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Abstract—In the last decade, post-wall waveguides have
emerged as an interesting building block for (antenna) feed
networks because of their potential low losses, low costs, ease
of manufacturing and integrability with existing printed circuit
board techniques. In this paper we present a general formulation
to analyze the characteristics of post-wall waveguides with metal
or dielectric posts. This formulation is based on a field expansion
technique, applied to infinite arrays of posts. The modal behavior
of post-wall waveguides is analyzed by considering the behavior
of the field expansion coefficients as function of frequency and
we compare our results with Ansoft HFSS simulations and
measurements.

I. INTRODUCTION

The post-wall waveguide, or substrate integrated waveguide,
is a rectangularly shaped waveguide laterally bound on two
sides by periodic arrays of posts. At the top and bottom
the guide can be either unbounded or bounded by metal
plates or dielectric slabs/half spaces. The cylindrical posts can
consist either of metallic or dielectric material. An impression
of the post-wall waveguide is given in Fig. 1. Especially
at millimeter-wave frequencies, the post-wall waveguide is a
promising alternative for traditional planar transmission lines
as it may offer reduced transmission losses. With properly
chosen constituent elements, such as metallic or air posts, the
structure can be fabricated using conventional printed circuit
board technology.

Fig. 1. Impression of a post-wall waveguide, in this case laterally bound by
single linear arrays of cylindrical posts.

In the microwave literature, relevant analysis and design
is, in particular, focused on waveguides with metallic posts
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and top and bottom plates resembling classical rectangular
waveguides. Several authors address the resemblance between
classical rectangular waveguides and metallic post-wall waveg-
uides. In [1], the equivalent width is introduced to relate
the characteristics of a post-wall waveguide to a rectangular
waveguide. This width is computed for an infinitely long guide
based on method-of-moments (MoM) code. Several approxi-
mate formulas for this equivalence have been deduced using
other numerical techniques including the boundary integral-
resonant mode expansion (BI-RME) method [2], the finite-
difference frequency-domain method and the finite-element
method (FEM) [3], [4], [5].

Measurements of straight segments of metallic post-wall
waveguides can be found in [6], [7]. More specifically, in [6]
the loss of a post-wall waveguide is measured at 76.5 GHz.
Measurements of the effective width of post-wall waveguides
are treated in-depth in [8]. As an extension to transmission
line modeling, initial studies on the behavior of bends and
T-junctions are presented in [9] and [1], respectively. Bends,
power dividers, and T-junctions are investigated in [10] for
laminated post-wall waveguides.

For post-wall waveguides with dielectric posts, the available
literature is more fragmented and distributed over the mi-
crowave and optical fields. In integrated optics technology the
use of dielectric post-wall waveguide facilitates the realization
of narrow guide widths and small curvature bends [11], [12],
[13].

In the microwave field, dielectric post-wall waveguides have
been introduced more recently and their full potential has
yet to be explored. In [14], two walls of dielectric posts are
used as a frequency selective surface, leaking power into a
central guiding region. Structures with the primary goal of
wave-guidance are investigated in [15], [16], [17] and [18].
In [15], a study on wave-propagation feasibility is presented
based on finite-difference time-domain simulations, where the
top and bottom boundaries of the guide are dielectric layers.
Guides consisting of infinitely-long square posts are analyzed
in [16], where the reflection at the walls is modeled by means
of transmission matrices. Finally, in [17], [18] a post-wall
waveguide resembling an image guide with a metal bottom
plate and no top plate is designed based on FEM simulations,
fabricated and tested. The same authors use the image guide
to produce an antenna with a fan beam in [19].
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Fig. 2. Top view of a post-wall waveguide, here laterally bounded by three
linear arrays of cylindrical posts.

In [20] we presented a method for analyzing finite-length
post-wall waveguides based on a Galerkin MoM approach for
the case of metallic posts and a field expansion method for
post-wall waveguides with small dielectric posts. We took a
first step toward a unified analysis of post-wall waveguides by
means of a field expansion technique in [21] and we identified
unwanted resonances inside the walls that can limit waveguide
performance.

We extend here, the field expansion technique with a modal
representation and show that this technique is suitable for
characterizing post-wall waveguide components. We compare
the results of propagation constant measurements of segments
of straight metallic and dielectric post-wall waveguide trans-
mission lines with theoretically obtained results.

II. THEORY

To clarify the notation used in this paper, Fig. 2 shows the
geometry of a post-wall waveguide with three arrays of posts
per side-wall.

A. Field Expansion

To simplify the post-wall waveguide modeling, we make the
following assumptions

1) the posts are homogeneous,

2) the posts extend infinitely along the axial direction of
the posts, and

3) only an electric field in the axial direction of the posts
exists.

This reduces our task, in effect, to a 2D problem with the
electric field solely described by the z-component and wave
propagation can only occur in the (x, y)-plane. Using a similar
approach as in [22], we expand the excited, scattered and
internal fields of a single post in the origin of our coordinate

system as Fourier series in the polar coordinates (7, ¢)

E&° = Ey Z j_”‘Jm(klr)ejm(¢_¢")

m=—0oQ

EX'=Ey Y Apj "HE (kir)e™?

B =By > Buj " (kor)e!™ (1)

where Fj is the excitation amplitude. When we apply the
condition of continuity of the tangential electric and magnetic
fields on the post boundaries, we can formulate a block matrix
system of equations

[C11] [Ci2] [Cip]]| [A1 P,
[C21] [Ca2] A, P,

: N )
[Cp1] [Cpp]| |AP Pp

where @, represents the phase of the excitation field and Ap
are the unknown expansion coefficients.
The elements of [Cpq], in the case of metallic posts are

O (p = q7
m#n)

Cpgmn = §  HZ(k1a) r=q 3
Jm(kla) m = n)
Hr(j)—n(klrpq)eij(min)d)pq (p 7£ Q)'

And similarly, for the case of dielectric posts, the elements are

Cpq,mn = (4)
0 (r=gq
m#n)
ko H (k1a)J’, (k2a)—ky H'® (k1a) Jm (kaa) (D = ¢,
ngm,(kla)J;”(kga)—klJ,:n(kla)Jm,(kza) m = n)
Hr(r?ln(klrpq)eij(min)%q (p # q).

B. Modal Analysis

Consider a post-wall waveguide with infinite length, divid-
ing the waveguide into equal unit cells (as shown in Fig. 2).
The expansion coefficients of all cells are equal, except for
a linear progressive phase constant e/**»% for the v-th cell.
We construct a matrix for the infinite system, composed of
the contributions of all cells with their phase differences
taken into account. For specific values of the variable k,,
this system matrix will show singularities, because one of its
eigenvalues approaches zero. The corresponding value of k,
is the propagation constant of a propagating mode.
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Fig. 4. Normalized propagation constant as a function of frequency (dielectric posts).

III. NUMERICAL RESULTS

Two different post-wall waveguide geometries have been
studied; both numerical simulations as well as manufactured
test samples are investigated. One geometry is based on metal-
lic posts and the other on dielectric posts. Their parameters are
given in Table I, hy is the height of the waveguide, fqop is
the start frequency of the first stop band due to the periodicity,
M is the number of expansion terms in the sum of equation 1
and L is the number of cylinders per side wall in a unit cell.

A. Dispersion Characteristics

We use the Newton-Raphson method to numerically find
the modal propagation constants k,, solving the characteristic
equation for zero eigenvalue

det [C*(k,)] = 0. (5)

TABLE 1
GEOMETRY SPECIFICATIONS FOR THE ANALYZED AND MANUFACTURED
POST-WALL WAVEGUIDES.

parameter metal cyl. | diel. cyl.
er1 O 9.80 9.80
er2 0 - 1.00
a (mm) 0.65 1.50
dgy  (mm) 2.57 3.30
dy  (mm) - 4.09
wg  (mm) 8.91 8.91
hg  (mm) 3.81 3.81
fstop (GHz) | 18.63 14.51
M () 3 3

L 0 1 3

In Fig. 3(a) the real part and in Fig. 3(b) the imaginary
part of k, for the dominant TE;y mode normalized to the
propagation constant of the background medium k; are plotted
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(red curves) for a post-wall waveguide with metal posts; in
Fig. 4 these parameters are plotted for a post-wall waveguide
with dielectric posts. The geometric specifications for these
waveguides are shown in Table I. The post-wall waveguide
with metallic posts, shows clearly a modal behavior that is
similar to a normal rectangular waveguide with solid walls. In
the case of the dielectric post-wall waveguide, the dominant
mode is less dispersive and does not show a distinct cut off
behavior, as in the case of the metallic posts.

IV. MEASUREMENTS
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Fig. 5. Layout of segments of metallic and dielectric post-wall waveguide
transmission line.

Our strategy is, as in the case of the HFSS simulations,
based on the extraction of the propagation constant from the
scattering parameters using multiline calibration [23]. Fig. 5
shows the layout and the measured PCB (Rogers TMM10i)
with all the post-wall waveguide transmission lines. The post-
wall waveguides are fed through a slot-coupled microstrip
line. The scattering parameters are measured using an Agilent
NS230A PNA.

V. DISCUSSION

Numerical results for the real part of the propagation
constant, presented in Fig. 3 and 4, show excellent agreement.
The measurements of Re (k, .) show reasonable agreement,
until f ~ 12 GHz, which is the cut off frequency of the TEoq
mode in the metallic post-wall waveguide.

In the case of metallic posts, the numerical results for
Im (kp ) show good agreement, but in the case of dielectric
posts, the results from HFSS are lower than predicted by
our own method. Measurements of the imaginary part of
the propagation constant exhibit noise. This is the result of
differences in attenuation loss between the incremental line
lengths being often smaller than the measurement uncertainty.
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