree

5. The root contains at least 2 entries unless it is a leaf.
It is not difficult to see that the least important object-entries of the whole data 
set are always contained in leaf nodes on the same level. In contrast to the R-tree, 
leaf nodes may also occur at higher levels, due to the more complicated balancing 
criteria which are required by the multiple importance levels; see properties 3, 4, 
and 5. Further, these properties imply that in an internal node containing both 
object-entries and tree-entries, the importance of the tree-entries is the same as 
the importance of the object-entries. Figure 3 shows a scene with objects of two 
importance levels: objects of importance 1 are drawn in white and the objects of 
importance 2 are drawn in grey. This figure also shows the corresponding rectangles 
as used in the Reactive-tree. The object-en tries in the Reactive-tree are marked 
with a circle in Figure 4. The importance of the root node is 3, and the importance 
of the leaf nodes is 1.

2.4 Geometric Searching with Detail Levels

The further one zooms in, the more tree levels must be addressed. Roughly stated, 
during map generation based on a selection from the Reactive-tree, one should try 
to choose the required importance value such that a constant number of objects will 
be selected. This means that if the required region is large only the more important 
objects should be selected and if the required region is small, then the less important 
objects must be selected also. The recursive Search algorithm to report all object- 
entries that have at least importance imp and whose MBRs overlap search region 
5, is invoked with the root of the Reactive-tree as current node:

1. If the importance of the current node TV is less than imp, then there are no 
qualifying records in this node or in one of its subtrees.

2. If the importance of the current node N is greater or equal to imp, then report 
all object-entries in this node that overlap 5.

3. If the importance of the current node N is greater than imp, then also in 
voke the Search algorithm for the subtrees that correspond to tree-entries that 
overlap 5.

398



3 Insert and Delete Entry Algorithms

The Search algorithm is the easy part of the implementation of the Reactive-tree. 
The hard part is presented by Insert and Delete algorithms that do not destroy 
the properties of the Reactive-tree. In the implementation presented here, there 
is exactly one level in the Reactive-tree for each importance value, in the range 
from rain-imp to max jimp, where minjimp and max-imp correspond to the least 
and to the most important object, respectively. If necessary, there may be one or 
more tree levels on top of this, which correspond to importance levels max-imp + 
1 and higher. Then the top level nodes contain tree-entries only. Assume that 
tree-imp > maxjimp is the importance of the root of the Reactive-tree, then the 
height of the tree is tree jimp -f 1 - minJmp. The values of rain-imp and tree jimp 
are stored in global variables. In the algorithms described below, the trivial aspects 
of maintaining the proper values of these variables are often ignored. Because of the 
direct relationship between the importance and the level of a node in the Reactive- 
tree of this implementation, the impjvalue may be omitted in both the object-entry 
and the tree-entry.

3.1 Insert Entry

The Insert algorithm described below does not deal with the special cases: empty 
tree and the insertion of an entry with importance greater than tree-imp. Solutions 
for both are easy to implement and set the global variable tree-imp to the proper 
value. The Insert algorithm to insert a new entry E of importance Ejimp in the 
Reactive-tree:

1. Descend the tree to find the node, that will be called TV, by recursively choosing 
the best tree-entry until a node of importance E-imp or a leaf is reached. The 
best tree-entry is defined as the entry that requires the smallest enlargement 
of its MBR to cover E. While moving down the tree, adjust the MBRs of the 
chosen tree-entries on the path from the root to node N.

2. In the special case that node TV is a leaf and the importance N-imp is greater 
than E-imp, a linear path (with length N-imp — E-imp] of nodes is created 
from node TV to the new entry. Each node in this path contains only one entry. 
This is allowed, because these are all pseudo-roots.

3. Insert the (path to) new entry E in node TV. If overflow occurs split the node 
into nodes TV and TV' and update the parent. In case the parent overflows as 
well, propagate the node-split upward.

4. If the node-split propagation causes the root to split, increment tree-imp by 1 
and create a new root whose children are the two resulting nodes.

The node splitting in step 3 is analogous to the node splitting in the R-tree. A disad 
vantage of the Reactive-tree is the possible occurrence of pseudo-roots. These may 
cause excessive memory usage in case of a "weird" distribution of the number of ob 
jects per importance level; e.g. there are more important objects than unimportant 
objects.

399



3.2 Delete Entry

An existing object is deleted by the Delete algorithm:
1. Find the node N containing the object-entry, using its MBR.
2. Remove the object-entry from node N. If underflow occurs, then the entries 

of the under-full node have to be saved in a temporary structure and the node 
N is removed. In case the parent also becomes under-full, repeat this process. 
It is possible that the node-underflow continues until the root is reached and 
in that case tree-imp is decremented.

3. Adjust the MBRs of all tree-entries on the path from the removed object-entry 
back to the root.

4. If underflow has occurred, re-insert all saved entries on the proper level in the 
Reactive-tree by using the Insert algorithm.

There are three types of underflow in the Reactive-tree: the root contains 1 tree- 
entry only, a pseudo-root contains 0 entries, or one of the other nodes contains 
m — I entries. The temporary structure may contain object-entries and tree-entries 
of different importance levels.

4 The Binary Line Generalization-tree

Selection, as supported by the Reactive-tree, can assure that only global and im 
portant polylines (or polygons) are selected out of a large-scale geographic data set, 
when a small-scale map (large regions) has to be displayed. However, without spe 
cific measures, these polylines are drawn with too much detail, because all points 
that define the polyline are used. This detail will be lost on this small-scale due 
to the limited resolution of the display. Also the drawing will take an unnecessary 
long period of time. It is better to use fewer points. This can be achieved by the 
k-th point algorithm, which only uses every k-th point of the original polyline for 
drawing. The first and the last points of a polyline are always used. This is to ensure 
that the polylines remain connected to each other in the nodes of a topologic data 
structure [3, 27]. This algorithm can be performed "on the fly" because it is very 
simple. The k can be adjusted to suit the specified scale. However, this method has 
some disadvantages:

• The shape of the polyline is not optimally represented. Some of the line 
characteristics may be lost if the original polylines contain very sharp bends 
or long straight line segments.

• If two neighboring administrative units are filled, for example, in case of a 
choropleth, and the k-th point algorithm is applied on the contour, then these 
polygons may not fit. The contour contains the re-numbered points of several 
polylines.

Therefore, a better line generalization algorithm has to be used, for instance the 
Douglas-Peucker algorithm [6]. Duda and Hart [7] describe an algorithm similar 
to the Douglas-Peucker algorithm and call it the "iterative end-point fit" method. 
Both references date back to 1973. A slightly earlier publication is given by Ramer 
[28] in 1972. These types of algorithms are time consuming, so it is wise to compute

400



a. Polyline b. BLG-tree

Error indicated within 
parentheses. The points Pj_ 
and PIO are implicit.

Figure 5: A Polyline and its BLG-tree

the generalization information for each polyline in a pre-processing step. The result 
is stored in, for instance, a Multi-scale Line Tree [17, 18]. The disadvantages of the 
Multi-scale Line Tree have already been discussed in [37]: it introduces a discrete 
number of detail levels and the number of children per node is not fixed. Strip 
trees [1] and Arc trees [13] are binary trees that represent curves (in a 2D-plane) 
in a hierarchical manner with increasing accuracy in the lower levels of the tree. 
These data structures are designed for arbitrary curves and not for simple polylines. 
Therefore, we introduce a new data structure that combines the good properties of 
the structures mentioned. We call this the Binary Line Generalization-tree (BLG- 
tree).
The BLG-tree stores the result of the Douglas-Peucker algorithm in a binary tree. 
The original polyline consists of the points pi through pn The most coarse approxi 
mation of this polyline is the line segment [pi,pn]- The point of the original polyline, 
that has the largest distance to this line segment, determines the error for this ap 
proximation. Assume that this is point pk with distance e?, see Figure 5a. pk and 
d are stored in the root of the BLG-tree, which represents the line segment [pi,pn ]. 
The next approximation is formed by the two line segments [pi,p/t] and [pfcj^n]- The 
root of the BLG-tree contains two pointers to the nodes that correspond with these 
line segments. In the "normal" situation this is a more accurate representation.
The line segments [pi,pjt] and [pfc,pn] can be treated in the same manner with respect 
to their part of the original polyline as the line segment [p1? pn ] to the whole polyline. 
Again, the error of the approximation by a line segment can be determined by the 
point with the largest distance. And again, this point and distance are stored in a 
node of the tree which represents a line segment. This process is repeated until the 
error (distance) is 0. If the original polyline does not contain three or more collinear 
points, the BLG-tree will contain all points of that polyline. It incorporates an 
exact representation of the original polyline. The BLG-tree is a static structure with 
respect to inserting, deleting and changing points that define the original polyline. 
The BLG-tree of the polyline of Figure 5a is shown in Figure 5b. In most cases, 
the distance values stored in the nodes will become smaller when descending the 
tree. Unfortunately, this is not always the case, as shown in Figure 6. It is not a 
monotonically decreasing series of values.

The BLG-tree is used during the display of a polyline or polygon at a certain scale. 
One can determine the maximum error that is allowed at this scale and the primitive

401



a. Polyline b. BLG-tree

P2 .(4.6)

P3 *
Figure 6: Increasing Error in BLG-tree

is simplified and a good graphic representation is obtained. During traversal of the 
tree, one does not have to go any deeper in the tree once the required accuracy is 
met. The BLG-tree can also be used for other purposes, for example (further details 
can be found in [37]):

• Estimating the area of a region enclosed by a number of polylines.
• Estimating the intersection(s) of two polylines. This is a useful operation 

during the calculation of a map overlay (polygon overlay).
Note that the BLG-tree is most useful for polylines and polygons defined by a 
large number of points. For a small number of points, "on the fly" execution of 
the Douglas-Peucker [6] algorithm may be more efficient. For polylines that are 
somewhere in between, another alternative might be interesting. Assign a value to 
each point to decide whether the point is used when displaying the polyline at a 
certain scale. This simple linear structure is probably fast enough for the medium 
sized polyline.

5 Support for Other Generalization Techniques

The Reactive-tree and the BLG-tree reflect only a part of the map generalization 
process: selection and simplification. A truly reactive data structure also deals 
with other aspects of the generalization process. In this section two more aspects 
are discussed: symbolization, and aggregation. These terms may be confusing in 
the context of the Reactive-tree, because the tree is usually described "top-down" 
(starting with the most important objects) and map generalization is usually de 
scribed "bottom-up" (starting at the most detailed level). The two generalization 
techniques are incorporated in the reactive data structure by considering objects 
not as a simple list of coordinates, but as more complex structures. In practice, this 
can be implemented very well by using an object-oriented programming language, 
such as Procol [19, 32, 36, 37].
Symbolization changes the basic representation of a geographic entity, for example, 
a polygon is replaced by a polyline or point on a smaller scale map. Besides the 
coordinates of the polygon, the object structure contains a second representation in 
the form of a polyline or point. Associated with each representation is a resolution 
range which indicates where it is valid. An example of the application of the sym 
bolization technique is a city which is depicted on a small scale map as a dot and

402



Figure 7: A Large Object is Composed of Several Small Objects

on a large scale map as a polygon.
The last generalization technique included in the reactive data structure is aggrega 
tion, that is the combination of several small objects into one large object. From 
the "top-down hierarchical tree" point of view, a large object is composed of sev 
eral small objects; see Figure 7. The geometric description of the large object and 
the geometric descriptions of the small objects are all stored, because there is no 
simple relationship between them. The large object is some kind of "hull" around 
the small objects, see Figure 7. Usually, a bounding box around the small objects 
is a sufficient "geometric search structure", because the number of small objects is 
limited. However, if the number of small objects combined in one large object is 
quite large, then a R-subtree may be used.

Aggregation is used, for example, in the map of administrative units in The Nether 
lands [37]. Several municipalities are grouped into one larger economic geographic 
region (EGR), EGRs are grouped into a nodal region, nodal regions are grouped 
in a province, and so on. Another approach to this case is to consider the bound 
aries as starting point of the design, instead of the regions. In that case selection is 
the appropriate generalization technique and the Reactive-tree can be used without 
additional structures.

6 An Alternative Reactive-tree

In this section a reactive data structure is presented, which is not based on the 
guideline that important objects must be stored in the higher levels of the tree. 
The advantage of the Alternative Reactive-tree over the Reactive-tree is that it does 
not assume a hierarchical distribution of the number of objects over the importance 
levels.
The 2D Alternative Reactive-tree is based on a 3D R-tree. The 3D MBR of a 2D 
object with importance imp is denned by its 2D MBR and its extents in the third 
dimension are from imp and to imp+8, where 8 is a positive real number, so an object 
corresponds to a block with non-zero contents (except for point objects). Figure 8 
depicts the 3D MBRs of a number of 2D objects at two different importance levels. 
When the parameter 8 is chosen very small, e.g. 0.01, the Alternative Reactive-tree 
tries to group the objects that belong to the same importance level. This can be 
explained by the fact that there is a heavy penalty on the inclusion of an object with

403



Importance or 
z-axis

y-axis

x-axis 
Figure 8: The 3D MBRs of the Alternative Reactive-tree

another importance value, as the volume of the 3D MBR will increase by at least a 
factor (1 + S)/6. The larger 8 becomes, the less the penalty, and the more likely it 
is that objects of different importance are grouped, and the Alternative Reactive- 
tree behaves more like a normal 2D R-tree. In any case, all objects, important and 
unimportant, are stored in leaf nodes on the same level.

The Alternative Reactive-tree can be generalized to support objects with general 
labels instead of the hierarchical importance values. This enables queries such as 
"Select all capital cities in region R." The label capital is associated with some of 
the geographic objects, by inserting these entries into the tree. A Geographic object 
may be associated with more labels by inserting more entries for the same object. 
In the implementation, label corresponds to a numeric value. By choosing certain 
values for these labels and for £, possible coherence between labels may be exploited. 
This is what is actually done in the 2D Alternative Reactive-tree for hierarchically 
distributed data.

7 Discussion

This paper described the first fully dynamic and reactive data structure. It was 
presented as a 2D structure, but 3D and higher dimensional variants are possible. 
Note that this has nothing to do with the use of a 3D R-tree for the 2D Alterna 
tive Reactive-tree. The Reactive-tree and the Alternative Reactive-tree have been 
implemented in C++ on a Sun 3/60. Two large data sets have been used to test 
the reactive structures: WDB II [12] and the map of administrative units in The 
Netherlands. Both performance tests showed the advantage of the selection based 
on importance level and geometric position. Displaying the whole map area at in 
teractive speed was possible, in contrast to the situation where the normal R-tree 
was used, which also showed a lot of annoying details. The additional structures 
for the support of simplification, symbolization, and aggregation are currently being 
implemented. Future performance tests depend on the availability of digital maps 
with generalization information.

404



Two other generalization techniques where not discussed: exaggeration and dis 
placement. Exaggeration seems easy to include, because it is a simple enlargement 
of an aspect of the graphic representation of one object, e.g. the line width. How 
ever, the enlargement of linear features may cause other features to be covered and 
they must therefore be displaced. Exaggeration and displacement are difficult to 
handle, because multiple objects have to be considered. An ad hoc solution is to 
associate an explicit set of tuples (displacement, map-scale-range) with each object 
that has to be displaced and a set of tuples (enlargement, map-scale-range) with 
each object that has to be enlarged. Further research is required in order to develop 
more elegant solutions.
Very recently, another reactive data structure has been proposed by Becker and 
Widmayer [2]. The Priority Rectangle File (PR-file, based on the R-file [16]) forms 
the backbone of their structure. A significant common characteristic of the PR- 
file and the Reactive-tree is that, in general, both store more important objects in 
higher levels. A few differences of the PR-file, compared to the Reactive-tree, are: 
objects of equal importance (priority) are not necessarily on the same level, and 
object-entries and tree-entries can not be stored in the same node.

Finally, other Reactive-trees should be considered which are able to deal efficiently 
with a non-hierarchical distribution of the number of objects over the importance 
levels, whilst sticking to the guideline that important objects are to be stored in the 
higher levels of the tree. This might be realized by changing the properties in such 
a manner that one tree level is allowed to contain multiple importance levels, but it 
is not (yet) clear how the Insert and Delete algorithms should be modified. This is 
subject to further research.

References

[1] Dana H. Ballard. Strip trees: A hierarchical representation for curves. Com 
munications of the ACM, 24(5):310-321, May 1981.

[2] Bruno Becker and Peter Widmayer. Spatial priority search: An access tech 
nique for scaleless maps. Technical report, Institut fur Informatik, Universitat 
Freiburg, June 1990.

[3] Gerard Boudriault. Topology in the TIGER file. In Auto-Carto 8, pages 258- 
269, 1987.

[4] Kurt E. Brassel and Robert Weibel. A review and conceptual framework of au 
tomated map generalization. International Journal of Geographical Information 
Systems, 2(3):229-244, 1988.

[5] Nicholas R. Chrisman. Deficiencies of sheets and tiles: Building sheet- 
less databases. International Journal of Geographical Information Systems, 
4(2):157-167, 1990.

[6] D.H. Douglas and T.K. Peucker. Algorithms for the reduction of points required 
to represent a digitized line or its caricature. Canadian Cartographer, 10:112- 
122, 1973.

[7] Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. 
John Wiley fc Sons, New York, 1973.

405



[8] A. Frank. Application of DBMS to land information systems. In Proceedings 
of the Seventh International Conference on Very Large Data Bases, pages 448- 
453, 1981.

[9] Andre Frank. Storage methods for space related data: The Field-tree. Techni 
cal Report Bericht Nr. 71, Eidgenossische Technische Hochschule Zurich, June 
1983.

[10] Andrew U. Frank. Requirements for a database management system for a 
GIS. Photogrammetric Engineering and Remote Sensing, 54(11):1557-1564, 
November 1988.

[11] Andrew U. Frank and Renato Barrera. The Field-tree: A data structure for Ge 
ographic Information System. In Symposium on the Design and Implementation 
of Large Spatial Databases, Santa Barbara, California, pages 29-44. Lecture 
Notes in Computer Science 409, Springer Verlag, July 1989.

[12] Alexander J. Gorny and Russ Carter. World Data Bank II, General users guide. 
Technical report, U.S. Central Intelligence Agency, January 1987.

[13] Oliver Giinther. Efficient Structures for Geometric Data Management. Number 
337 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1988.

[14] Stephen C. Guptill. Speculations on seamless, scaleless cartographic data bases. 
In Auto-Carto 9, Baltimore, pages 436-443, April 1989.

[15] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. 
ACM SIGMOD, 13:47-57, 1984.

[16] Andreas Hutflesz, Hans-Werner Six, and Peter Widmayer. The R-file: An 
efficient access structure for proximity queries. In Proceedings IEEE Sixth In 
ternational Conference on Data Engineering, Los Angeles, California, pages 
372-379, February 1990.

[17] Christopher B. Jones and lan M. Abraham. Design considerations for a scale- 
independent cartographic database. In Proceedings 2nd International Sympo 
sium on Spatial Data Handling, Seattle, pages 348-398, 1986.

[18] Christopher B. Jones and lan M. Abraham. Line generalization in a global 
cartographic database. Cartographica, 24(3):32-45, 1987.

[19] Chris Laffra and Peter van Oosterom. Persistent graphical objects. In Euro 
graphics Workshop on Object Oriented Graphics, June 1990.

[20] David M. Mark. Conceptual basis for geographic line generalization. In Auto- 
Carto 9, Baltimore, pages 68-77, April 1989.

[21] Robert B. McMaster. Automated line generalization. Cartographica, 24(2):74- 
111, 1987.

[22] J.-C. Miiller. Optimum point density and compaction rates for the representa 
tion of geographic lines. In Auto-Carto 8, pages 221-230, 1987.

[23] Jean-Claude Miiller. Rule based generalization: Potentials and impediments. 
In 4th International Symposium on Spatial Data Handling, Zurich, Switzerland, 
pages 317-334, July 1990.

[24] Jean-Claude Miiller. Rule based selection for small scale map generalization. 
Technical report, ITC Enschede, The Netherlands, 1990.

406



[25] Bradford G. Nickerson. Automatic Cartographic Generalization For Linear Fea 
tures. PhD thesis, Rensselaer Polytechnic Institute, Troy, New York, April 1987.

[26] F.J. Ormeling and M.J. Kraak. Kartografie: Ontwerp, productie en gebruik van 
kaarten (in Dutch). Delftse Universitaire Pers, 1987.

[27] Thomas K. Peucker and Nicholas Chrisman. Cartographic data structures. The 
American Cartographer, 2(l):55-69, 1975.

[28] Urs Ramer. An iterative procedure for the polygonal approximation of plane 
curves. Computer Graphics and Image Processing, 1:244-256, 1972.

[29] Diane E. Richardson. Database design considerations for rule-based map feature 
selection. ITC Journal, 2:165-171, 1988.

[30] A.H. Robinson, R.D. Sale, J.L. Morrison, and P.C. Muehrcke. Elements of 
Cartography. J. Wiley & Sons, New York, 5th edition, 1984.

[31] K. Stuart Shea and Robert B. McMaster. Cartographic generalization in a 
digital environment: When and how to generalize. In Auto-Carto 9, Baltimore, 
pages 56-67, April 1989.

[32] Jan van den Bos and Chris Laffra. Procol - A parallel object language with 
protocols. In OOPSLA '89, New Orleans, pages 95-102, October 1989.

[33] Peter van Oosterom. A reactive data structure for Geographic Information 
Systems. In Auto-Carto 9, Baltimore, pages 665-674, April 1989.

[34] Peter van Oosterom. A modified binary space partitioning tree for Geographic 
Information Systems. International Journal of Geographical Information Sys 
tems, 4(2):133-146, 1990.

[35] Peter van Oosterom and Eric Claassen. Orientation insensitive indexing meth 
ods for geometric objects. In 4^n International Symposium on Spatial Data 
Handling, Zurich, Switzerland, pages 1016-1029, July 1990.

[36] Peter van Oosterom and Chris Laffra. Persistent graphical objects in Procol. 
In TOOLS '90, Paris, pages 271-283, June 1990.

[37] Peter van Oosterom and Jan van den Bos. An object-oriented approach to the 
design of Geographic Information Systems. Computers & Graphics, 13(4):409- 
418, 1989.

407




