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ABSTRACT

Results are presented of noise reduction by motion compensated temporal filtering in a noisy JR
image sequence and of moving target detection in an air-to-ground JR image sequence. Jn the case of
motion compensated temporal filtering our approach consists of estimating the optical flow between
successive frames and subsequently averaging a small number of images. Moving targets are detected
by first estimating the optical flow between successive frames. Target detection amounts to comparing a
predicted frame, based on the estimated optical flow, to the actual frame. Thus, it is possible to detect
targets without making assumptions on their appearance. The particular motion estimator used was
found to be especially useful in the case of JR imagery, because the estimator is relatively insensitive to
noise and global 1)rightness variations.

1 INTRODUCTION

Motion perception is an important source of information for the human visual system. The determi-
nation of our motion relative to the environment as well as the determination of the three dimensional
structure of the environment largely cleI)end on the interpretation of visual motion. The human visual
system is capable of extracting information from a sequence of images that is hard to extract from the
in(lividual images. An example is the interpretation of a very noisy image sequence. By using spatial
and temporal correlation we are able to "see through the noise." Sometimes, visual detection of an
object fully depends on the perception of motion. This is illustrated by the ease with which we see an
otherwise successfully caiiiouflaged object as soon as it moves.

2 IMAGE MOTION ESTIMATION

The apparent motion of brightness patterns observed when a camera is moving relative to the objects
being imaged is called optical flow. Optical flow can be represented by a two dimensional vector field.
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Loosely speaking, the optical flow field links a pixel at the position (x, y) to the corresponding pixel at
position (x + u(x, y), y+ v(x, y)) in the next image. Ideally, both pixels correspond to the same physical
object point in the scene. In practice, when estimating optical flow, this is hard to achieve because there
is an infinite number of vector fields that is consistent with the data. There is a large body of literature
devoted to the various approaches of estimating optical flow from a sequence of digitized images.

The particular approach to the motion estimation problem we have taken is described in more de-
tail by Beck1 and is based on concepts introduced by Jepson and Fleet.2 One of the central ideas of
our motion estimator is the separation of the analysis according to scale and orientation. A inultires-
olution representation provides a simple hierarchical framework for analyzing the image information.
The primary reason for using a multi resolution representation is not computational efficiency. The
concept of multi resolution is deemed to be essential for the task at hand, because the information in
images resides at different resolutions and needs to be analyzed at the appropriate resolution. Large
scale image structure provides the context in which smaller scale structure fits. In motion estimation,
large scale image structure is used to measure large displacements with limited accuracy. These coarse
measurements are subsequently improved by using information provided by the finer scale image in-
formation. This avoids aliasing problems and at the same time avoids a temporal sampling rate that
would be prohibitively high. Prominent structural image iiiformation can usually be characterized by
a specific orientation. Performing measurements on image structure with primitives that do not have
approximately the same orientation is bound to produce ill-conditioned results. Therefore, we use a
multi resolution representation with basis functions that are all rotations of one unique function.

The most commonly chosen image attribute for motion estimation is brightness. Usually, the main
assumption is that a pattern of image brightness moves across the image plane without distortion. In
I)ractice, this assuml)tion is often violated. Therefore it would be preferable to define an image attribute
that more inherently describes image structure. For this purpose, Jepson and Fleet2 proposed the use of
local I)hase information from a pair of (Illa(Irature bandpass filters. It turns out that phase has several
desirable l)rol)erties. Phase is amplitu(le invariant, and hence insensitive to global variations of image
intensity. Because phase is coml)utecl from information in a (small) neighborhood, noise sensitivity is
reduced by the implied averaging. Another way to view this reduced noise sensitivity is the fact that
generally the noise spectrum extends over the entire frequency plane. Since phase is computed from the
output of a bandpass filter, it is only sensitive to that part of the noise that falls within the passband
of the filter.

3 NOISE REDUCTION IN IMAGE SEQUENCES

By I(x, t) we denote the image brightness function, where vector x denotes the spatial coordinates
and t denotes time. Let v(x, t) be the displacement of the image point at (x, t) between time t —
and t, where t denotes the temporal sampling interval. Assuming that image brightness for an object
point is conserved over time, we can write

I(x,t) = I(x— v(x,t),t— t) (1)

Obviously, v is undefined when an object is occluded or when it is newly exposed. In general v will be
a slowly varying function of the spatial coordinates with discontinuities at the edges of moving objects.
A spatiotemporal volume can he formed l)y stacking the consecutive frames of the sequence. A physical
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Figure 1: (Top) Part of the reference image from an JR image sequence, taken from an aircraft flying at
approximately 85 rn/s at a height of about 1000 ft. Frame rate 8.3 Hz. All computations are performed
relative to this image.
(Bottom) Mean along motion trajectories computed from six motion compensated images and the
reference image. Median filtering along motion trajectories produces similar, though generally slightly
noisier, results.
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poiiit iii the scene traces out a trajectory in this spatiotemporal volume during the time it is visible in
the sequence. The brightness value along this trajectory forms a one dimensional signal. This signal
is assumed to consist of a deterministic image component and an additive noise component. Variation
of the image component is due to change in the luminance of the object. This variation is assumed
to be relatively slow, so that the image component is a low bandwidth signal. The additive noise is
assumed to be uncorrelated with the image signal. Low-pass filtering along the motion trajectory can
significantly reduce the noise component. The filter operation along the motion trajectory can be either
linear or non-linear. When the image noise is additive Gaussian noise, independent in each pixel and
of fixed variance along a motion trajectory, then it can be shown that the sample mean along a motion
trajectory is the maximum likelihood estimator for the grey value of the pixel. In this case, the linear
estimator will yield the best signal to noise ratio in the result. On the other hand, a non-linear filter
may be more robust to errors in the displacement estimate and the non-validity of the noise model e.g.
in the case of dead l)ixels in the images. In addition, a non-linear filter might be able to deal with
occlusion and exposure effects more adequately. The choice of filter will generally depend on the ease
of iml)lemflentation and the particular distortions in the image sequence. The nuniber of frame stores
can be reduced if the used filter is recursive.4

With regard to exposure and occlusion effects, it would be of interest to know exactly the lifetime of
a motion trajectory. Unfortunately this is a hard problem. It requires the identification of image areas
that are newly exposed and image areas that are just occluded in each frame of the image sequence.
Most current motion estimators are not able to solve this problem reliably.

4 DETECTION OF MOVING TARGETS

Algorithms for the detection of dim, low contrast targets usually consist of two stages. First, the
algorithm selects a number of I)ote1tial targets, for example 1)right 51)ots. Due to clutter this usually
results in a large nuiiiber of false alarms. (Here, clutter is loosely defined as the amount of target-like
objects in a scene.) The second stage therefore has to reject the falsely selected objects. This can be
(lone by combining iiiformation over frames, or by use of contextual information. Here, we choose to
detect targets oii basis of their motion. Our approach coiisists of essentially two stages:

1 . motion estimation,

2. target detection in the motion compensated image sequence.

We assume we have to deal with an essentially stationary scene that is being imaged from a moving
platform (e.g. helicopter). If we are al)le to estimate a sufficiently accurate 2-D vector field that maps
one frame in the sequence to the next, we can in l)rinciple l)redict one frame from the previous one. The
Princil)le to detect nmoving targets is particularly simnl)le and amounts to analyzing time image sequence
on the occurrence of unexpected events. In this context, ufleXpeCte(i events are temporal variations of
the image bnghtness fiinctiomm that are iiimpossible to predict and that can not l)e accounted for by noise.
Thus, targets are detected by analyzing the difference between the Predicted and the actual image. In
pnnciple, it is l)ossil)le to detect camouflaged targets moving relative to a textured background.

In evaliiatiiig time difference images thus obtained, we have to distinguish several l)ossibilities.
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Input Sequence

Figure 2: B'ock (hagram for the detection of moving targets in au image sequence obtained by a moving
camera.

1. 'VVhen the image motion estimate is perfect, the scene has no a)preciatable (lepth discontinuities,
an(I there are no moving objects in the scene, we expect the difference image to be a sample
from a 2-D rafl(lOIfl noise process. The noise is a mixture of image noise and noise due to the
interpolation process.

2. When the motion estimate is accurate, there are no moving objects, but there is considerable depth
variation in the scene, we expect uncovered background adjacent to physical edges of foreground
objects. This is the parallax effect. Generally, this will result in large amplitudes in the difference
image at locations corresponding to covered and uncovered background, while the rest of the
difference image is characterized by random noise. In air-to-ground imagery the large response
areas will usually be chain-like, for example the outline of a hill. Although the large response
areas will generally not correspond to moving targets, they are nonetheless of interest because
they often corresl)ond to previously unexpose(1 l)arts of the scene. In some ap)1ications it may be
of interest to perform extra processing on I)arts of the scene that are newly exposed.

3. When there are moving objects in the scene and the motion estimate is such that this object
motion is correctly captured, the difference image will show large amplitudes at locations of
covered and un-covered background if the background is sufficiently textured. This enables us to
detect camouflaged objects.

4. When there are small, moving objects we may be unable to capture object motion correctly. This
behavior may be forced by only using large scale image structure in the motion estimate. In
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this case the difference image will generally display a small area with a large positive response
adjacent to a small area with a large negative response. This case is of practical interest in target
acquisition applications at long stand off ranges.

To automate the detection process, we have to make a number of assumptions about the image noise
statistics. Iii the examples shown here, the noise was assumed to be additive zero-mean Gaussian noise,
independent in each pixel. The noise statistics are obtained from a fit of a Gaussian to the sample
histogram of the difference image. This is more robust than calculating the usual sample statistics
because the influence of the outliers (targets !) is reduced. From the standard deviation thus obtained,
a statistically meaningful threshold may be obtained. The confidence in the presence of potential
targets may be increased by correlating the detection results over time. This may involve more or less
sophisticated techniques such as described by Blostein and Iluang.3 The overall procedure for detection
of moving targets can be summarized by the scheme of figure 2.

4.1 Target detection using target motion

The upper photograph of figure 4 shows a frame from an air- to-ground JR image sequence. In this
sequence there are several moving targets, cars on the roads. Notice that in this sequence the contrast
is mverse(l, i.e. hot areas appear (lark. For the present algorithm, this makes no difference. For the
target detection we used three frames f(t) at times t_1 ,to and t1 . The image motion between 1(t0)
an(l f(t...1) an(l between f(t0) and f(t1) was estimated using a phase based motion estimator.1 Because
this image sequence is contaminated by a fair amount of noise and sensor artifacts, and because this
image sequence lacks small scale image structure in certain parts of the scene, we used a planar patch
model to locally improve the estinlate(I image motion. It can be shown5 that the planar patch model is
described by the 1na))illg:

I _ Aiix+A12y+A13 2x —
A31x+A32y+1 ( )

I A21x+A22y+A23y = (3)A31x + A32y + 1

Equatioiis (2) and (3) define a mapping from the two-dimensional iInage-s)ace (x, y) at time t =
onto the image-space (a:', y') at time t = t2. The eight non-trivial parameters are the so called pure
parameters. They are uniquely determined for a given motion and planar patch. The pure parameters
are estilflate(l from the image motion vectors l)roduced by the phase based motion estimator. Both
I (t_1 ) an(l f(t1 ) are warl)ed according to the estimated modei (2) and (3) to obtain image estimates
valid at t = to. These warped images are denoted by f and f. First, we form the difference images
d_ = fo 1— and d+ = fo f+ Figure 3 shows a histogram of d+. From figure 3 it is clear that this
distribution is very well approximated by a Gaussian distribution, as shown by the (lashed line. The
parameters of this Gaussian were determined using a non-linear least squares fit to the histogram. Next,
we apply a thresholding I)rocethlre to the difference images d_ and d+. A threshold factor 0 is selected.
Let d(x, y) be the pixel value at location (x, y) in either d_ or d+, and let fL and a be the corresponding
mean and standard deviation, respectively, as determined by the Imistograni fit. We (lefine a normalized
d11 by

d11(x, )
= (1(X, y) —

(4)
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Figure 3: Histogram of the difference image d+, obtained by subtracting the inotiou compensated image
1+ from the reference image fo. The dashed line represents the fitted Gaussian.

The result of thresholding procedure is deterimneci by:

0 if 1d11(x, )I < 9/2

do(x, y) = 2d11(x, y)
sign(d11(x, y)) if 0/2 < d11(x, )I < 0 (5)

sign(d11(x, y)) if fd11(x, y)J > 9

where sign() is defined by
—1 if<O

sign()= 0 if=O (6)
1 if>O

This procedure yields two frames of which almost all pixels are zero excel)t for a number of positive and
negative 'blobs ' with values between 0 and 1 and —1 and 0, respectively. This thresholding procedure
has the advantage that it retains target responses that are not very strong. Of course, these 'weak'
target responses have to be confirmed later on. Next, we discard all non-zero pixels in both frames that
have opposite signs at corresponding 1)ositions. These 'cleaned' images are referred to as c_ and c. In
the next step, we combine the images c_ and c by pixel-wise multiplication. The positive blobs in the
resultimig image, referred to as T0, correspond to potential targets.
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Figure 4: (Left) Four consecutive frames from an air-to-ground JR. image sequence. (Right) Four
consecutive frames with the detected moving targets. There are a few false alarms in individual frames.
However, only the true targets are consistently detected. The false alarms could be eliminated by
requiring consistency over time.
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