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Chapter 1
General introduction

Today’s scientists have substituted mathematics for experiments, and 
they wander off through equation after equation, and eventually build 
a structure which has no relation to reality.

Nikola Tesla
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Chapter 1 General introduction

Cancer epidemiology

Cancer is the leading cause of death that touches us all, either directly or indirectly. 
It is estimated that the number of newly diagnosed cases in the Netherlands will in-
crease to 123,000 by the year 2020 [1]. General Dutch statistics are similar to those in 
the UK, i.e. over the last ten years, the age-standardised incidence rate1 has stabilised 
at around 355 females and 415 males per 100,000. Figure 1 shows the cancer incidence 
per gender [2, 3]. In the UK, the rise in lifetime risk of cancer2 is more than one in three 
[4] and depends on many factors, including age, lifestyle and genetic makeup.

Figure 1. Cancer incidence for the most common cancer types in the EU [2] (left: female population, 
right: male population).

The average age at the time of diagnosis is 67 years and about 75% of all cancers 
are diagnosed at an age above 55 [5]. Moreover, with a steadily ageing population 
in the western world, the absolute numbers of cancer deaths will continue to in-
crease steadily [1]. Forecasted worldwide demographic changes imply that, by the 
year 2030, the number of people with cancer will probably increase to more than 20 
million per year [6]. 

Current treatment options are chemotherapy, radiation therapy, surgery, hyperther-
mia, gene therapy, immunotherapy, hormone therapy, and anti-angiogenic therapy. 
The probable success of these treatment options is highly dependent on the cancer 

1 Age-standardisation adjusts rates to take into account how many old or young people are in the popula-
tion under investigation. When rates are age-standardised the differences in the rates over time, or be-
tween geographical areas, do not simply reflect variations in the age structure of the populations. This 
is important when looking at cancer rates because cancer is a disease that predominantly affects the 
elderly. If cancer rates are not age-standardised, a higher rate in one country is likely to reflect a greater 
proportion of older people.

2 The lifetime risk (cancer) is the estimated risk that a newborn will develop cancer at some point during 
its life. It is based on current incidence and mortality rates and is therefore calculated under the assump-
tion that the current rates (at all ages) will remain constant during the life of the newborn.
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Chapter 1 General introduction

type, as shown by Figure 2. Compared to the incidence rate, the mortality is low for 
breast and prostate cancer (Figure 2: first row), whereas for lung cancer the mortal-
ity rate is very high compared to the incidence rate (Figure 2: second row). 

Figure 2. The age-standardised incidence and mortality rates in 2008 per region of the world [2]. This 
shows that the two most common cancer types for females are breast (A) and lung cancer (C), 
and for males are prostate (B) and lung cancer (D).

Apart from developing new treatment options, the overall mortality rate could po-
tentially be reduced by primary prevention strategies3, the implementation of vac-
cination programmes (for liver and cervical cancer), and early detection programmes 
(for colorectal, breast, and cervical cancer) [6]. Additional reductions in mortality 
might be accomplished by increasing access to curative treatment for specific cancer 
types and by personalizing treatment aiming at specific cancer characteristics.

3 Lifestyle factors: e.g. cessation of smoking, reduction of alcohol consumption, reduction of obesity, 
increasing physical activity.

Cancer biology

Even though historians disagree about the precise dating of the first description of 
cancer, there is no doubt that it goes back (at least) to the ancient Greeks [7]. Cancer 
is defined as an abnormal growth of cells caused by multiple changes in gene expres-
sion leading to a deregulated balance of cell proliferation and cell death and, ulti-
mately, evolving into uncontrollable growth and spread of abnormal cells to distant 
sites [5]. This growth starts by mutations (changes in DNA) that specifically affect 
genes, initiating unlimited cell growth. Biologically a tumour is a complex system in 
which distinct populations of cancer cells can interact in a competitive manner [8, 
9, 10]. Based on molecular studies, subtypes of the same cancer with large intra-tu-
mour heterogeneity in terms of both biology and response to treatment have been 
identified [11, 12]. Various types of tumour progression models have been proposed 
to explain intra-tumour heterogeneity [13, 14, 15], as shown in Figure 3. 

The impact of intra-tumour heterogeneity on tumour therapy should not be underes-
timated [16]. A more heterogeneous tumour is more likely to fail chemotherapy [17]. 
Multiple cellular subpopulations with different genetic and phenotypic characteris-
tics imply that a specific lesion does not have a single target but multiple oncogenic 

Figure 3. Hypothetical tumour progression models that can explainintra-tumour heterogeneity (A–C): 
the clonal evolution (A), the cancer stem cell (B), and the mutator phenotype (C) models. The 
different models result in distinct spatial distributions of cell subpopulations (D).Reprinted 
with permission from J Clin Invest [15].
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targets that must be overcome to achieve optimized therapeutic benefit [18]. Differ-
ent parts of the tumour can differ in sensitivity to an applied treatment approach. 
The more aggressive tumour populations, e.g. that proliferate faster, have a higher 
neo-angiogenesis level or are less sensitive to treatment, will suppress the less ag-
gressive populations and, in this way, evade therapy. The therapy can probably even 
cause a tumour to become more aggressive by the addition of new mutations and 
clonal evolution [19]. Therefore, heterogeneity of the tumour and the changes due 
to treatment should be closely monitored. This is currently facilitated by the rapid 
development of technologies allowing for in vivo and non-invasive tumour examina-
tion. 

Cancer imaging

Cancer imaging is essential in biomedical research, e.g. for drug discovery/develop-
ment, and for clinical practice including diagnosis, therapy, assessment of treatment 
response, and prediction of treatment outcome. Deployment of imaging for drug 
discovery/development has been discussed in detail elsewhere [20]. This thesis fo-
cuses on cancer imaging for diagnosis, treatment monitoring and outcome predic-
tion. Techniques used in cancer imaging include radiography, ultrasound (US) and 
Doppler imaging, magnetic resonance imaging (MRI), computed tomography (CT), 
single photon emission tomography (SPECT), positron emission tomography (PET), 
electron paramagnetic resonance imaging, electromagnetic (EM) imaging, and their 
variations and combinations [20]. These imaging modalities reflect aspects of the tis-
sue’s internal anatomy or a functional aspect of the tissue. Imaging makes it possible 
to discern a tumour from its environment. In addition, dedicated imaging techniques 
allow to discriminate between different types of tumours and different stages of the 
same tumour type.

MRI has a number of distinct advantages for clinical oncology. It has multi-sequence 
capabilities producing superior contrast among soft tissues, provides full 3D imag-
ing, and does not require ionizing radiation. One of the most important MR tech-
niques in analysing tumour characteristics is dynamic contrast-enhanced MRI (DCE-
MRI). DCE-MRI is the acquisition of serial MR images before, during, and after the 
administration of an intravenous contrast agent. Figure 4A shows the resulting DCE-
MRI image series with the time-intensity curve for a particular voxel (Figure 4B). The 
resulting time-intensity curves can be modelled using pharmacokinetic [21, 22] or 
heuristic models [23-28], producing parametric maps. Figure 4C presents a pharma-
cokinetic parametric map (left) and a heuristic parametric map (right). 

The suitability of DCE-MRI in combination with different quantification methods 
to monitor anticancer therapy is undergoing extensive research [29-34]. Corre-

lation with histopathology showed the ability of DCE-MRI parameters to moni-
tor treatment response by identifying areas of residual viable tumour tissue [35].  
Parametric maps can be monitored over time, e.g. during the course of therapeutic 
interventions, to evaluate different anti-angiogenic and antivascular cancer treat-
ments or treatment strategies. The heterogeneity present in the parametric maps, 
extracted from DCE-MRI, can be quantified using a variety of texture analysis meth-
ods [36].

 

Texture

Texture is defined as a characteristic intensity variation, which in natural images, 
for example, often originates from the properties of the object surface. With no 
formal definition of what a characteristic intensity variation is, this concept can be 
approached more intuitively. Perfectly-periodic intensity variations are referred to 
as periodic pattern. Similarly, completely random patterns constitute a noise pat-
tern. A pattern which shares both properties (randomness and regularity), is what 
most people would consider a texture. An additional feature of a texture is its busy-
ness, i.e. the degree of mix between randomness and regularity. To a certain ex-
tent, texture typically express a busy microstructure, but uniform macrostructure 

Figure 4. Example of enhancement in a sarcoma (A) and the corresponding time-intensity curves (B) for 
an enhancing sarcoma region (left) and a muscle region (right). The corresponding parametric 
map (C) shows the pharmacokinetic (left) and heuristic based (right) parameters.
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[37]. Additionally, a texture may also vary according to direction, orientation and 
coarseness. Using these concepts, several authors have provided a systematic de-
scription of textual measures [38-40] and have generally divided texture extraction 
methods into structural and statistical. Structural approaches analyse textures with 
regular macro-structure, and will not be discussed further in this thesis. Statistical 
approaches are better suited to characterize micro textures. The first order statis-
tics of the grey-level distribution are often labelled as texture features. However,  
where an image is represented by one histogram only, the inverse is not true: im-
ages with different textures can be characterised by the same histogram (Figure 5). 
A subsequent step in the analysis of tumour appearance is through texture analysis. 
Texture descriptors originating from statistical approaches include model-based fea-
tures (fractals, autoregressive models, fractional differencing models, and Markov 
random fields), and non-model-based features (co-occurrence matrices, grey-level 
sum and difference histograms, Laws’ masks, frequency domain methods, and Gabor 
filters).

Almost all these texture features can be computed based on radiological images 
of tumours. The question is: how good are these features in grasping the textural 
differences between different tumour types and different grades? Is it possible to 
monitor treatment induced texture changes with these features? Are these texture 
features related to treatment outcome?

Figure 5.  Images with different heterogeneities and similar histograms.

Outline of the thesis

The aim of this thesis is to develop and evaluate tumour heterogeneity quantification 
techniques and to investigate their importance for tumour treatment monitoring and 
outcome prediction. In particular, this thesis focuses on the following questions:

• Do MR imaging data reveal the underlying tumour heterogeneity?
• Which analysis methods are used to quantify tumour heterogeneity for diag-

nostic and/or treatment purposes, and what is the reported performance of 
these methods?

• Is tumour heterogeneity in DCE-MRI, as quantified with texture analysis meth-
ods, sensitive to changes due to therapy, and can patient outcome be pre-
dicted?

Chapter 2 presents a method to obtain an accurate 3D relation between high reso-
lution in vivo MRI and the corresponding 3D histology of an experimental tumour 
model [41]. The aim of this study is to relate in vivo MR image features to the under-
lying pathophysiology as reflected in histological sections. The key elements of the 
methodology are: 1) standardized acquisition and processing, 2) use of an intermedi-
ate ex vivo MRI, 3) use of a reference cutting plane, 4) dense histological sampling, 
5) use of elastic registration, and 6) use of complete 3D datasets. The methodology 
consists of two separate registration steps, both exploiting a three-step strategy of 
gradually increasing degrees of freedom (rigid, affine, and elastic transformation). 
These two registration steps involve in vivo MRI to ex vivo MRI registration, and 
ex vivo MRI to histology registration. The established 3D correspondence between 
tumour histology and in vivo MRI will allow the extraction of MRI characteristics for 
histologically confirmed regions.

Chapter 3 provides a systematic review of the literature on radiological image-
based quantification of tumour heterogeneity for grading, differentiation, response 
monitoring and outcome prediction. A systematic search in Medline, Embase, and 
Cochrane Central was performed. Based on the selected literature, the following 
questions were explored: Which analysis methods are used for the quantification of 
heterogeneity or texture in diagnostic tumour imaging, tumour treatment monitor-
ing and outcome prediction? What are the reported performances of the different 
analysis methods? Is there a relation between reported performance and image mo-
dality or analysis method? Can the performance results be generalized? What is the 
potential clinical impact of the methods? Has the performance also been evaluated 
in comparison to or in combination with established biomarkers? 

In Chapter 4 two heterogeneity biomarkers are evaluated for their potential of 
monitoring tumour changes due to treatment and predicting patient outcome. DCE-
MRI images of 18 sarcoma patients undergoing isolated limb perfusion (ILP) with 
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TNF-α and melphalanare acquired at baseline and follow-up [42]. According to the 
histopathology, the tumours of the patients are classified into responding and non-
responding tumours. The pharmacokinetic (Ktrans) and heuristic model-based para-
metric maps (slope, max enhancement, AUC) are computed from the DCE-MRI data. 
The heterogeneity biomarkers are computed for all parametric maps. For each map 
and each heterogeneity biomarker, the ability to monitor the changes due to treat-
ment and the predict outcome is evaluated.

Chapter 5 presents a study investigating regional heterogeneity changes in DCE-
MRI due to treatment with ILP in experimental soft-tissue sarcoma [43]. The focus is 
on short-term treatment effects, i.e. within hours after treatment. DCE-MRI of drug-
treated and sham-treated rats is performed at baseline and 1h after ILP intervention. 
Data are acquired using a macromolecular contrast medium, albumin-(Gd-DTPA)45. 
To accurately identify the regional changes, the DCE-MRI at baseline and at follow-
up are co-registered. To assess the regional heterogeneity the tumours are divided 
into 16 tumour sectors, and for each sector cumulative map-volume histograms are 
computed. The effect of treatment on regions and the variance between the regions 
is studied for the ILP-treated and sham-treated animals.

Chapter 6 summarizes the main results and contributions of the thesis, discusses 
implications for experimental and clinical applications, and offers some recommen-
dations for future research.

Appendix A presents a short review of the automatic registration approach as a 
process of transforming different datasets into one coordinate system to achieve 
biological, anatomical or functional correspondence by using image intensities and 
gradients. The registration is used to correct for different deformations of ex vivo 
tumours with respect to the original in vivo shape (Chapter 2), for registration be-
tween different MRI sequences, and for registration between baseline and follow-up 
images (chapter 5). 
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Chapter 2 Registration of histology to in vivo MRI

Introduction

Recognizing the impact of the tumour microenvironment ononcogenic processes [1] 
led to the awareness that successful cancer management involves not only the tu-
mour cells, but also needs to target the tumour microenvironment itself. Therefore, 
understanding and quantifying of the complex molecular and cellular interactions in 
cancer tissue is of paramount importance. Hence, the imaging of local tumour prop-
erties is becoming increasingly important to diagnose, monitor and predict tumour 
treatment [2, 3]. Magnetic resonance imaging (MRI) has considerable potential in 
non-invasive tumour characterization, as a multitude of scanning techniques can be 
employed. However, the exact relation between the signal intensities in MRI and 
the underlying pathophysiology is not always understood. Thorough understanding 
of the MRI oncogenic signatures involves an accurate spatial correlation of MRI and 
histology, offering a means to verify MRI findings. On the other hand, to create his-
tological images the tumour tissue undergoes excision, fixation by formalin followed 
by dehydration, paraffin embedding, sectioning, and rehydratation during staining. 
An important side effect of this process is the significant tissue deformation which 
inevitably changes the tumour appearance. This severely complicates the registra-
tion of in vivo MRI to histological sections. Besides the loss of the tumour 3D integ-
rity, the registration is also complicated by the inherent differences in image charac-
teristics between colour histological images and gray scale MRI images. 

Although the field of multi-modality registration has evolved considerably, the litera-
ture specifically dealing with registration of MRI to histology is limited, especially for 
in vivo MRI acquisitions. The first attempts to register histology and MRI were part of 
an effort to establish brain atlases, starting with affine registration [4] and advanc-
ing to piece-wise affine models [5]. Although affine registration achieved good initial 
results in these applications, they are inadequate to deal with non-linear distortions 
that occur during tissue excision and histological processing. Elastic registration for 
linking MRI with histology using surface matching has also been considered [6, 7]. 
Unfortunately, the reported results are limited to global matching of MRI volumes. 
Other studies [8] included point-based registration using manually placed landmarks. 
Besides being time consuming, these studies are also prone to intra-observer vari-
ability due to involvement of human interaction. 

In oncological applications, co-localization of histology and MRI is often based on 
simple visual evaluation of local tissue features [9] and is therefore subjective and 
limited to a small number of histological sections. To facilitate rigid alignment sev-
eral fiducial marker systems have been introduced [10-12]. These markers are physi-
cal implants that are clearly visible in all imaging modalities. Even though they might 
be useful for animal imaging, the use of fiducial markers in clinical applications is 
rarely possible. Therefore, as an alternative, distinctive image features (within or at 

Abstract 

Magnetic resonance imaging (MRI), together with histology, is widely used to diag-
nose and to monitor treatment in oncology. Spatial correspondence between these 
modalities provides information about the ability of MRI to characterize cancerous 
tissue. However, registration is complicated by deformations during pathological 
processing, and differences in scale and information content. 

This study proposes a methodology for establishing an accurate 3D relation between 
histological sections and high resolution in vivo MRI tumour data. The key features of 
the methodology are: 1) standardized acquisition and processing, 2) use of an inter-
mediate ex vivo MRI, 3) use of a reference cutting plane, 4) dense histological sam-
pling, 5) elastic registration, and 6) use of complete 3D data sets. Five rat pancreatic 
tumours imaged by T2*-w MRI were used to evaluate the proposed methodology. 
The registration accuracy was assessed by root mean squared (RMS) distances be-
tween manually annotated landmark points in both modalities. After elastic registra-
tion the average RMS distance decreased from 1.4 to 0.7 mm. The intermediate ex 
vivo MRI and the reference cutting plane shared by all three 3D images (in vivo MRI, 
ex vivo MRI, and 3D histology data) were found to be crucial for the accurate co-
registration between the 3D histological data set and in vivo MRI. The MR intensity 
in necrotic regions, as manually annotated in 3D histology, was significantly different 
from other histologically confirmed regions (i.e., viable and hemorrhagic). However, 
the viable and the hemorrhagic regions showed a large overlap in T2*-w MRI signal 
intensity. 

The established 3D correspondence between tumour histology and in vivo MRI en-
ables extraction of MRI characteristics for histologically confirmed regions. The pro-
posed methodology allows the creation of a tumour database of spatially registered 
multi-spectral MR images and multi-stained 3D histology.



26 27

Chapter 2 Registration of histology to in vivo MRI

suspended in Hanks’ balanced salt solution. The inoculated pancreatic tumours grow 
just beneath the skin as an encapsulated mass on top of the muscle tissue, with a 
preferred growth direction parallel to the skin (see Figure 2A). The tumour boundar-
ies are well defined and the tumour is easy to separate from surrounding tissue. The 
animals were inspected daily for tumour growth and general appearance. The tu-
mours were imaged using MRI when they reached approximately 10 mm in diameter. 
Before MRI, the animals were anesthetized by intra-peritoneal injection of medeto-
midine (Sedator, Eurovet Animal Health B.V., Bladel, The Netherlands) and sufentanil 
(Sufenta forte, Janssen-Cilag B.V., Tilburg, The Netherlands). During the imaging, the 
animals were kept at a temperature of 38–39°C by warm water mattresses. After 

ex vivo MRI

histology

stacking

in vivo MRI

Image acquisition Image registration

Figure 1.  Overview of the processing steps (left-hand side) and the image registration and stacking pro-
cedures (right-hand side). 

the surface) of the object under registration can be used to facilitate image align-
ment. For example, in vivo MRI of whole rat brain [13] and human prostate [14, 15] 
was related to their histological sections by point-based registration using manu-
ally placed [13, 15] or automatically established [14] landmark points. Although these 
internal landmarks have successfully assisted the registration of a complete organ, 
this compromises the registration accuracy within the tumour as it registers the or-
gan instead of the tumour. Even though these methods solve part of the registration 
problem by using block-face images, they fail to account for 3D deformation as they 
use a limited number of histological sections. 

To overcome the limitations of these methods, we propose the registration of com-
plete 3D histology with in vivo MR images of the tumour tissue, i.e. excluding sur-
rounding tissue. The aim of this work is to develop a methodology for establishing 
an accurate 3D relation between high resolution in vivo MRI and corresponding 3D 
histology of tumour tissue. The key features of the methodology are: a standardized 
imaging and histology method, acquisition of an intermediate ex vivo MRI, use of a 
reference cutting plane, a dense histological sampling, elastic (B-spline) registration, 
and use of the complete 3D data set.

Material and methods 

Figure 1 is a schematic overview of the proposed methodology, which consists of a 
number of image acquisition steps (top-to-bottom) and image registration (bottom-
up) steps. To facilitate the registration of in vivo, ex vivo and histology images, we 
kept track of the tumour orientation by colour coding the different tumour surfaces 
and by creating a reference cutting plane. This reference plane was created, after 
fixation, by slicing of a thin section of the whole tumour volume along the longest tu-
mour axis and perpendicular to the subcutaneous side of the tumour. Although the 
reference plane is not physically present in in vivo MRI, the knowledge of its orienta-
tion is crucial to perform image resampling prior to registering in vivo MRI with ex 
vivo MRI [16, 17]. Figure 2 shows the tumour at onset of dissection, and the location 
of the reference plane in the volume rendered tumour in MRI.

Animal and tumour model
For this study, approval from the Ethical Committee of the Erasmus MC was obtained 
(Erasmus MC OZP 112-08-06). All investigations were carried in accordance with the 
requirements of the institution concerned, and also conform to the general require-
ments in the Netherlands regarding animal studies. Five male Lewis rats (Harlan-CPB, 
Austerlitz, The Netherlands), with a mean body weight of 300 g, were inoculated 
subcutaneously in the right hind limb with 106 pancreatic (CA20948) tumour cells 
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slice thickness of 0.4 mm (acquired voxel resolution = 0.156x0.195x0.4 mm3) and 
a resampled matrix of 512x512 using zero-filling for a reconstructed voxel size 
of 0.098x0.098x0.2 mm3. For the ex vivo MRI acquisition parameters were: TR/
TE=42.2/20.9 ms, flip angle of 15°, field-of-view (FOV) of 50x50 mm2,image acquisi-
tion matrix of 320x256 with a slice thickness of 0.4 mm (acquired voxel resolution 
= 0.094x0.118x0.4 mm3) and a resampled matrix of 512x512 using zero-filling for are 
constructed voxel size of 0.059x0.059x0.2 mm3. For both in vivo and ex vivo MRI 
read bandwidth was 48.8 Hz/voxel, no flow compensation or saturation pulse, two 
averages, frequency encoding = left-right, and the phase encoding direction = up-
down. The total acquisition time was less than 20 minutes for both in vivo and ex vivo 
acquisitions. No acceleration was used for imaging.

Histological processing 
Following the ex vivo MR imaging, tumours were processed in a Histokinette, and 
subsequently embedded in paraffin. The histological data consisted of 4-mm thick 
sections (cut from the reference plane onwards, see Figure 1 and Figure 2) mounted 
on glass slides, and stained with hematoxylin and eosin (H&E). Depending on the 
tumour size, up to 40 sections (4-mm thickness each) were mounted at intervals of 
80 mm. The procedure also enables to acquire histological sections with different 
stains. The slides were digitized using the NanoZoomer Digital Pathology (C9600, 
Hamamatsu, Japan) at 20x magnification, which resulted in a pixel size of 3.64 mm.

Registration 
We first provide an outline of the different parts in the automatic registration proce-
dure which were performed using Elastix [18]. The details of the image registration 
are included in Appendix A [19-27] with the basic components of the registration 
framework are illustrated. Between the different image acquisition steps (Figure 1) 
a tumour undergoes deformations with respect to its original in vivo shape. As these 
deformations differ in nature and scale, the registration procedure consists of three 
distinct parts. All registrations use contrast in image intensities to perform the reg-
istration automatically.

1. Reconstruction of tumour 3D histology by rigid registration of digitized adjacent 
H&E sections and adjustment of the slice thickness, referred to as stacking.

2. Volumetric alignment of 3D histology stack and 3D ex vivo MRI using a three-step 
strategy (rigid, affine, and elastic registration),referred to as stack2ex.

3. Volumetric alignment of 3D ex vivo MRI to 3D in vivo MRI using a three-step stra-
tegy (rigid, affine, and elastic registration), referred to as ex2in.

in vivo MRI, animals were euthanized, and the complete undamaged tumours were 
dissected. During the dissection, the tumour surfaces were dyed to track the in vivo 
tumour orientation by marking the subcutaneous, the head, the tail and dorsal side 
of the tumour. Figure 2A shows the subcutaneous tumour position at onset of dis-
section. Immediately after dissection, tumours were placed in 200 ml 10% buffered 
formalin (Boom, The Netherlands). A crucial step to facilitate alignment between 
in vivo MRI, and 3D histology stack is the knowledge of tumour orientation in all 
imaging modalities concerned [16, 17]. We created a reference plane by slicing of a 
thin section of the whole tumour volume along the longest tumour axis and perpen-
dicular to the subcutaneous side of the tumour. The reference plane is illustrated in  
Figure 2B as a yellow line. The tumours were washed first to avoid possible T2*-ar-
tefacts due to remaining formalin concentrated on the tumour surface. Washing the 
tumours was achieved by sinking them into saline solution and drying the remaining 
moisture by paper towels. Subsequently, tumours were suspended in 1% agar dissolved 
in phosphate buffered saline (PBS, AbDSerotec, MorphoSys, Munich, Germany) to fa-
cilitate ex vivo MRI acquisition by restricting tissue motion and air-tissue MRI artefacts.

Magnetic resonance imaging
For the in vivo MRI acquisition parameters were: TR/TE =23.2/8.9 ms, flip angle of 
10°, field-of-view (FOV) of 50x50 mm2, image acquisition matrix of 320x256 with a 

Figure 2.  Illustration of subcutaneous tumour position. Tumour at onset of dissection (A) and as a 3D 
in vivo MRI tumour volume rendering (B), the subcutaneous side of the tumour is marked in 
green. A yellow line represents the cutting plane orientation along the longest tumour axis 
and perpendicular to the subcutaneous tumour side. The second row images show the cor-
responding slices of in vivo MRI (C), ex vivo MRI (D) and as histological section (E).

A B

C D E
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tion (reference plane). This provides the initialization for a three-step registration 
strategy of gradually increasing degrees of freedom, starting as rigid registration, 
followed by affine registration, and finalized by elastic refinement.

ex2in. Prior to the third automatic registration step, the knowledge of the reference 
plane within in vivo 3D-T2*w MRI (see Figure 1) was used to realign and resample the 
in vivo data according to the ex vivo MRI orientation. This ensures similar orientation 
and rough alignment of in vivo MRI and ex vivo MRI. First, rigid registration was per-
formed, followed by affine transformation allowing isotropic scaling to account for 
volume changes, and finalized by elastic registration.

Evaluations
Evaluation of registration accuracy. The resulting alignment of in vivo 3D-T2*w 
MRI with 3D histology stack was qualitatively evaluated by two observers using 
visual inspection with a moving quadrant view, and quantitatively evaluated using 
anatomical landmarks (e.g., characteristic features in the tumour and on the con-
tour). For the quantitative evaluation, ten clearly identifiable anatomical landmarks 
were initially defined on the colour 3D histology stack. Subsequently, two obser-
vers independently annotated the corresponding anatomical landmarks in the in 
vivo 3D-T2*w MRI. To evaluate registration accuracy, the root mean squared (RMS) 
distance between the corresponding points in the in vivo MRI and 3D histology  
was calculated before registration, and after the two registration steps (i.e., rigid 
and elastic). Furthermore, the inter observer variability was estimated by computing 
the RMS distance between the corresponding points of the two observers on the 
MRI.

Evaluation of reference plane. The reference plane greatly facilitates the registra-
tion procedure. The difference in reference plane position between two 3D images 
after registration, measures the initial reference plane error. To quantify the error in 
reference plane positioning, the out-of-plane angulation is estimated as the rotation 
component of the rigid registration for both steps (stack2ex and ex2in).

Tumour volume change. Tumour global volume change between in vivo MRI, ex vivo 
MRI and histology was established by computing the determinant of the correspond-
ing affine transformation for both registration steps (stack2ex and ex2in). The tu-
mour local volume change for the different histological regions was also estimated. 
For this purpose, three volumes of interest (VOIs) representing viable, necrotic and 
hemorrhagic regions were delineated in the colour 3D histology stack. This provides 
three masks which were warped using the transformation, provided by the corre-
sponding registration step, to match the in vivo MRI. 

All separate registrations were performed using Elastix [18]. To achieve the desired 
volumetric alignment of 3D histology to in vivo MRI, the separate transformations 
(the results from stack2ex and ex2in registrations) were concatenated automati-
cally. The final concatenated geometric transformation, referred to as stack2in,was 
applied to the 3D colour histology stack which aligns it to the in vivo MRI.

Stacking. As the first step in the automatic registration process, we automatically 
reconstructed 3D histological volume by rigid registration of adjacent H&E stained 
images. To optimally exploit the digital image information, considering the necrotic 
and viable tissue, the information content of separate image channels was evaluat-
ed. We used the red image channel in the registration as it provides the best separa-
tion between signal intensities of necrotic and viable volumes of interest (VOIs) and 
presumably the best image contrast (Figure 3 presents histograms of these VOIs).
The series of 2D histological slices (red channel) were reconstructed iteratively into 
a 3D volumetric image. The resulting transformations were applied to the other two 
(green and blue) image channels, resulting in a 3D colour histology stack. Subse-
quently, the slice thickness was set to 80 mm, i.e. the physical distance between 
subsequent sections.

stack2ex. The second automatic registration step, aligning the 3D histology with ex 
vivo MRI, is greatly facilitated by the definition of the reference cutting plane (see 
Figure 2), i.e. both images (ex vivo MRI and histology stack) start at the same posi-

Figure 3.  The distribution of separated image channels from a H&E section. We used the red image 
channel to perform the registration as it provides the best separation between signal intensi-
ties of necrotic and viable volumes of interest (VOIs) and presumably the best image contrast. 
A H&E stained histological section (A) and three separate colour channels, red-green-blue, 
(B–D) with corresponding histogram distributions of the vital (green) and necrotic (red) tu-
mour regions (E–G).
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Figure 4.  Final registration results for five tumours. Registered ex vivo T2*-w MRI (first column), in vivo 
T2*-w MRI (second column), registered colour 3D histology (third column), and checkerboard 
view of in vivo and registered histology (fourth column).

For each region (viable, necrotic and hemorrhagic) and both registration steps 
(stack2ex and ex2in), the change in volume was estimated before and after registra-
tion: see Eq. 1.

(Eq. 1)

where VR, and VO represent the VOIs before and after registration, respectively.

Facilitating MRI characteristics identification. To identify image characteristics of in 
vivo 3D-T2*w MRI, histograms of histologically confirmed VOIs were used to estimate 
the probability density function (pdf). For each VOI’s histogram, the pdf interquartile 
range was then used for automatic segmentation of the in vivo 3D-T2*w MRI.

 Results 

Evaluation of registration accuracy
Figure 4 shows the results of the separate registration steps (stack2ex and ex2in) 
and the concatenation of those registrations (stack2in) for the five tumours. The 
checker board view (Figure 4; fourth column) of the registered in vivo 3D-T2*w MRI 
and the 3D histology shows that good alignment has been achieved. For all five tu-
mours, the final registration (stack2in) was evaluated as excellent for 25% and good 
for 53% of the registered slices. For 13% of the slices the registration was evaluated 
as fair, and for the remaining 9% as poor. The registration of the slices towards the 
tumour borders was in general less accurate than the registration of central slices.

Table 1 presents the RMS distance error for 10 landmark positions averaged over all 
five tumours after final registration (stack2in). By utilization of the reference plane, 
the initial average accuracy was already 1.4 mm. After registration, the average accura-
cy increased from 1.4 mm to 0.7 mm. When compared with the in vivo pixel size, the av-
erage accuracy increased from 15 to 7 pixels. The final accuracy of 0.7 mm corresponds 
on average with 30–50 cells. To assess the uncertainty of the manual annotations, we 
computed the inter-observer variation, which was in the order of 0.7 to 0.9 mm.

Observer 1 Observer 2 Average Inter-observer

Initial 1.2 ±0.6 1.6 ±0.7 1.4 ± 0.6 0.9 ± 0.6

Rigid 1.1 ±0.5 1.0 ±0.4 1.0 ± 0.4 0.7 ± 0.3

Elastic 0.8 ±0.3 0.6 ±0.2 0.7 ± 0.3 0.7 ± 0.4

∆V=2
 |VR - Vo|

 |VR - Vo|

Table 1.  Average root mean squared distances (mm) for the different registration steps, averaged over 
all 5 subjects.
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To confirm the findings shown in Figure 5 we used the histogram-based pdf to define 
the interquartile intensity ranges for histologically confirmed regions. These ranges 
were used for automatic segmentation of in vivo 3D-T2*w MRI signal intensities.  
Figure 7 illustrates the necrotic segmentation superimposed on 3DT2*-w MRI. The vi-
able and hemorrhagic tissues cannot be separated based on the T2*-w MRI intensity.

Figure 5.  The illustration of signal intensity correspondence between in vivo T2*-W MRI and registered 
3D histology for three VOIs (e.g., necrotic-red, viable-green, and hemorrhagic-blue). The 3D 
correspondence of tumour histology and in vivo MRI enables extraction of MRI characteristics 
for histologically defined regions. This is illustrated in scatter plot (B) and using the histogram-
based probability density function of the registered histology (C) which clearly separated the 
different tissue types in the H&E stained images. The corresponding probability density func-
tion of in vivo 3D-T2*w MRI (A) demonstrates that viable and hemorrhagic regions cannot be 
separated using solely in vivo 3D-T2*w MRI signal intensities. Nevertheless, necrotic regions 
can be effectively separated from the other two histologically confirmed regions.

Evaluation of reference plane
Error in the reference plane positioning, measuring the remaining 3D mismatch, was 
established for both registration steps separately. Table 2 summarizes the angula-
tion as averaged over all five subjects. The absolute angulation for st2ex registration 
was 1.4±1.30%, ranging from 22.52 to 3.08, and for ex2in registration was 2.3±1.34% 
with a range of 22.79 to 4.00. This shows that directional mismatch between the 
resampled in vivo MRI and ex vivo MRI, and between ex vivo MRI and histological 
sections were minimal.

Tumour volume change
On average, the global tumour volume expanded 1.9% after sectioning. The same 
specimens shrank on average 13.2% after chemical fixation. Table 2 summarizes glob-
al and local volume change (per VOI) averaged over all five subjects. All histologi-
cally different regions (i.e., viable, necrotic, and hemorrhagic) expanded similarly 
after sectioning. On the other hand, we observed a significant difference in deforma-
tion between different histologically confirmed regions. That is, the shrinkage after 
chemical fixation is different for the hemorrhagic region compared with the necrotic 
and viable regions.

Facilitating MRI characteristics identification
The 3D correspondence of tumour histology and in vivo MRI enables extraction of 
MRI characteristics for histologically defined regions. This is illustrated using the his-
togram-based pdf of the registered histology (Figure 5C) which clearly separated the 
different tissue types in the H&E stained images. The corresponding pdf of in vivo 3D-
T2*w MRI (Figure 5A) demonstrates that viable and hemorrhagic regions cannot be 
separated using solely in vivo 3D-T2*w MRI signal intensities. Nevertheless, necrotic 
regions can be effectively separated from the other two histologically confirmed re-
gions. Figure 6 evaluates the pdf of in vivo 3D-T2*-w MRI for all subjects demonstrat-
ing similar gray value ranges for each VOI. When considering the pdf for all tumours, 
the necrotic regions were significantly different from other histologically confirmed 
regions (i.e., viable and hemorrhagic). However, the viable and the hemorrhagic re-
gions showed a large overlap in T2*-w MRI signal intensity.

Table 2.  Summarized registration results averaged over all five subjects.

Registration 

step

% Global

Volume change

Angulation [º]  % ΔV

Necrotic

% ΔV

Viable

% ΔV

Hemorrhagic

Stack2ex -1.9 ± 0.07 1.4 ± 1.30 12.2 ± 6.4 11.9 ± 6.4 11.0 ± 8.7

Ex2in 13.2 ± 0.05 2.3 ± 1.34 16.9 ± 6.8 16.0 ± 4.4 11.2 ± 15.0
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Park et al. registered prostates imaged using in vivo MRI, ex vivo MRI after prostatecto-
my, block-face photographs, and histological sections [15]. They used block-face pho-
tographs to reconstruct the original histology. Registration was performed by point-
based registration using manually placed landmarks. They moved towards 3D regis-
tration using three consecutive slices during histology-to-MRI registration. Although 
studies have registered whole-prostate histology to in vivo MRI, to our knowledge the 
present study is the first attempt to register pancreatic tumours. Our methodology 
intentionally excludes the use of block-face images as this would complicate image ac-
quisition and registration when acquiring large number of histological sections. Com-
pared to the method proposed by Park et al. [15] our method uses denser histological 
sampling, no user interaction is required during the registration procedure, and the 
whole image content of the tumour volume is utilized for registration.

This study presents the successful development and careful evaluation of a com-
bined methodology for alignment of tumour histological sections to in vivo MRI. At 
the same time, it demonstrates the importance of integrated methodology between 
imaging and registration. The established 3D correspondence between tumour his-
tology and in vivo MRI enables extraction of MRI characteristics for histologically 

Figure 7. Details from a H&E stained sec-
tion and its corresponding MRI 
slice. Histological section (A–B) 
shows the difference in histo-
logical appearance, whereas 
the MRI appearance in 3D T2*-w 
MRI (C) is similar. The necrotic 
segmentation, superimposed 
on 3D T2*-w, is shown in red 
(D).

Discussion 

This proposed methodology, i.e. aligning histological tissues sections to in vivo MRI, 
consists of a number of image acquisition and image registration steps that have been 
evaluated. The methodology is assembled around two separate registration steps, 
both exploiting a three-step strategy of gradually increasing degrees of freedom 
(rigid, affine, and elastic transformation), which allow for a coarse-to-fine scheme. 
To enable the registrations, we kept track of the tumour orientation by colour cod-
ing the different tumour surfaces and by creating a reference plane. Qualitative and 
quantitative evaluation of the registration and protocol accuracy was performed.

During the registration evaluation, the alignment of tumour surface and internal 
structures was qualitatively evaluated as accurate. Quantitatively, we achieved an 
average accuracy of 0.7 mm after the registration. The results involving two obser-
vers to estimate the RMS error showed similar trends in increasing accuracy with in-
creasing degrees of freedom. The inter-observer variation of the manual annotation 
was approximately 0.7 mm. This is an indication of the limitation of the measurement 
method; smaller distances could not reliably be measured. The RMS distance after 
elastic registration is of the same order. Evaluation of the protocol accuracy shows 
that a 3D-registration method complemented by standardized acquisition is essen-
tial to accurately align histology to in vivo MRI. Excision and fixation of the tumour 
resulted in an average shrinkage of 13%. However, the sectioning of the tumour en-
larged the tissue by 1.9%. 
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Rat 1 − viable
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Rat 3 − viable
Rat 4 − viable
Rat 5 − viable
Rat 1 − necrotic
Rat 2 − necrotic
Rat 3 − necrotic
Rat 4 − necrotic
Rat 5 − necrotic
Rat 1 − hemorrhagic
Rat 2 − hemorrhagic

Figure 6.  The group-wise probability density functions distributions of in vivo 3D-T2*-w MRI. Three VOIs 
(e.g., necrotic-red, viable-green, and hemorrhagic-blue) were annotated in histological sec-
tions and used for segmentation of automatically aligned in vivo MRI. The excessive hemor-
rhagic regions are visible in two out of five subjects. It demonstrates the similar gray value 
ranges for each VOI. When considering the probability density function for all tumours, the 
necrotic regions were significantly different from other histologically confirmed regions (i.e., 
viable and hemorrhagic). However, the viable and the hemorrhagic regions showed a large 
overlap in T2*-w MRI signal intensity.
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confirmed regions. We showed that, based on T2*-w MRI signal intensity, automatic 
identification of necrotic tissue is feasible. However, based on T2*-w MRI, the sepa-
ration of hemorrhagic and viable tissue was not possible. The hypo-intense areas in 
T2*-w MRI seem to correspond to necrotic tissue, see Figure 7. However, this conclu-
sion should be taken cautiously as deoxyhemoglobin and hemosiderin can also cause 
low intensity on T2*-w MRI [28]. As those may be undistinguishable in the T2*-w 
MRI, tumour necrosis may have been overestimated by MRI analysis.

This work is a first step in MRI tumour characterization. When the basic correspon-
dence between in vivo MRI and 3D H&E histology can be established, the exten-
sion to multi-spectral MR images and multi-stained histological sections is a logical 
next step. Different histological stains highlight different aspects of the tumour, in  
Figure 8 the spatial correspondence between the in vivo MRI, the ex vivo MRI and 
multi-stained histological sections is shown. This work can be used to create a data-
base consisting of multi-spectral MRI images and multi-stained 3D reconstructed his-
tology that may be an essential and valuable source for understanding MR images, 
and highly beneficial in the process of identifying MRI tumour characteristics.

Some modifications are envisioned which need exploring, as they will increase the 
robustness and accuracy of the technique without significantly increasing process-
ing time. In the protocol used, the hyper-intense regions cannot be specified based 
on solelyT2*-w MRI as shown in Figure 7 and Figure 8. The use of multimodality MRI 
images is expected to enable a more detailed differentiation between tissue types 
by combining the different contrast mechanisms present in the MRI sequences. For 
example, contrast enhanced (CE) MRA or DWI-MRI may create a contrast between 
vital and hemorrhagic regions. Multi-modality MRI images will therefore refine the 
registration and offer a more detailed biological profile of the tumour.

Figure 8.  Multi-stained histology dataset. H&E (A), Goldner (B), van Gieson (C) and Peroxidase (D) 
stained consecutive sections with the corresponding in vivo MRI (E) and intermediate ex vivo 
MRI (F). The slice thickness of all histology sections is 4 mm, and the distance between the 
consecutive histology sections (A–D) is 8 mm.
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Introduction

Tumours are not always homogeneous. Regional variations in cell death, metabolic  
activity, proliferation, and vascular structure can be observed. Heterogeneity is as-
sociated with malignancy, disease progression and therapeutic response [1]. For 
example, parameters in hot spots as quantified with DCE-MRI are reported to be 
more relevant for monitoring tumour response than parameters averaged over the 
whole tumour [2-4]. These findings are also supported by the discovery that distinct 
populations of cancer cells interact in a competitive manner [5]. For example, more 
aggressive cancer populations (fast proliferating populations with a higher neo-an-
giogenesis) are less sensitive to treatment and will, therefore, suppress the less fit 
populations. There is also clinical evidence that recurrent tumours are more malig-
nant than the primary tumour: the more aggressive populations have survived. In 
this respect, visualization and quantification of tumour heterogeneity is a useful tool 
in grading, differentiation, monitoring and predicting tumour treatment response.

Several methods have been developed and used to quantify tumour heterogeneity 
from imaging data. Many studies use histogram-based features such as percentile 
values, standard deviation and enhancing fraction. However, these features do not 
take into account the spatial distribution of the intensity values. Texture methods do 
take spatial information into account, by quantifying the spatial variations in the im-
ages. An important advantage of texture-based methods is the independence of the 
absolute values in the images. Therefore, texture analysis can provide additional and 
independent information compared to absolute histogram-based measures. 

The present systematic review investigates the performance of different hetero-
geneity imaging biomarkers extracted from diagnostic tumour images for tumour 
grading, differentiation, outcome prediction or response monitoring. The following 
research questions were formulated:

• Which analysis methods are used for quantifying heterogeneity or texture in di-
agnostic tumour imaging, outcome prediction and tumour treatment monitor-
ing?

• What are the reported performances of the different analysis methods? Is there 
a relation between performance and analysis method?

• What is the potential clinical impact of the methods? Can the performance re-
sults be generalized? Is the performance evaluated in addition to established 
imaging biomarkers?

Abstract 

Tumours frequently demonstrate heterogeneity in structure, function and response to 
treatment wich may be visualised en quantified by imaging techniques. This systematic 
literature review aims to answer the following questions: Which analysis methods are 
used for the quantification of heterogeneity or texture in diagnostic tumour imaging, 
outcome prediction and tumour treatment monitoring? What are the reported perfor-
mances of the different analysis methods? Is there a relation between reported perfor-
mance and analysis method? Can the performance results be generalized? What is the 
potential clinical impact of the methods? Has the performance also been evaluated in 
comparison to or in combination with established biomarkers?  

The databases Ovid, Embase and Cochrane Central were searched up to 24 January 2013. 
Heterogeneity analysis methods were divided into four categories: non-spatial methods 
(NSM), spatial grey level methods (SGLM), fractal analysis (FA) methods, and filters and 
transforms (F&T). The reported results are divided into: publications reporting classifica-
tion experiments, and those reporting significance testing. 

From the 8,956 potentially relevant publications, 192 reporting on 170 studies were in-
cluded. Generally, about 60% of the studies use NSM, 49% use SGLM, 11% use FA, and 28% 
use F&T. Differential diagnosis, grading or outcome prediction was the goal in 86% of 
the studies. In 72% of these studies NSM or SGLM was performed, and 36% of the studies 
were based on MRI. For the response monitoring NSM was the most frequently used 
method, i.e. in 73%. Classification results were reported in 68% of the studies, statistical 
outcomes in 30%, and no outcome in 2%. Practically no papers evaluated the additional 
value of the heterogeneity biomarker on top of the available clinical markers.

No relation was found between the discriminative power and the quantification meth-
ods, or between the discriminative power and the imaging modality. The reported AUC 
ranged from 0.5 to 1 with a median of 0.89. A negative correlation was found between 
the AUC and the number of features estimated per tumour, which is probably caused 
by overfitting in small datasets. In only 53.4% of the classification studies was the use of 
cross-validation reported. Many studies report on the potential of tumor heterogene-
ity for grading, differentiation, outcome prediction and treatment response monitoring. 
However, none report on the use of an external validation set to test their findings. Ret-
rospective analyses were conducted in 60% of the studies, but without a clear descrip-
tion of the inclusion criteria. Only 12% of the studies had a prospective study design. 

To enable the translation of imaging biomarkers from the research stage to clinical prac-
tice, research should focus more on prospective studies, use external datasets for valida-
tion, and evaluate the added value of the proposed heterogeneity biomarker on top of 
the clinical markers.
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• publications without one of the following goals: tumour differentiation, tumour 
grading, outcome prediction or treatment monitoring; 

• publications not based on in vivo studies (histology, phantom, ex vivo, synthetic 
data); 

• publications describing non original research (editorial, letters to the editor, re-
view, meta-analysis, opinion publications).

Data extraction
A data extraction form was designed. All publications were independently reviewed 
and data extraction was cross-checked. Disagreements between the reviewers were 
resolved by consensus. The following data were extracted from the full paper: year 
of publication, human or animal study, type of study (retrospective or prospective), 
number of subjects, number of tumours, location of tumour, imaging modality, 
tracer/contrast agent, goal of heterogeneity/texture analysis,  and the type of het-
erogeneity/texture quantification method used. For studies reporting on the same 
analysis method based on the same dataset, only the latest publication was included. 
For publications reporting classification experiments the following features were ex-
tracted: number of candidate features for classification, number of selected clas-
sification features, the results of the best classification experiment, i.e., accuracy, 
sensitivity, specificity, area under the receiver operator curve (AUC), type of cross-
validation used, and use of an external validation set. For the publications reporting 
significance testing, the number of candidate features, the number of significant 
features and the number of significant features after Holm-Bonferroni correction 
[10] were extracted.

Data synthesis and analysis
The imaging modality was divided into four categories, i.e., MRI, CT, PET/SPECT, and 
US. No further subdivision on the type of imaging protocol or use of contrast agent 
was made. Image analysis methods to estimate tumour heterogeneity were divided 
into four categories: non-spatial methods, local spatial distribution methods, fractal 
analysis, and a category consisting of filters and transforms.

Non-spatial methods (NSM). These methods characterize tumour heterogeneity by 
non-spatial descriptors, such as descriptors of the grey level frequency distributions: 
standard deviation, skewness, range, peak height, peak position, and percentile val-
ues.

Methods

Data sources and search method
This review was performed in accordance with the Prisma guidelines [6]. The investi-
gators wrote a protocol and registered it with the International Prospective Register 
of Systematic Reviews (identification number: CRD42013003634) in January 2013 [7]. 
A systematic literature search was conducted in the databases of Medline, Embase 
and Cochrane Central; the search was performed on January 24th 2013. 

The following search entries were used in Medline as full text or MeSH Terms when 
available cancer1:
• neoplasms or cancer or tumour or tumor
• heterogeneity or texture
• MRI or MRS or CT or PET or SPECT or ultrasonography

Study selection
Two authors (LA and JFV) independently reviewed the titles and abstracts, and 
screened the full-text articles. Subsequently, the publications were passed to the 
data extraction phase. Any discrepancies about study inclusion during the title and 
abstract review were resolved by passing the publication in question to full-text 
screening. Any discrepancy at the following stages was resolved by discussion. The 
bibliographies of seminal review papers [1, 8, 9] were reviewed to identify additional 
relevant articles. 

Inclusion/exclusion criteria
Publications related to diagnostic imaging were only included when they reported 
quantification of tumour heterogeneity or tumour texture with the goal of tumour 
grading, differentiation between benign/malign, outcome prediction, and tumour 
response monitoring. No restrictions were made on the basis of the location, type, 
stage or the grade of malignancy. Prior to review a decision was formulated to ex-
clude any study with too few participants, i.e. for patient studies (n<10) and for ani-
mal studies (n<5). Therefore, all case studies and those that contained no informa-
tion on the number of subjects were excluded. Additionally, all the following studies 
were excluded:
• publications based on non-tumour images; 
• publications not based on quantitative assessment of heterogeneity or texture 

in images

1 The full details of the searches can be obtained from the first author.
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keep the system manageable, dimensionality reduction techniques were commonly 
applied to select a subset of features that are relevant for the classification problem. 
The ratio between the number of tumours classified and the dimensionality of the 
feature space (e.g., the number of selected features) should be chosen sensibly [19]. 
Therefore, we evaluated the number of candidate features, the number of selected 
features, and the ratio between the number of tumours included in the study and the 
number of selected classification features. 

Publications reporting on significance testing. A commonly used approach to test 
the validity of the selected features is significance testing. For heterogeneity analy-
sis, many publications compute a large number of features. As multiple comparisons 
generally require a stronger level of evidence to be considered as significant, the 
Holm-Bonferroni correction can be applied [10]. This correction allows for the sig-
nificance levels for single and multiple comparisons to be directly compared. In the 
included publications we evaluated whether a Holm-Bonferroni correction was ap-
plied and, if this was not the case, computed the number of significant features after 
correction using the available data. 

Results

Figure 1 shows the results of the systematic search, with the number of articles re-
trieved, exclusion criteria applied, and the final number of included publications. 
In summary, 8,956 potentially relevant articles were identified through our search 
strategy. Based on the basis of the review of their titles and abstracts, 488 (5.5%) 
publications were considered for inclusion. All these publications were retrieved for 
full paper screening. In this stage, an additional 296 publications were excluded, and 
the remaining 192 original research publications [2, 20-208] entered the data extrac-
tion phase. In this phase, an additional 22 papers were excluded as they report the 
results of a similar analysis method on the same dataset as in another publication. 
For these publications, the most recent one was included in the analysis. In total, 
data from 170 studies were extracted.

General characteristics
Table 1 lists the characteristics of the included publications (after removing double 
publications). A publication may include more than one imaging modality, analysis 
method, or goal. One study (0.6%) reported on two imaging modalities, 51 studies 
(30%) reported on two or more analysis methods, and two studies (1.2%) report-
ed both goals (diagnose/grading and treatment response monitoring). In total,  
30 studies used dynamic contrast-enhanced imaging (17.7%), wich were conducted 
using MRI (n=27) or CT (n=3).

Spatial grey level methods (SGLM). Methods included here extract the local spatial im-
age intensity distribution. This category includes grey-tone spatial-dependence matrix 
(GTSDM) [11], neighbourhood-grey-tone-difference matrix (NGTDM) [12], run-length 
matrix (RLM) [13], and local binary patterns (LBP) [14]. The GTSDM, originally pro-
posed by Haralick et al. [11] is often referred to as co-occurrence or the second-order 
histogram. When divided by the total number of neighbouring pixels in the image, this 
matrix becomes the estimate of the joint probability of two pixels at a distance along 
a given direction having a particular grey value. The NGTDM, originally proposed by 
Amadasm and King [12], is based on spatial changes in grey values by inspecting the 
difference between grey levels of a specific pixel and the average grey level of their 
surrounding neighbours. The RLM, originally proposed by Galloway [13], is subsidiary 
to the observation that a coarse texture would have relatively longer grey level runs 
compared to a fine texture. This matrix provides the information about runs of pixels 
with the same grey-level values in a given direction. LBP, originally proposed by Ojala 
et al. [14] and later modified to a rotation and scale invariant approach [15], represents 
local texture. In its simplest form, it labels the pixels of an image by thresholding the 
neighborhood of each pixel and considers the result as a binary number. 

Fractal analysis (FA). The third category consists of fractal analysis methods that 
overcome the scale problem by providing a statistical measure reflecting pattern 
changes as a function of scale. The two basic parameters in fractal analysis are frac-
tal dimension (FD) and lacunarity [16]. An often used method to estimate FD is box 
counting [16]. This procedure systematically overlays an image with a series of grids 
with increasing/decreasing sizes. For each step, this procedure captures the pre-
defined relevant features [17]. Another frequently used technique in fractal analysis 
is the blanket method [16], which is often used in its extended form, as described by 
Peleg et al. [18]. This method estimates the surface area by measuring the volume 
between an upper and lower blanket. 

Filters and transforms (F&T). The fourth category consists of a collection of image 
processing algorithms that extract texture features. Examples are methods that use 
techniques defined in the spatial domain such as filters (Gabor filters or Law’s filters) 
or transformations to other domains (Fourier transform, Wavelet transform, S-trans-
form, discrete cosine transform). Since the various methods have only been used in a 
limited number of publications included in the present analysis, these methods were 
grouped together.

Publications reporting classification experiments. Publications were considered clas-
sification studies if they reported a classification result such as accuracy, sensitivity, 
specificity or AUC value. Only the publications where the results of the classification 
experiments were solely based on texture parameters were further analysed. These 
studies often utilise a high number of candidate features to describe a tumour. To 
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The number of imaging studies quantifying tumour heterogeneity has clearly in-
creased since 2009 to over 40 publications biannually (Figure 2A). Figure 2B-D show 
(biannually) the number of publications per modality, per quantification method and 
per goal. Prior to 2007, heterogeneity was primarily studied based on ultrasound 
data. After 2007, the number of studies using MRI to quantify tumour heterogeneity 
increased (Figure 2B). The non-spatial method and the spatial grey-level methods 
are generally the most frequently used methods to analyse tumour heterogeneity. 
Although the number of publications using these methods has increased since 2007, 
their contribution to heterogeneity literature is relatively stable (Figure 2C). Over the 
years, the number of studies reporting tumour response monitoring ranges from 6% 
to 25% (Figure 2D).

Table 1.  Characteristics of the included publications (n=170).

Characteristic n %

Imaging method MRI 61 36%

CT 32 19%

PET/SPECT 13 8%

US 65 38%

Analysis method NSM 102 60%

SGLM 82 48%

FA 19 12%

F&T 47 28%

Study goal Diagnosis/grading/outcome prediction 146 86%

Response monitoring 24 14%

Study type Retrospective 102 59%

Retrospective (with inclusion criteria) 48 28%

Prospective 20 12%

Type of subjects Human 160 94%

Animal 10 6%

Type of  experiment Classification 115 68%

Significance testing 51 30%

Neither 4 2%

duplicates 5302 excluded 
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Figure 1.  Prisma flow diagram [6] of articles (included and excluded) in the systematic review.
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For prostate, H&N and breast analysis the spatial grey level methods were most fre-
quently used. Heterogeneity analyses for tumour-response monitoring were primar-
ily performed in GIST, sarcoma, and breast (Figure 3C). Figure 4 shows the distribu-
tion (in a matrix form) over different imaging modalities and analysis method for all 
the included publications.

For publications with the goal of tumour diagnosis and grading, the relation between 
imaging modality and analysis methods is shown in Figure 5A. In general, about 76% 
of all studies on tumour diagnosis and grading used either MRI or US. With 36%, 
SGLM is the most frequently used analysis method to grade and diagnose tumours. 
Figure 5B shows the relation between imaging modality and analysis method for the 
publications (n=24) with the goal of tumour response monitoring. MRI was used in 
82% of these studies and SPECT/PET in 9%. In 3% of the studies, US based heterogene-
ity quantification was used for tumour-response monitoring. With 73%, NSM is the 
most frequently used analysis method for tumour-response monitoring.

Only 12% of all studies utilized a prospective study design. Figure 6A shows the rela-
tion between imaging modality and analysis method used for tumour diagnosis, grad-
ing and outcome prediction in prospective studies (n=6). All modalities appeared to 
be primarily analysed by NSM. Figure 6B shows the relation between imaging modal-
ity and analysis method, for publications reporting a prospective study design for 
tumour-response monitoring (n=14). Again, the majority of all data were analysed 
by NSM. US and CT are rarely used for heterogeneity quantification in prospective 
tumour-response monitoring studies.
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Breast tumours have been studied in 37% of the publications. Figure 3 shows the dis-
tribution of studies per tumour location. Figure 3A shows the use of imaging modali-
ties for quantification of tumour heterogeneity. MRI is used primarily for brain and 
breast tumours, CT for lung and GIST tumours, SPECT/PET for sarcoma and gynaeco-
logical tumours, and US for breast tumours and head and neck (H&N) tumours. Het-
erogeneity analysis of brain tumours was performed almost exclusively on MRI, while 
for breast tumours both MRI and US were used. Figure 3B shows the analysis meth-
ods used per tumour location. For almost all locations all methods have been used.  
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test sets as a technique to limit the effect of overfitting on the available data.  
Figure 7B shows that the papers using a combination of texture analysis methods 
generally use more features than papers that use one method. Moreover, in the 
multi-methods papers dimensionality reduction techniques are not as rigorously ap-
plied as in the SGLM papers.

In the classification experiments, one or more of the following performance mea-
sures were reported: sensitivity, specificity, accuracy, or AUC. Figure 8 shows the 
performance measures per imaging modality, and Figure 9 the performance mea-
sures per analysis method. In both figures, the reported performance is depicted as 
a function of the tumour-feature ratio. It is clear that the combination of features 
from different methods leads to a high number of candidate features. In general, the 
tumour-feature ratio ranged from 0.26 to 502 (median=21), with (on average) 28% of 
the publications showing a tumour-feature ratio below 10. Studies using the com-
bined method and those using F&T had the most papers with a tumour-feature ratio 
≤ 10, i.e. 42% and 30%, respectively. Regarding imaging modality, CT has the highest 
percentage (50%) of classification experiments with a tumour-feature ratio < 10. 

Figure 7.  Number of features used in classification experiments for different imaging modalities (left) 
and for different analysis methods (right).
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Publications reporting classification experiments
Of all included studies, 68% reported classification experiments and 30% reported 
significance testing. The remaining 2% either reported no quantitative results or the 
experiments were incompletely described. Twenty studies only reported the re-
sults of classification experiments in which texture features were combined with 
non-texture features. For these papers, because it was not possible to extract the 
performance of the texture features or the added value of the texture features, 
the results were not included in further analysis. Additional eight papers with the 
exact number of generated or selected features unclear, were excluded from fur-
ther analysis. Of the papers reporting on classification, 47% used US and 38% used 
MRI. In 41% of the classification papers, features originating from different texture 
analysis methods were combined. Figure 7 shows the relation between the num-
ber of feature candidates and selected features used in classification experiments 
for different imaging modalities and different analysis methods. For the papers 
indicated on the dotted line, no feature selection procedure was performed. The 
number of candidate features ranged from 1 to 1560 (median=20) while the number 
of selected features ranged from 1 to 208 (median=3). About half of the papers de-
scribing a classification experiment reported the use of cross-validation or training- 
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Publications reporting significance testing
Thirty percent (N=43) reported significance testing with the number of features 
ranging from 1 to 34 (median= 4). Of all papers reporting significance testing includ-
ed in this study, 34% were based on MRI, 30% on CT, 16% on SPECT/PET, and 20% on US. 
Similarly, in 58% of the cases data were analysed using NSM, 9% using SGLM, 5% using 
FA, 7% using F&T, and 21% using a combination of methods. The number of significant 
features, as reported by the authors, ranged from 0 to 12. Since multiple compari-
sons generally require a stronger level of evidence to be considered as significant, 
the Holm-Bonferroni correction [10] was applied by the original research authors, or 

Figure 9.  Performance measures (sensitivity, specificity, accuracy and AUC) as a function of tumour-
feature ratio in the classification experiments. The scatter plot shows each analysis method 
separately. Dotted line represents the ratio of 10 tumours per selected feature.
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Only two papers reported an AUC of 0.5; all other papers reported higher values. This 
is most likely caused by publication bias: only the positive performance of heteroge-
neity features reach the journals. No relation was observed between performance 
measures and the imaging modality or the type of analysis method used. However, 
there is a negative correlation between the logarithm of the number of tumour- 
feature ratio and the AUC (r=-0.29, p<0.05). This correlation can be the result of  
overfitting when less tumours per feature are available.
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Figure 8.  Performance measures (sensitivity, specificity, accuracy and AUC) as a function of tumour-
feature ratio in the classification experiments. The scatter plot shows each imaging modality 
separately. Dotted line represents the ratio of 10 tumours per selected feature.
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tumour heterogeneity quantification, US is the most frequently used imaging mo-
dality for tumour differentiation and grading, and MRI is the most frequently used 
modality for treatment response monitoring. For monitoring of treatment response, 
NSM is the most frequently used method. For tumour grading and differentiation, all 
methods are evenly distributed over all modalities. 

The performance of the heterogeneity features was mostly (68%) evaluated by clas-
sification experiments reporting performance measures such as accuracy, sensitivi-
ty, specificity and AUC. Papers reporting only on the results of combined texture fea-
tures with other features, were excluded from the analysis. Some authors selectively 
report on sensitivity without mentioning the specificity. The AUC is the preferred 
measure to report performance, as it is more comprehensive compared to a measure 
based on a single threshold such as accuracy. Only 59% of the publications reporting 
classification results reported the use of cross-validation as a technique to limit the 
effect of overfitting on the available data. We found no relation between the per-
formance measures and the modality nor with the analysis method used. However, 
a negative correlation was found between the number of tumours per selected fea-
ture and the AUC. If more tumours were available per selected feature the accuracy 
was lower. This correlation might be the result of overfitting of the data when less 
tumours per feature are available. 

Publications reporting significance testing often did not perform a correction of 
the significance levels for multiple comparisons. For 7 papers, due to missing infor-
mation, retrospective Holm-Bonferroni correction could not be performed by the 
authors. For 36% of the papers the number of significant features decreased after 
Holm-Bonferroni correction.

The number of prospective studies is small, i.e. only 12% of all studies. These studies 
are primarily based on MRI and report NSM features. Although the use of retrospec-
tively collected data is necessary to develop, test and evaluate heterogeneity as a 
biomarker for tumour grading, differentiation, outcome prediction and treatment 
response monitoring, the real test is to evaluate the performance of the developed 
features in a prospective study design. In a retrospective study design the criteria 
for the inclusion of cases are often not (or not clearly) described, so that the perfor-
mance of the heterogeneity feature may be overestimated. By using a prospective 
study design with clear inclusion criteria the real performance of heterogeneity fea-
tures can be more reliably assessed. 

Moreover, in most studies the performance of the heterogeneity feature is evalu-
ated without taking into account currently accepted clinical features, such as mean 
signal intensity, tumour size, grade or border regularity. Other studies report only 
the combined classification performance of heterogeneity and clinical features.  

by the authors of this review paper. This correction allows for the significance levels 
for single and multiple comparisons to be directly compared. For 7 papers the cor-
rection could not be performed due to missing information. After Holm-Bonferroni 
correction, the number of significant features ranged from 0 to 6. Figure 10 shows 
the number of significant features before and after Holm-Bonferroni correction per 
imaging modality (left) and per analysis method (right). In 36% of the papers the 
number of significant features decreased significantly after correction. No relation 
with imaging modality or analysis method was observed.

Discussion

In this systematic review we investigated the use and performance of heterogene-
ity or texture quantification methods in radiological images for tumour grading, dif-
ferentiation, outcome prediction and treatment response monitoring. Of the 8,956 
unique studies identified in the database search, 170 studies reported on hetero-
geneity as an imaging biomarker in tumour imaging. Since 2009 there has been a 
growing number of publications reporting on tumour heterogeneity quantification. 
Up to 2006 most heterogeneity papers were based on US, whereas after 2007 the 
number of papers using MRI has increased. The NSM and the SGLM are the methods 
most frequently used during the studied period. Most papers focus on heterogene-
ity quantification for differentiation, grading or outcome prediction. However, the 
number of papers with the goal of response monitoring has increased recently. In 
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Figure 10.  Number of significant features before and after Holm-Bonferroni correction in publications  
reporting on significance testing per image modality (left) and per analysis method (right).
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Introduction

Dynamic contrast-enhanced MR imaging (DCE-MRI) is a non-invasive technique to 
study in vivo microvascular characteristics such as blood volume, blood flow and en-
dothelial permeability in tumours. DCE-MRI has emerged as a valuable clinical tool 
to diagnose and stage tumours [1-3]. Pharmacokinetic and heuristic model-based pa-
rameters have been shown to correlate with histopathological tumour grade and 
measures of angiogenesis. DCE-MRI is also capable of monitoring and quantifying 
the treatment effects of radiotherapy, chemotherapy and antivascular drugs [4, 5]. 

It is important to develop predictors of treatment outcome which help to tailor 
treatment for the individual patient. For breast cancer, the potential of DCE-MRI as 
an early predictor of response has been investigated [6]. More recently, the use of 
baseline DCE-MRI for response prediction has been investigated for breast cancer [7, 
8], colorectal metastases [9] and mesothelioma [10]. Using pharmacokinetic mod-
elling or a heuristic curve-fitting approach, the voxel-wise contrast uptake curve, 
as measured by DCE-MRI, can be summarized with a small number of descriptive 
parameters. However, quantification of the parametric maps remains a challenge. 
A commonly-used method is the computation of an average of the parametric map 
over the whole tumour [5, 9]. Due to averaging, variations in parts of the tumour 
may be cancelled out [11], though. Human solid tumours are biologically heteroge-
neous [12], and heterogeneous areas of DCE-MRI enhancement are reported to be 
diagnostically important [13].

A logical first step in quantifying the heterogeneity in parametric maps is to identify 
regions of interest, or ‘hot spot’ selection. Parameters in hot spots are reported to be 
more relevant for quantifying tumour response than parameters averaged over the 
whole tumour [7, 8, 14, 15]. A disadvantage is that the selection of hot spots is usually 
performed manually and therefore subject to inter- and intra-operator variability. 
For treatment monitoring, this approach is not recommended [16]. Another method 
is to compute a binary version of the map, e.g. by thresholding using a parameter 
value or a fit-statistic. Using the binary map, the number of ‘enhancing’ voxels can 
be computed [17-19]. The non-enhancing voxels are then assumed to represent ne-
crotic tissue. An additional analysis can be performed on the enhancing voxels using 
histogram analysis. There are indications that the histogram of the parametric map 
can be of added value to improve diagnostic accuracy [20], to grade tumours [21], to 
predict overall survival [22], and to assess treatment effect [14, 23-25].

However, this method does not take into account the spatial distribution of the dif-
ferent contrast uptake parameters. To specifically extract information on the spatial 
coherence of enhancing regions, texture analysis can be performed on parametric 
maps. Additionally, texture analysis methods have been used for diagnostic tasks. 

Abstract 

This study aims to quantify the heterogeneity of tumour enhancement in dynamic 
contrast-enhanced MRI (DCE-MRI) using texture analysis methods. 

The suitability of the coherence and the fractal dimension to monitor tumour re-
sponse was evaluated in 18 patients with limb sarcomas imaged by DCE-MRI at base-
line and follow-up. According to the histopathology, tumours were classified into 
two response categories (responders and non-responders). Pharmacokinetic (Ktrans) 
and heuristic model-based parametric maps (slope, max enhancement, AUC) were 
computed from the DCE-MRI data. 

A substantial correlation was found between the pharmacokinetic and heuristic 
model-based parametric maps: ρ=0.56 for the slope, ρ=0.44 for maximum enhance-
ment, and ρ=0.61 for AUC. From all four parametric maps, the enhancing fraction, 
and the heterogeneity features (i.e. coherence and fractal dimension) were deter-
mined. In terms of monitoring tumour response, using both baseline and follow-up 
DCE-MRI, the enhancing fraction and the coherence showed significant differences 
between the response categories (i.e. the highest sensitivity (91%) for Ktrans, and the 
highest specificity (83%) for max enhancement). In terms of treatment prediction, us-
ing solely the baseline DCE-MRI, the enhancing fraction and coherence discriminated 
between responders and nonresponders. For prediction, the highest sensitivity (91%) 
was shared by Ktrans, slope and max enhancement, and the highest specificity (71%) 
was achieved by Ktrans. On average, tumours that responded to treatment showed a 
high enhancing fraction and high coherence at the baseline. 

These results suggest that specific heterogeneity features, computed from both 
pharmacokinetic and heuristic model-based parametric maps, show potential as a 
biomarker for monitoring tumour response.
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This study utilizes two texture analysis methods to quantify the heterogeneity in 
DCE-MRI parametric maps: the GTSDM-based (also referred to as co-occurrence-
based) method, and the fractal-dimension-based method. A widely used method for 
texture analysis, the GTSDM-based method [29], secures the linear transformation 
invariance by performing histogram equalization as a preprocessing step. Fractal di-
mensions are also often used to analyse texture. Figure 1 shows three images with 
decreasing coherence. For this study, we used the Blanket method [30] that secures 
the linear transformation invariance by estimating the fractal dimension of the in-
tensity surface of the parametric map. Matlab scripts for both methods (the GTSDM-
based and fractal dimension-based) are publicly available at http://DCEanalysis.bigr.nl.

Coherence
In GTSDM-based analysis, histogram equalization is performed first. Thereby, the 
number of intensity values is reduced to a fixed number N. The original intensity 
values are redistributed in such a way that the incidence probability for all new in-
tensity values is equal (1/N). As the second step the GTSDM Md,θ is computed; the 
elements of Md,θ(i,j ) contain the number of incidences having intensity values i and j 
over a distance d, and at an angle θ. The matrix is normalized for the total number of 
incidences. Over the normalized matrix, several texture features can be computed. 
Since we are primarily interested in the coherence of the higher image intensities, 
we divided all the image voxels into two groups based on their median intensity. As 
none of the original texture features defined by Haralick et al [29] quantifies the co-
herence among the image voxels, we define the image coherence in Eq. 1.
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Figure 1.  Images with decreasing coherence.

For example, Rose et al [26] calculated fractal dimensions and performed geometri-
cal-based texture analysis to grade gliomas. Karahaliou et al [27] computed the grey-
tone spatial-dependence matrix (GTSDM) features to discriminate malignant from 
benign breast lesions. Moreover, texture analysis can also be used for treatment 
monitoring. Alic et al [28] describe how the GTSDM-based method can be used to 
monitor treatment effect.

An important advantage of texture-based analysis is the independence of the abso-
lute values of the parametric maps. Texture methods quantify the spatial variations 
in parametric maps, not the absolute values of the maps. Therefore, texture analysis 
can provide additional and independent information compared to histogram-based 
measures of parametric maps. Furthermore, in case the absolute values of contrast 
uptake parameters at baseline and follow-up cannot be reliably compared (due to 
variations in the acquisition process of the MRI data, or to selection of the arterial 
input function), the heterogeneity of the parametric maps within the tumour can still 
be computed and compared. In clinical practice, calibration sequences necessary for 
the estimation of absolute pharmacokinetic parameters are not always acquired. To 
facilitate the analysis of clinical data, texture analysis can be considered as a means 
to estimate parametric map heterogeneity.

This study assesses the potential of heterogeneity in DCE-MRI parametric maps as a 
biomarker for treatment response. Both pharmacokinetic and heuristic model-based 
parametric maps are computed from the DCE-MRI data of patients with soft tissue 
sarcomas treated with isolated limb perfusion (ILP). The heterogeneity of DCE-MRI 
parametric maps is quantified by texture features based on the GTSDM-based meth-
od and fractal dimension.

Heterogeneity

Since texture information is hidden in the coherence of intensity values rather than in 
the absolute values, texture features grasp this information independently from the 
absolute values of the parametric maps. According to Haralick et al [29], texture fea-
tures should be invariant under monotonic intensity transformations. The invariance 
under linear transformations of intensity values is the basic criterion that should be 
fulfilled at all times. This means that the texture features should be independent of 
the mean and variance of the intensity distribution. Satisfying this condition enables 
investigation whether texture analysis can provide additional and independent in-
formation compared to histogram-based measures. However, most texture analysis 
methods do not meet this strict criterion.

http://DCEanalysis.bigr.nl
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Material and methods

Patients
In the period 2001 to 2006, patients referred to our cancer centre for ILP of irre-
sectable extremity soft tissue sarcoma, received a DCE-MRI sequence in addition to 
the standard MRI protocol. Patients were included in this study if they had received 
a DCE-MRI within 6 weeks before and after the ILP procedure. The study was ap-
proved by the local Research Ethics Committee.

MRI data were obtained from 21 patients with sarcomas which were histologically con-
firmed by biopsies. From the available data, DCE-MRI of two tumours was excluded 
from further analysis because they were scanned at different tumour locations before 
and after ILP, and one for using fat suppression during the DCE-MRI protocol. There-
fore, our study group consisted of 18 patients (9 men and 9 women) with a median age 
of 54.3 years. Eleven sarcomas were located in the leg, and seven in the arm. All tu-
mours (median volume of 30 cm3, with an interquartile range of 17–246 cm3) were con-
sidered primarily irresectable because of size, or fixation to the neurovascular bundle 
or bone. To render the tumours resectable for limb salvage, patients were treated with 
ILP. After resection of the tumour remnant, the percentage of necrosis was estimated 
by a pathologist based on macroscopic evaluation of necrotic tissue. The standard 
classification was used: if the tumour had 50–100% necrosis, the patient was classified 
as responding to treatment; if the tumour was <50% necrosis, the patient was classified 
as non-responding to treatment [36]. The tumour size before treatment did not differ 
significantly between the responding and the non-responding patients.

Treatment protocol
ILP is based on the technique developed by Creech et al [37] and allows for the deliv-
ery of high doses of cytostatic drugs to a tumour-bearing extremity that is isolated 
from the systemic circulation. Hence, without any systemic toxicity, a regional che-
motherapeutic concentration can be increased to 20 times the systemically tolerable 
dose. ILP is used for irresectable extremity soft tissue sarcomas, multiple in-transit 
melanoma metastases, or a variety of other limb-threatening tumours [38-40].

For the treatment of soft tissue sarcomas, two drugs were used: Melphalan (Bur-
roughs Wellcome, London, UK) and TNF-α (Boehringer, Ingelheim, Germany). Mel-
phalan is a cytostatic drug, mainly focused on tumour cells. TNF-α is an antivascular 
agent, added because of its selective destruction of tumour vessels and its effect of 
increasing uptake of Melphalan by the tumour. Due to the combination of Melphalan 
with TNF-α, ILP is an excellent method to locally treat advanced tumours rendering 
a non-resectable tumour resectable, without the need for amputation, and reducing 
the local recurrence rate.

Figure 1 shows typical images with decreasing coherence. Light grey values in the im-
ages demonstrate the high intensity voxels, and dark grey are low intensity voxels. 
Coherence quantifies the cohesion of the high intensity voxels, with the coherence 
being high for the spatially close voxels, and low for the more scattered voxels. 

Fractal dimension
Although a wide variety of methods are available to estimate the fractal dimension, 
all these methods are based on the same principle: an image characteristic is mea-
sured as a function of a scale parameter. For fractal images, the relation between 
these two quantities can be described by a straight line in a log–log domain. The 
slope, computed by linear regression analysis, is then linearly related to the fractal 
dimension. The various estimation methods differ in the definition of the image char-
acteristic and of the scale parameter. To estimate the fractal dimension of a surface, 
Peleg et al [30] extended the Blanket method described by Mandelbrot [31] to three 
dimensions.

For this study, we used the Blanket method which estimates the surface area by 
measuring the volume between the maximum (upper blanket) uε(i,j) and the mini-
mum (lower blanket) bε(i,j ) gray levels for a certain resolution [32]. The blankets 
are not further than a distance ε above and below the surface to be measured [30, 
33-35]. With with |(m,n)-(i,j)| ≤1, the upper and lower blankets are defined in Eq. 2.

 uε(i,j)=MAX {uε-1(m,n)} (Eq. 2-A)

 bε(i,j)=MAX {bε-1(m,n)} (Eq. 2-B)

 V(ε)=∑{ uε(i,j)- bε(i,j)} (Eq. 2-C)

 A(ε) = ½{V(ε) - V(ε-1)} (Eq. 2-D)

with V(ε) representing the volume between the blankets, and A(ε) the surface area. 
Using the property: A(ε) ∞ ε2D, the fractal dimension can be established as the linear 
fit of [log A(ε), log ε]. 
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Coherence. Earlier studies [35] showed that short distances have a higher discrimina-
tive power than larger distances and that, when the texture has no distinct direction, 
the influence of the angle θ is small. Thus, the matrix was averaged over the four 
angles (0°, 90°, 270°, 180°) and determined on a distance 1. For each of the four para-
metric maps, Ktrans, slope, maximum enhancement and AUC, the enhancing fraction 
of the tumour was segmented based on the median value of the enhancing voxels 
into two groups of voxels: strongly enhancing and enhancing. The non-enhancing 
voxels were not taken into account, and therefore the coherence is independent 
of the enhancing fraction. The coherence was then determined for all acquisitions 
(at baseline and follow-up) and for all maps (pharmacokinetic and heuristic model-
based).

Fractal dimension. Since the image size is limited, the fractal dimension is estimated 
over a limited range of scales. We used the first four scales (ε) to estimate the fractal 
dimension from all the parametric maps.

Statistical analysis
Statistical analysis was performed using SPSS (SPSS for Windows, Version 17.0, SPSS 
Inc., Chicago, IL, USA). Spearman’s rank correlation coefficient was used to measure 
correlation of the parametric maps derived from the different models (pharmacoki-
netic and heuristic). Two response categories were defined: responding and non-re-
sponding tumours. The Wilcoxon signed rank test was used to assess the differences 
between the two response categories characterized by three heterogeneity texture 
features (enhancement fraction, coherence and fractal dimension). The heterogene-
ity features were calculated using four parametric maps, e.g. Ktrans, slope, maximum 
enhancement and AUC based on the DCE-MRI acquired before and after treatment. 
The Mann–Whitney U-test was used to assess the differences between the two re-
sponse categories characterized by the same heterogeneity texture features based 
on the DCE-MRI acquired before treatment. 

To determine the accuracy, sensitivity and specificity of all texture features, a clas-
sification experiment was performed, using support vector machine [44] in a leave-
one out approach. A leave-one out approach can provide a reliable estimation of the 
accuracy, sensitivity and specificity of the classifier when the data set is too small to 
be divided into a learning and test set.

MRI imaging
Imaging was performed on a 1.5 T Vision MR system (Siemens Medical Systems, Er-
langen, Germany) using a Body, FlexLarg or SpArray coil, depending on the location 
and tumour size. Standard non-enhanced T1- and T2-weighted sequences were fol-
lowed by a 2- to 16-slice DCE-MRI sequence covering at least the tumour centre. The 
dynamic series were started immediately after bolus injection of Gd-DTPA (Magn-
evist®, Gadopentetate dimeglumine, Schering, Berlin, Germany, 0.1 mmol/kg) fol-
lowed by N-saline flush. The DCE-MRI sequence had the following scan parameters: 
T1-weighted TurboFLASH with TR/TE = 5.8/2.4 ms, a flip angle of 10°, a matrix of 256 × 
256 and a slice thickness of 10 mm. A series of 100 time points were acquired with a 
temporal resolution of 2 s with a total scanning time of 3.28 min.

Data analysis
DCE-MRI data analysis was performed using in-house developed software based on 
MATLAB (MathWorks, Natick, MA, USA). The tumour and the feeding vessel were 
manually outlined. First, fuzzy c-means (FCM) clustering [41] was applied to the re-
gion of interest of the feeding vessel. The goal of FCM clustering is to locate the 
three phases in the feeding vessel enhancement: baseline, the wash-in and the wash-
out phase [28]. The pre-enhancement timing information was used to construct a 
mean tumour pre-enhancement image which is subtracted from the subsequent im-
ages in the dynamic sequence. The volume transfer constant (Ktrans) was derived from 
these normalized dynamic images using the compartmental model [42] assuming 
that the signal enhancement curve is proportional to the concentration–time curve 
[43]. The heuristic model-based parameters were derived from the normalized dy-
namic images using FCM clustering to partition (for each voxel) the concentration–
time curve into the three phases [28]. Subsequently, based on these partitions, we 
compute (voxel-wise) the heuristic model-based parameters: i.e., the slope, maxi-
mum enhancement, and area under the curve (AUC). All parameters were visual-
ized in a parametric map. The correlation between the Ktrans and the three heuristic 
model-based parameters was computed for the enhancing voxels and the following 
features were computed over all parametric maps. 

Enhancing faction. Some of the voxels in the DCE-MRI parametric maps showed no 
signal enhancement and/or low goodness of fit values (r2 < 0.5). The enhancing frac-
tion of a parametric map was defined as follows:

•  for Ktrans, the fraction of the tumour volume with high goodness of fit (r2 > 0.5),
•  for heuristic model-based parameters, the fraction of the tumour volume with 

non-zero voxels in the parameter maps.
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This assesses the monotonic relation between two variables. Spearman’s rank cor-
relation coefficient, averaged over all tumours, was ρ=0.56 for the slope, ρ=0.44 for 
maximum enhancement, and ρ=0.61 for AUC. Figure 2 shows a significant spatial cor-
respondence between the AUC map and the Ktrans map for four selected tumours. As 
illustrated, not only the non-enhancing part in both maps is comparable but also the 
heterogeneity in the enhancing part of the tumour shows excellent correspondence.

The smoothness of the parametric maps differs between the Ktrans and the heuristic 
model parameters. This is caused by the difference in the estimation procedure: the 
fitting procedure used to estimate the Ktrans parameter cancels out smaller variations 
in the signal enhancement. In contrast, the curve partitioning as used for the heuris-
tic model, is more sensitive for these variations resulting in a more granular image.

Monitoring of tumour treatment response
Figure 3 shows that a sarcoma sometimes contains a large core that hardly takes any 
contrast. This core can either be present exclusively after treatment (Figure 3A), or 
before and after treatment (Figure 3B). The parametric map (slope) and correspond-
ing strongly enhancing voxels for pre- and post-treatment acquisitions demonstrate 
two response categories: responding (Figure 3A) and non-responding (Figure 3B) tu-

mours. The differences in parametric map heterogeneity between DCE-MRI acquisi-
tions (at baseline and follow-up) were assessed using the Wilcoxon signed rank test 

Figure 3.  DCE-MRI parametric map (slope) and corresponding strongly enhancing voxels (the median 
value of enhancing part is used as threshold) for a responding (A) and a non-responding tu-
mour (B): top row is before treatment, bottom row is after treatment.

Results

Correlation between the different Parameters
Since we are interested in the enhancing parts of the parametric maps, the statistical 
dependence between the Ktrans and the three heuristic model-based parameters was 
measured for the enhancing voxels using Spearman’s rank correlation coefficient. 

Figure 2.  The Ktrans parametric map (column 1) and AUC parametric map (column 2) with the scatter plots 
of AUC-Ktrans (column 3).
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In the second row of Figure 4, the change in coherence between pre- and post-treat-
ment scans is shown for the responding and the non-responding group for the Ktrans 
(Figure 4C) and slope (Figure 4D) maps. For both parametric maps, the responding 
group (on the left-hand side), reveals significant lowering of the enhancing fraction 
after treatment. For the non-responding group, no clear trend can be discerned

The results for coherence and fractal dimension, as a feature measuring paramet-
ric map heterogeneity, is summarized in Table 1 for all four parametric maps (Ktrans, 
slope, maximum enhancement, and AUC). The coherence of all four parametric 
maps was significantly different between baseline and follow-up for the responding 
group. For the non-responding group, no significant differences were found. The 
fractal dimension showed no significant differences between baseline and follow-up 
parametric maps.

The Mann–Whitney U-test was used to assess differences in parametric map het-
erogeneity between the response categories (responders, non-responders) as mea-
sured at baseline. The heterogeneity of the parametric maps (Ktrans, slope, maximum 
enhancement, and AUC) was assessed using the enhancing fraction, coherence and 
fractal dimension. 

In the baseline scan, the enhancing fraction showed a significant difference between 
the two response categories using both the pharmacokinetic (Z = −2.212, p < 0.027) 
and the heuristic model-based approach (Z = −2.412, p < 0.016). On average, the tu-
mours that respond to treatment have a high enhancing fraction before treatment, 
regardless of the exact nature of the parametric map. In the follow-up scan, no sig-
nificant differences were found between responders and non-responders.

For baseline scans, significant differences were found in coherence between both 
response categories using all the DCE-MRI parametric maps, i.e. the pharmacokinetic 

Coherence Z (p-value) Fractal dimension Z (p-value)

Responders Non-responders Responders Non-responders

Ktrans -3.059 (0.002) -0.734 (0.463) -0.078 (0.937) -0.524 (0.600)

Slope -2.981 (0.003) -0.105 (0.917) -1.020 (0.308) -0.314 (0.753)

Max Enhancement -2.903 (0.004) -0.105 (0.917) -0.706 (0.480) -1.153 (0.249)

AUC -2.824 (0.005) -0.105 (0.917) -0.078 (0.937) -0.524 (0.600)

Table 1. Difference in coherence and fractal dimension between baseline and follow-up parametric 
maps for both response categories as tested with the Wilcoxon signed rank test. Z-values in 
bold indicate a significant difference.

for two separate groups, i.e. responders and non-responders. The two heterogene-
ity texture features (coherence and fractal dimension) were estimated upon four 
parametric maps, e.g. Ktrans, slope, maximum enhancement and AUC.

The enhancing fraction showed a significant difference between the baseline and 
follow-up scans for the group that responded to therapy, for both the pharmacoki-
netic (Z = −2.981, p < 0.003) and the heuristic model-based approach (Z = −2.599, p 
< 0.009). For the non-responding group, no significant differences were found. The 
first row of Figure 4 shows the change in the enhancing fraction between baseline 
and follow-up scans for the responding and the non-responding group using both 
the pharmacokinetic model (Figure 4A) and the heuristic (Figure 4B) model-based 
approach. For both parametric maps, the responding group (on the left-hand side) 
shows significant lowering of the enhancing fraction after treatment. For the non-
responding group, no clear trend can be distinguished.
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Discussion

Currently, volume measurements on standard non-enhanced MR images are used to 
assess treatment effects of ILP. However, tumour volume changes are not a reliable 
predictor of treatment effect in soft tissue sarcomas [15]. Since the functional chang-
es of the tumour precede tumour volume changes, DCE-MRI can be a valuable tool 
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Figure 5.  Differences in enhancing fraction (A, B) and coherence (C, D, E and F) for the pharmacokinetic 
and heuristic model-based approach for both response categories at baseline and follow-up.

Δ (Follow-up – baseline) Baseline

Accuracy

(%)

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%)

Sensitivity 

(%)

Specificity

(%) 

Ktrans 83 91 71 83 91 71

Slope 56 64 43 72 91 43

Max enhancement 83 83 83 72 91 43

AUC 56 71 43 67 82 43

Table 3.  Results of the classification for the coherence feature

and the three heuristic model parameters (Tabel 2). At baseline, the tumours that 
responded to treatment showed a high coherence, irrespective of the exact nature 
of the parametric map. There was no significant difference between the groups in 
the fractal dimension, based on either baseline or follow-up data.

Figure 5 illustrates the results for the pharmacokinetic and the heuristic model-based 
approach at baseline and follow-up and for both response categories (responding 
and non-responding). The first row (panels A and B) illustrates the results for the 
enhancing fraction, and the remaining panels (C-F) illustrate the results for the co-
herence. Whereas at the follow-up no significant differences can be found between 
the two response groups, both the pharmacokinetic and the heuristic model-based 
approach result in significant differences at the baseline. At the baseline significant 
differences were found for all parametric maps. 

Table 3 shows the classification results for the heterogeneity features that are sta-
tistically significant in separating responders and non-responders. For the treatment 
monitoring, the coherence derived from the Ktrans parametric map shows the high-
est sensitivity, whereas the coherence of the enhancement has the highest specific-
ity. The accuracy of the coherence of both maps is similar, 83%. Founded on solely 
baseline DCE-MRI, the accuracy and sensitivity of the coherence derived from the 
parametric maps range from 67% to 83%. However, the specificity for the heuristic 
model-based approach was 43%.

Coherence Fractal dimension

Baseline

Z (p-value)

Follow-up

Z (p-value)

Baseline

Z (p-value)

Follow-up

Z (p-value)

Ktrans -2.529 (0.011) -0.937 (0.340) -1.030 (0.303) -0.656 (0.512)

Slope -2.060 (0.039) -0.562 (0.574) -0.656 (0.512) -1.405 (0.160)

Max enhancement -2.060 (0.039) -0.843 (0.388) -1.124 (0.261) -1.124 (0.261)

AUC -2.154 (0.031) -0.562 (0.574) -0.749 (0.454) -1.592 (0.111)

Tabel 2.  Results of the testing for differences in coherence and fractal dimension between both re-
sponse categories in baseline and follow-up parametric maps. Z-values in bold indicate a sig-
nificant difference.
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For the non-responders, no clear trend was observed. However, this group has an 
outlier showing clear similarity to the responding group. After careful evaluation 
of the DCE-MRI data, the computed pixel maps and the estimated features, we are 
fully convinced that, even though this patient was classified as non-responding, the 
MRI appearance was consistent with that of the responding group. Since the coher-
ence is computed only over the enhancing voxels, the enhancing fraction and coher-
ence are by definition independent. As the non-enhancing voxels are assumed to 
represent necrotic tissue, it seems that (in general) due to treatment the necrotic 
fraction of the tumour becomes larger and the viable tissue becomes less coher-
ent in the responding group. In terms of classification performance, the coherence 
feature yielded a comparable accuracy, sensitivity and specificity for both mapping 
approaches, i.e. accuracy of 83%, sensitivity 83% to 92%, and specificity 71% to 83%. 
These values are comparable with absolute DCE-parametric values as reported in the 
literature [46, 47].

When evaluating the enhancing fraction and coherence on the pre-treatment scan, 
it was found that both features differentiate between outcome categories. It seems 
that patients with a large viable tumour fraction and a high coherence respond well 
to therapy, whereas patients with a sarcoma that already has large necrotic areas 
and a low coherence shows less response to treatment. In terms of classification 
performance, our method yielded a comparable accuracy, sensitivity and specificity 
for both mapping approaches, i.e., accuracy of 83%, sensitivity 91%, and specificity 
43–71%. Post-treatment, no significant differences in the enhancing fraction or co-
herence between the responding and the non-responding group could be found: 
the sarcomas of the responding group have become similar to those of the non-
responding group.

Even though the discriminating features (enhancing fraction and coherence) were 
computed independently, they demonstrate a similar tendency, i.e. for the respond-
ing group those features were on average high in pre-treatment acquisitions and 
lowered by treatment. That might indicate that both features are related to the 
same underlying biological process. In the response to treatment, enhancing frac-
tion and heterogeneity may even be a key factor: well-perfused and coherent areas 
seem to respond differently to treatment than areas with a low perfusion and low 
coherence. The fractal dimension failed both tests on parametric map heterogene-
ity differentiation. Whereas Rose et al [26] found that the fractal dimension differed 
significantly between low and high-grade gliomas, in the case of sarcomas the fractal 
dimension did not change significantly due to treatment and did not differentiate 
between responders and non-responders. In this study, this might be due to the fact 
that the texture features (coherence and fractal dimension) are computed only over 
the enhancing part of the tumour. Whereas the coherence is not hampered by this, 
the fractal dimension might be sensitive for this ‘black hole’ in the image.

to provide insight into the changes in blood flow and permeability following treat-
ment. Pharmacokinetic and model-free parameters to quantify DCE-MRI data have 
been extensively described. However, DCE-MRI data analysis is relatively complex 
[45]. For example, the acquisition strategy, the contrast agent used, selection of the 
arterial input function, and image analysis method, all have considerable influence 
on the absolute values of the estimated parameters, hampering the comparability of 
parameters derived from DCE-MRI. Consensus meetings have emphasized the need 
for standardized acquisition and analysis methods [16]. However, information is not 
only present in the absolute values of the DCE-MRI derived parametric maps, but 
also in the heterogeneity of the map. Human solid tumours can be biologically het-
erogeneous [12], and this is reflected in the parametric map. This heterogeneity can 
be both diagnostically and therapeutically important. Using texture analysis meth-
ods, the heterogeneity of a parametric map can be assessed independently from 
the absolute values of the parametric map. The additional analysis provides a more 
complete quantitative description of the contrast uptake in the tumour. Especially 
in situations where DCE-MRI analysis cannot yield absolute measurements, owing to 
the lack of calibration sequences, texture analysis can add important information. 

In this study, we investigated the potential of heterogeneity in DCE-MRI parametric 
maps, quantified by texture analysis, as a biomarker for treatment response. The 
study used both a pharmacokinetic and a heuristic model-based approach for as-
sessment of heterogeneity in contrast uptake. Whereas in the literature the phar-
macokinetic approach is widely used, in clinical routine the heuristic model param-
eters are commonly available for visual evaluation of DCE-MRI images. The heuristic 
model-based parameters are reported to have poor reproducibility. However, these 
reproducibility studies were based on the absolute values of the parameters and not 
on the spatial distribution of the parameters. This study investigated whether het-
erogeneity of contrast uptake parameters from routinely acquired DCE-MRI scans, 
irrespective of the modelling approach, can be used to monitor treatment effect.

The first experiment investigated the correlation between the visual appearance of 
both pharmacokinetic and heuristic parametric maps: we spatially correlated the 
parametric values. The correlations ranged from 0.44 for maximum enhancement to 
0.61 for AUC (Figure 1 shows the similarity in visual appearance). It is clear that due 
to the fitting procedure the pharmacokinetic parameter is less sensitive to noise, but 
the overall visual heterogeneity is very similar.

The monitoring study demonstrated that, regardless of the origin of the estimated 
parameter (pharmacokinetic or heuristic model-based), the enhancing fraction and 
coherence showed a significant difference between pre- and post-treatment acqui-
sitions for the group that responded to therapy. Both the enhancing fraction and 
the coherence were on average lowered due to treatment in the responding group. 
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Introduction

Increased use of current and development of novel anti-angiogenic agents for can-
cer treatment poses new challenges to medical imaging technologies. In contrast 
to the systemic effect of traditional cytotoxic drugs, these new agents selectively 
target the endothelial cells of tumour neovasculature [1-3]. Although often costly, 
these treatments are potentially effective and have become a priority for oncolo-
gists and pharmaceutical companies. 

Low local concentration of anti-tumour agents and dose-limiting toxicity are often 
the cause of failure of chemotherapy. In isolated limb perfusion (ILP) local drug 
concentrations are increased while systemic exposure to the drug is minimal [4]. By 
utilizing ILP, tumours are exposed to concentrations up to 15-20 times higher than 
the maximum tolerated dose of tumour necrosis factor alpha (TNF-α) without major 
side-effects. TNF-α also has an indirect effect on endothelial cells and tumour-asso-
ciated vasculature [5-7]. By combining TNF-α with a cytostatic drug (e.g. melphalan) 
an immediate TNF-mediated tumour-selective enhanced drug uptake can be realised 
[8, 9]. This effect depends on the vascularisation of the tumour and is followed by a 
tumour-selective permeabilisation and eradication of the tumour-associated vascu-
lature [10, 11].

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) enables to non-
invasively characterise tumours, and has emerged as a valuable tool for monitor-
ing pathophysiologic changes in various aspects of tumour vascular structure and 
function [12, 13]. DCE-MRI with macromolecular contrast media (MMCM) depicts mi-
crovessel permeability [14] and has been shown in experimental models to express 
tumour perfusion solely due to malfunctioning tumour vessels [5, 15]. 

Experimental evidence shows the association of tumour vascular heterogeneity with 
disease progression and malignancy [3]. Heterogeneity of tumour blood supply re-
sults in the formation of hypoxic voids associated with oxidative stress, promotion 
of survival factors and genomic instability [16]. This indicates the importance of tu-
mour vascular heterogeneity for disease mechanism and possibly will lead to the dis-
covery of novel treatment strategies. A heterogeneous blood supply will also affect 
treatment response due to poor delivery of chemotherapeutic agents to areas of 
low vascularity. The importance of neovascular heterogeneity for tumour treatment 
is well documented [3, 17, 18]. Although the use of tumour heterogeneity as a bio-
marker for treatment response has been evaluated [19-21], these studies summarise 
tumour heterogeneity across the whole tumour and thereby fail to identify regional 
changes. 

Abstract 

Experimental evidence supports an association between heterogeneity in tumour 
perfusion and response to chemotherapy/radiotherapy, disease progression and 
malignancy. Therefore, changes in tumour perfusion may be used to assess early 
effects of tumour treatment. However, evaluating changes in tumour perfusion dur-
ing treatment is complicated by extensive changes in tumour type, size, shape, and 
appearance. Therefore, this study assesses the regional heterogeneity of tumours 
by dynamic contrast-enhanced MRI (DCE-MRI) and evaluates changes in response to 
isolated limb perfusion (ILP) with TNF-α and melphalan. Data were acquired in an ex-
perimental cancer model, using a macromolecular contrast medium (MMCM), albu-
min-(Gd-DTPA)45. Small fragments of BN 175 (a soft-tissue sarcoma) were implanted 
in eight brown Norway (BN) rats. MRI of five drug treated and three sham treated 
rats was performed at baseline and 1 h after ILP-intervention. Properly co-registered 
baseline and follow-up DCE-MRI were used to estimate the volume transfer constant 
(Ktrans) pharmacokinetic maps. The regional heterogeneity was estimated in 16 tu-
mour sectors and presented in cumulative map-volume histograms. On average, ILP 
treated tumours showed a decrease in regional heterogeneity on the histograms. 
This study shows that heterogenic changes in regional tumour perfusion, estimat-
ed using DCE-MRI pharmacokinetic maps, can be measured and used to assess the 
short-term effects of a potentially curative treatment on the tumour microvascula-
ture in an experimental soft-tissue sarcoma model.
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Magnetic resonance contrast media
Albumin-(Gd-DTPA)45 is a water-soluble macromolecular contract medium (MMCM) 
with a molecular weight of 92 kDa which corresponds to about 45 molecules of Gd-
DTPA covalently bound to each albumin molecule. It was synthesized following the 
method of Ogan et al. [31]. This contrast agent has a distribution volume of 0.05 l/
kg and a plasma half-life of 3 h in rats. Albumin-(Gd-DTPA)45 was injected at a dose of 
0.03 mMGd/kg. The size of the MMCM molecule prevents leakage through properly 
matured vessels outside the tumour, resulting in a prolonged period of intravascu-
lar retention of the contrast agent. Only newly formed, hyper-permeable tumour 
vessels contribute to contrast extravasation, When evaluated with DCE-MRI, MMCM 
demonstrates in vivo imaging properties that correlate with histological features of 
angiogenesis [32].

Magnetic resonance imaging
MRI was performed using a clinical 1.5T MRI scanner (Signa CVi, GE Healthcare, Mil-
waukee, WI, USA). A custom-made dedicated single-loop surface coil with an inter-
nal diameter of 1.7 cm was constructed specifically to create a high signal-to-noise 
ratio. The imaging protocol consisted of two consecutive sequences, a calibration 
and a dynamic scan. To estimate the T1,0 of blood prior to contrast injection, a flow 
compensated gradient echo inversion recovery echo planar imaging (IR GE-EPI) se-
quence [33] with 25 inversion time (TI) values (start:step:end = 100:50:1200 ms) was 
performed using a TR/TE 15000/24.3 ms, matrix of 128x128 with an in-plane resolu-
tion of 0.55 x 0.55 mm and slice thickness of 0.8 mm covering the entire tumour (30 
slices, scan time 11 minutes). Dynamic images were acquired using a 3D T1-weighted 
RF Spoiled Gradient Echo sequence with imaging parameters TR/TE 12.37/2.95 ms, 
flip angle of 18º and a readout bandwidth of 81 Hz/pixel. The matrix selected was 
256x256x64 with a field-of-view (FOV) of 30x26 mm2 leading to true voxel resolution 
of 0.12 x 0.14 x 0.50 mm3. The temporal resolution was 3.1 min per 3D volume. The 
first 10 time points were acquired at a temporal resolution of 3.1 min. To sample the 
time frame efficiently, after the first 10 acquisitions, time gaps of 15 min were applied 
and after each gap 2 series were acquired. The total scan was acquired in approxi-
mately 90 min covering 16 time points. 

Experimental protocol
MRI was performed at baseline and 1 h after isolated limb perfusion (ILP) [4]. ILP-
intervention allows the delivery of high doses of cytostatic drugs by isolating the tu-
mour-bearing limb from the systemic circulation. Briefly, the animals were anesthe-
tized with ketamine and xylazine, and 50 units heparin were injected intravenously. 
The femoral artery and vein of anesthetized rats were cannulated with silastic tubing. 
Collaterals were occluded by groin tourniquet and perfusion was started after the 

An alternative approach is to deal with intratumoural heterogeneity at the sub-tu-
mour level. This method partitions a tumour into volumes of interest (VOI) based 
on certain tumour properties, such as identifying regions with bulky enhancement, 
i.e., the ‘hot-spot’. This has been performed either manually [22-24] or by threshold-
ing a parameter value or a fit statistic [25, 26]. Another approach, inspired by the 
strong peripheral tumour enhancement common in solid tumours, involves tumour 
segmentation into concentric bands [5, 27, 28 , 29, 30]. However, the number and 
size of those bands is rather arbitrary, and these studies do not account for the het-
erogeneity within such a concentric band. 

The present preclinical study evaluates the potential of heterogeneity, in DCE-MRI 
with MMCM, as a biomarker for the early effect of a combined cancer treatment 
with TNF-α and melphalan in an experimental model of soft-tissue sarcoma. The 
changes in temporal pattern of signal enhancement due to MMCM are expected to 
reflect changes due to treatment. Following change in the tumour over time requires 
properly co-registered baseline to follow-up pairs, which is complicated by extensive 
changes in tumour size, tumour shape and DCE-MRI appearance. This makes it dif-
ficult to analyse tumours on a complete voxel-wise level. Therefore, we assessed the 
regional changes in DCE-MRI parametric maps which were co-registered to facilitate 
such an analysis. To quantify tumour heterogeneity, we introduce the cumulative 
map-volume (CMV) histogram. Although haemorrhagic necrosis and destruction of 
the endothelial cells will develop in time after TNF-α administration, we hypothesise 
that the effect of ILP-intervention will be evident 1 h after initiation.

Material and methods

Animal and tumour model
Eight male inbred BN strain rats (Harlan-CPB, Austerlitz, the Netherlands), with a 
mean body weight of 300 g were implanted subcutaneously, in the hind limb, with 
4 mm fragments of the syngenic BN175 soft-tissue sarcoma. The animals were in-
spected daily for tumour growth and general appearance. The tumours were imaged 
by MRI when they reached approximately 15 mm in diameter. Prior to MRI, the ani-
mals were randomly assigned to the drug treated group (five) or sham treated group 
(three). They were anesthetized with subcutaneous injection of 150 µl of a 1:1 (v:v) 
mixture of ketamine (Alfasan, Woerden, the Netherlands) and Xylazine (Bayer AG, 
Leverkusen, Germany). A 25-gauge butterfly cannula was inserted into a tail vein for 
injection of contrast medium. The study was conducted with the approval of the lo-
cal Committee for Animal Research.
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centration over time, Ct(t). For both concentration curves, the molar concentration 
over time is defined by Eq. 2 [38]. 

  Eq. 2

where R1,0 (=1/T1,0) and R1,t (=1/R1,t) represent the longitudinal relaxation rate of the 
tissue prior and at different time points after the contrast agent injection; r1 is the T1 
relaxivity of Albumin-(Gd-DTPA)45 at 1.5T (0.273 M-1sec-1 [31]). 
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Figure 1.  Overview of the registration steps at baseline (left-hand side) and follow-up (right-hand side) 
performed previous to pharmacokinetic analysis.

C(t)=      * (R1,0 (t)- R1,0 (0))1
r1

tourniquet was tightened. An oxygenation reservoir and a roller pump were included 
in the circuit. The animals were randomly assigned to either the drug treatment or 
the control group and perfused with 5 ml Haemaccel (Behring Pharma, Amsterdam, 
the Netherlands) with haemoglobin of 0.9 mmol/l.50g. In the drug treatment group, 
50 μg TNF-α (Boehringer, Ingelheim, Germany) and 40 μg melphalan (Alkeran, Well-
come, Beckenham, UK) were added to the perfusate. In the control group no drugs 
were added to the perfusate. Perfusion was maintained for 30 min at a flow rate of 
1.8 ml min−1, and finalised by washout with 5 ml oxygenated Haemaccel. To restore 
physiological limb perfusion, the femoral artery was decannulated and sutured. Dur-
ing the ILP-intervention and MRI imaging, the rat’s temperature was maintained at 
38-39°C by means of a warm water mattress. 

Motion correction and co-registration
Spatial correspondence between MRI sequences is not always guaranteed; in par-
ticular, baseline and follow-up scans may not be aligned. In addition, the long MRI ac-
quisition time complicates the co-registration problems. To perform a proper quan-
titative analysis the spatial relation between the sequences needs to be established. 
Therefore, we co-register the images before and after the intervention. Figure 1 
shows the registration procedure. First, the intra-sequence motion correction was 
performed for both sequences separately. Second, the separate sequences were co-
registered. Third, the late-stage enhanced image for follow-up was registered to the 
baseline image to ensure the spatial correspondence before and after treatment. 
All registration steps were performed using Elastix [34], first rigidly and then as an 
affine transformation.

Pharmacokinetic modelling
The tumour contrast agent transport through the capillary plasma compartment was 
modelled by the Tofts model [35, 36]. The pharmacokinetic analysis of DCE-MRI re-
quires estimates of the contrast concentration, C(t). To estimate C(t), a flow com-
pensated inversion recovery gradient echo planar imaging (IR-GE EPI) sequence was 
acquired prior to contrast injection. For each animal, longitudinal relaxation time 
(T1,0) was estimated voxelwise by a nonlinear least-square fit of the acquired signal 
intensities S(TIN) against inversion times [37].

 S(TIN)= c* (1- 2e-TIN ⁄ T1,0 ) Eq. 1

To account for the incomplete clearance of the contrast agent after the intervention 
due to the prolonged retention of MMCM in the intravascular space, pre-contrast T1,0 
is estimated at follow-up acquisitions as well. The estimated T1,0 was used in calcula-
tion of plasma contrast concentration over time, Cp(t), and the tumour contrast con-
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Tumour features
The whole tumour was outlined manually by an experienced radiologist (CFvD) in the 
final DCE-MRI image. Using the whole tumour mask, we generated automatically the 
following masks (Figure 2): tumour rim, tumour core, tumour periphery. The tumour 
rim was defined as the peripheral 10% of the tumour volume. The tumour core was 
defined as the 50% of the tumour diameter covering the tumour core. The tumour pe-
riphery was defined as the outer 50% of the tumour. Tumour core and periphery were 
automatically each subdivided into 8 tumour sectors. Figure 2 shows the position 
of the various VOIs within a tumour. For whole tumour, tumour rim, tumour core, 
tumour periphery, and for all 16 tumour sectors we calculated first-order statistics 
(e.g., mean, median, standard deviation) of Ktrans.

 
Cumulative map-volume histogram

Cumulative dose-volume histograms (DVH) have been used in radiotherapy to 
graphically summarize three-dimensional (3D) dose-distribution in two-dimensional 
graphs [41]. This concept has been expanded to cumulative dose-[functioning]-mass 
histogram (D[F]MH) [42, 43]. To describe the 3D map distribution of a pharmaco-
kinetic map, we propose a cumulative map-volume (CMV) histogram. Besides the 
origin of the information that it summarizes, the CMV histogram is identical to D[F]
MH. The pharmacokinetic map is first divided into 50 equal bins (rather an arbitrary 
number). As we are primarily interested in the enhancing fraction, only the voxels 

Figure 2.  The tumour regions of interest (left-hand side) showing tumour periphery, tumour core and 
first eight tumour sectors. The tumour rim is shown on the right-hand side.
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Expressing the enhancement of MRI signal intensity, for a GRE sequence [39], after 
the contrast agent injection and separating parameter A offers the molar concentra-
tion of the contrast agent over time (Eq. 3).

  Eq.3

For the plasma contrast concentration, often referred to as a vascular input func-
tion (VIF), we outlined manually a major tumour-feeding vessel in the latest contrast 
concentration image by using a volume of interest (VOI). By applying this VOI to 
all time points and spatial averaging, we created a contrast plasma concentration 
curve, Cp(t). Subsequently, by assuming a bi-exponentially decaying VIF [40], we fit-
ted Cp(t) using the following function: 

 Cp (t)= a1 e
-m1 t+ a2 e

-m2 t Eq. 4

To compute Ktrans (µl/sec), the estimated parameters a1, a2, m1 and m2 were used. The 
tumour contrast concentration curve Ct(t) was fitted voxel-wise, by a nonlinear least-
square fit, using Eq. 5.

  Eq. 5

The fitting procedure resulted in a voxel-wise Ktrans value and a coefficient of deter-
mination r2. This coefficient summarizes the resemblance between observed values 
and the values expected under the Tofts model [38, 39]. The inherent image noise 
will mask low signal enhancement, resulting in low r2. We excluded all voxels with 
r2<0.75 from further analysis, since these voxels do not follow the Tofts model prop-
erly. Voxels with r2>0.75 were identified as enhancing. The volume transfer constant, 
i.e., Ktrans, was presented as parametric maps before and after the intervention by 
ILP. DCE-MRI data analysis was performed using in-house developed software based 
on MATLAB (MathWorks, Natick, MA, USA). All steps were performed voxel-wise 
after motion correction and co-registration. 
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curately, we assessed all components at baseline and follow-up separately. The vox-
elwise tumour native longitudinal relaxation time (T1,0) was estimated prior to the 
administration of contrast agent. The vascular input function (VIF) was estimated 
after the administration of contrast agent. To quantify the effect of tumour treat-
ment, we evaluated the slope of the cumulative map-volume (CMV) histogram for 
the 16 tumour regions, only considering the enhancing fraction. DCE-MRI derived 
maps from a tumour before (top row) and 1 h after the intervention (bottom row) 
are shown in Figure 4 for ILP-intervention with TNF-α and melphalan and in Figure 5 
for sham intervention. Panels A and D (for both figures) show a maximum intensity 
projection (MIP) of the late-stage enhanced image with arrows illustrating a VIF VOI 
position. Consecutive columns (in both Figure 4 and Figure 5) represent T1,0 map be-
fore contrast agent administration (B and E), and Ktrans map (C and F).

 
Longitudinal relaxation rate R1,0

For the VIF VOI, the average T1,0 = 1/R1,0 at baseline was equal to 1.44±0.13 s. The av-
erage T1,0 after the ILP-intervention was 1.98±0.12 s for animals treated with TNF-α 
and melphalan, and 1.30±0.06 s for animals treated with sham perfusion. For all fits, 
r2-values were within the range of 0.61-0.99 (mean r2 = 0.88±0.14). These results are 
similar to previous measurements in rat blood [5, 44].

Figure 4.  A tumor before (top row) and after (bottom row) ILP-intervention with TNF-α and melphalan. 
First column (A and D) shows a maximum intensity projection (MIP) of the late stage enhanced 
image with arrows illustrating position of a VIF VOI. Consecutive columns represent T10 map 
before contrast agent administration (B and E), and Ktrans map (C and F).

belonging to this fraction were used for further analysis. The CMV histogram plots 
Ktrans on the x-axis and percentage volume of the tumour (with Ktrans ≥ that specific 
value) on the y-axis. The CMV always slopes from north-west to south-east and is 
usually a sigmoid shaped function. The slope of this function reflects the distribution 
of the Ktrans, and was estimated (by a least squares fitting) for three categories of 
Ktrans values (0<Ktrans≤1), (1<Ktrans≤2), and (2<Ktrans≤5). The distribution of all estimated 
slopes was captured per tumour as mean and standard deviation over all 16 sectors. 
The variance (or standard deviation) of slopes, between the regions, is a measure for 
tumour heterogeneity. To report the group trends for both distribution parameters, 
we computed the mean and standard deviation over all animals belonging to a spe-
cific category (treated, sham, before treatment and after treatment).

Statistical analysis
Statistical analysis was performed using SPSS (SPSS for Windows, Version 17.0, SPSS 
Inc., Chicago, IL, USA). Two categories were defined: treated and sham. The Mann–
Whitney U-test was used to assess differences between the two response catego-
ries based on the Ktrans parametric map acquired before and after treatment. For the 
follow-up examination, the Wilcoxon signed rank test was used to assess the differ-
ences between the two response categories based on the Ktrans parametric maps. A 
p-value of <0.05 was considered statistically significant. 

Results

When implanted subcutaneously in the hind limb, the fragments of the syngenic 
BN175 soft-tissue sarcoma grew into tumours that appeared as masses composed 
of several lobes. Figure 3 shows the features of a lobular carcinoma with viable tu-
mour parts (A) and less viable tumour parts (B). Tumour growth rates mirrored those 
previously published [5, 8], with an average post inoculation growth period of two 
weeks to reach 15 mm in diameter. 

Co-registered baseline and follow-up DCE-MRI were used to estimate the pharma-
cokinetic maps of the volume transfer constant (Ktrans). To estimate Ktrans (μl/sec) ac-

Figure 3. Morphology of syngenic 
BN175 soft-tissue sarcoma 
showing viable parts (A) 
and less viable parts (B) 
with good developed nu-
clei (white arrow) and pyk-
notic nuclei (red arrow).
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Figure 5 (sham intervention) show the Ktrans tumour map before (C) and after (E) the 
intervention. The Mann-Whitney U-test was used to assess significant differences in 
parametric maps between the response categories (treated and sham) as measured 
before and after the intervention separately. 

For all VOIs, the mean Ktrans at baseline showed no significant difference between 
treatment and sham intervention. On the other hand, the mean Ktrans at follow-up 
showed a significant difference between treatment and sham intervention (p=0.036). 
In addition, the difference in parametric maps at baseline and follow-up was as-
sessed using the Wilcoxon signed rank test for the treatment and sham groups. The 
mean Ktrans at follow-up was significantly different from baseline for treatment inter-
vention (p=0.04), but not significantly different for sham intervention. For animals 
treated with TNF-α and melphalan, Ktrans decreased in all VOIs. Figure 6 shows the box 
plots of Ktrans at baseline and follow-up for both categories: i.e., treated (TNF-α and 
melphalan) and sham.

Sector results
Figure 7 clearly shows the distinction between animals treated with TNF-α and mel-
phalan, and animals treated with sham perfusion. This scatter plot shows the mean 
Ktrans per sector, at baseline and at follow-up, for all tumours. The mean was comput-
ed for the voxels belonging to the enhancing fraction. For the TNF-α and melphalan 
treated animals, a clear decrease in Ktrans variance due to treatment. For the sham 
treated animals, the variance seems to increase. The average cumulative map-vol-
ume (CMV) histogram of the Ktrans parametric map is plotted in Figure 8 for TNF-α and 
melphalan-treated animals (blue), and for sham-treated animals (red). Each of the 
16 sectors was used to create 16 CMV histograms which were averaged afterwards. 
The dotted lines represent the standard deviation pooled over all sectors and all rats. 

Ktrans – mean Treated Sham

Baseline Follow-up Baseline Follow-up

Tumour whole 1.59 ± 0.43 0.62 ± 0.17*, § 1.84 ± 0.98 1.85 ± 0.94 

Tumour rim 1.53 ± 0.37 0.61 ± 0.17*, § 1.66 ± 0.88 1.96 ± 0.90

Tumour core 1.56 ± 0.48 0.62 ± 0.17*, § 1.94 ± 0.87 1.69 ± 1.16

Tumour periphery 1.60 ± 0.41 0.62 ± 0.17*, § 1.80 ± 1.00 1.91 ± 0.89

Table 1.  Mean Ktrans before and after isolated limb perfusion intervention for both treatment categories 
(TNF-α and melphalan, and sham). *Significantly different from baseline value, and §signifi-
cantly different from control group. Statistical significance was set at p<0.05.

For the tumour VOI the average T1,0 = 1/ R1,0 at baseline was 1.16±0.2 s. The T1,0 after 
the ILP-intervention was 0.72±0.12 s for animals treated with TNF-α and melphalan, 
and 1.07±0.15 s for animals after sham perfusion. Figure 4 shows the T1,0 tumour map 
at baseline (B) and at follow-up (E) for an animal after ILP-intervention with TNF-α 
and melphalan. Figure 5 shows the T1,0 tumour map at baseline (B) and at follow-up 
(E) for an animal after sham intervention.

Pharmacokinetics
Regardless the treatment category (i.e. treated or control), the intervention signifi-
cantly decreases the enhancing fraction of the tumour from 78.02 ± 11.46% at base-
line to 42.71 ± 23.32% at follow-up. There was no significant difference, in enhancing 
fraction, at baseline and at follow-up between the treatment categories or between 
the regions. Similar effects were observed in the tumour core (79.24 ± 15.04 at base-
line and 40.76 ±26.87 at follow-up), the tumour periphery (77.43 ± 11.28 at baseline 
and 43.12 ± 22.63 at follow-up) and the tumour rim (73.53 ± 9.63 at baseline and 48.09 
± 18.66 at follow-up).

Table 1 presents the results for the mean estimated Ktrans for different VOIs, before 
and after intervention. Figure 4 (ILP-intervention with TNF-α and melphalan) and 

Figure 5.  A tumor before (top row) and after (bottom row) sham-intervention with TNF-α and melpha-
lan. First column (A and D) shows a maximum intensity projection (MIP) of the late stage 
enhanced image with arrows illustrating position of a VIF VOI. Consecutive columns represent 
T1,0 map before contrast agent administration (B and E), and Ktrans map (C and F).
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follow-up examination, the difference in the slope of the CMV histogram at baseline 
and follow-up was assessed using the Wilcoxon signed rank test for the two sepa-
rate groups, i.e. treatment and sham. For all Ktrans categories, the slopes of the CMV 
histogram were significantly different from baseline for treatment intervention but 
not significantly different for sham intervention. The variance in the slopes over the 
regions is a measure for tumour heterogeneity. The standard deviation between the 

Figure 7.  Scatter plot showing mean 
Ktrans per sector (estimated 
for the voxels belonging to 
the enhancing fraction) at 
baseline and follow-up for 
both categories: TNF-α and 
melphalan treated (blue) and 
sham reated (red).

Figure 8.  Cumulative map-volume (CMV) histogram representing the 3D-map distribution of Ktrans for the 
whole tumor enhancing voxels as averaged over 16 predefined sectors. Blue line demonstrates 
averaged CMV histogram (solid line) and its deviation (dotted line) for all treated animals and 
all 16 sectors. Red line demonstrates the same information as blue line but for all sham ani-
mals. On the left the results at baseline and on the right the results at follow-up.

The CMV histogram values (Table 2) were fitted linearly as a function of Ktrans, in a 
least squares sense, for three Ktrans categories. The Mann-Whitney U-test was used to 
assess differences in the slope of the CMV histogram between the response catego-
ries (treated and sham) as measured before and after the intervention separately. 
At baseline, the slopes showed no significant difference between treatment and 
sham intervention. At follow-up, on the other hand, the slopes for all Ktrans categories 
showed significant differences between treatment and sham intervention. For the 
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Figure 6.  The box plots of Ktrans at baseline and follow-up examinations for both categories: i.e., treated 
(TNF-α and melphalan) and sham. Treated group showed statistically significant difference be-
tween baseline and follow-up (Wilcoxon signed rank test, p<0.05) or all four VOIs: i.e., tumor 
whole, tumor rim, tumor core and tumor periphery.
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each subdivided, using three orthogonal planes, into 8 sectors. The 16 sectors, as 
such, have no pathophysiological meaning; they are a tool to study the heteroge-
neity in the tumour. The tumour rim was used since the rim is, generally, the most 
vascularised region of a solid tumour [5]. 

The tumour VOIs are selected after careful co-registration of pharmacokinetic maps, 
before and after the intervention. Therefore, we were able to pinpoint the region-
based tumour treatment changes. To neatly summarize the gray value distribution 
of the estimated pharmacokinetic map, we exploited the CMV histogram by estimat-
ing its slope for three different Ktrans categories, and for all 16 regions. The variance 
in the slopes over the regions is a measure for tumour heterogeneity. Our results 
show that the heterogeneity between the sectors for the Ktrans values, ranging 1-5 µl/
sec, decreases due to treatment. This implies that the treatment induces tumour ho-
mogenization with respect to Ktrans values higher than 1 µl/sec. This regional analysis 
could be a helpful tool in evaluating local treatment effect. When part of the tumour 
‘escapes’ from treatment, this can be detrimental for the whole treatment effect. 
With a regional analysis this ‘escape’ could be spotted within hours after start of 
treatment.

The ILP-intervention is generally applied for the treatment of limb threatening sar-
comas and melanomas. During treatment, the limb is isolated from the systemic 
circulation. After perfusion the physiological limb perfusion is restored. The results 
show that, due to the intervention, in both the drug-treated and the sham group, 
the enhancing fraction is decreased. The strength of this intervention is a combined 
effect of tumour necrosis factor alpha (TNF-α) and an alkylating agent (melphalan) 
intended to kill tumour cells. TNF-α augments the drug levels, within the tumour, via 
an increase of the melphalan concentration by six times [8, 45, 46]. This strong ef-
fect increases the tumour cell eradication. TNF-α increases the vascular permeability 
of the tumour vessels already early during the perfusion while the quiescent vas-
culature of the healthy tissue is not affected. TNF-α may also induce hemodynamic 
changes. Both agents induce a cascade of effects in the tumour microenvironment. 
However, which combination of biological effects cause the decrease in Ktrans is not 
clear. For instance, vessel disintegration or increased interstitial pressure could play 
a role.

For an accurate Ktrans computation, a reliable T1,0 estimation is a prerequisite. In vivo 
estimation of blood T1,0, and thereby also VIF, is a non-trivial problem as it is suscep-
tible for motion, system imperfections, in-flow effects and partial volume effects. 
To estimate Ktrans as accurately as possible, we accounted for these problems as fol-
lows. The inoculation location, the hind limb, was chosen in order to minimize tumor 
movement during scanning. To estimate T1,0, we selected a flow compensated inver-
sion recovery gradient echo planar imaging sequence (IR-GE EPI). The IR technique 

sectors, for the Ktrans values ranging 1-5 µl/sec, decreases due to treatment (Table 
2). This is also illustrated in Figure 6: the variance between the sectors for the drug-
treated rats decreased after treatment whereas the variance of the sham-treated 
rats is similar to the variance before treatment. This implies the treatment induced 
homogenization of all tumour sectors with respect to Ktrans values higher than 1 µl/
sec.

Discussion and conclusions

Experimental evidence shows that, for several treatment alternatives, perfusion het-
erogeneity is associated with cancer treatment outcome [3, 29]. The present pre-
clinical study evaluates the short-term effects of ILP-intervention, i.e., 1 h after the 
intervention. This allows to assess the almost immediate effects of ILP on the micro-
vasculature. Data from this pilot study indicate that the effects of ILP treatment can 
be successfully monitored by DCE-MRI 1 h after the intervention: in the treatment 
group the volume transfer constant (Ktrans) decreased significantly after treatment 
with TNF-α and melphalan, whereas in the sham group no decrease in Ktrans was ob-
served. 

To assess tumour heterogeneity we separated the tumour in several different VOIs., 
i.e., tumour rim, tumour core, tumour periphery. Tumor core and periphery were 

CMV histogram slope Treated Sham

Mean (sectors) Baseline Follow-up Baseline Follow-up

 (0<Ktrans<1) - 33.70 ± 25.45 -109.57 ± 9.37*,§ -30.75 ± 45.33 -33.29 ± 26.23

 (1<Ktrans<2) -39.76 ± 8.20 -6.14 ± 5.37*,§ -30.86 ± 13.92 -37.76 ± 21.02

 (2<Ktrans<5) -8.52 ± 5.79 -0.66 ± 0.64*,§ -13.49 ± 11.74 -9.99 ± 12.87

Stddev (sectors) Baseline Follow-up Baseline Follow-up

 (0<Ktrans<1) 16.13 ±10.28 13.55 ± 6.92 7.98 ± 8.80 16.78 ±10.43

 (1<Ktrans<2) 12.04 ± 4.65 4.83 ± 3.69*,§ 9.64 ± 4.59 15.74 ± 5.83

 (2<Ktrans<5) 4.26 ± 3.40 0.66 ±0.56* 4.09 ± 3.40 2.61 ± 2.28

Table 2.  The first order statistics for the slope of the cumulative map-volume (CMV) histogram over the 
16 different sectors, before and after isolated limb perfusion intervention for both categories 
(TNF-α and melphalan treated, and sham treated). *Significantly different from baseline value, 
and §significantly different from control group. Statistical significance was set at p<0.05.
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is relatively immune for the system imperfections such as RF power and slice im-
perfections [47]. With GE EPI, a shorter acquisition time was possible compared to 
standard IR scans (GE or SE). We have selected a VOI far from a big artery with the 
consequence that the remaining blood flow in this VOI is slow enough to prohibit 
signal dephasing. The geometric distortions, due to GE-EPI readout, were corrected 
for in the carefully performed co-registration procedure. 

Even though a limited number of animals was examined, the data from this study 
support the hypothesis that the tumour heterogeneity patterns in the volume trans-
fer constant as measured with CMV are an appropriate measure of tumour changes 
in response to ILP-intervention. Therefore, the CMVs at can serve as non-invasive 
early outcome predictors in treatment monitoring and may guide therapy adapta-
tion. 

In summary, the present preclinical study suggests that heterogeneity in DCE-MRI 
pharmacokinetic maps can be used as a potential biomarker to quantify short-term 
effects of ILP-intervention on tumour microvasculature in an experimental model 
of soft-tissue sarcoma. This provides reliable assessment of tumour treatment ef-
fect within 1 h after the ILP-intervention. Further assessment of treatment effects 
requires comparative studies of ILP over different time points using registered DCE-
MRI pharmacokinetic maps to histological sections.
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Any intelligent fool can make things bigger and more complex. It 
takes a touch of genius – and a lot of courage to move in the opposite  
direction.

Albert Einstein

Chapter 6
Summary and general discussion
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Introduction

Different types of cancer have large inter-tumour heterogeneity, for example, in 
their origin, site, genetic expression, and pathologic appearance. Molecular stud-
ies have also revealed that heterogeneity can exist within one tumour. Subtypes of 
the same cancer differ in terms of both biology and response to treatment, causing 
regional variations in cell death, metabolic activity, proliferation, and vascular struc-
ture. Biologically a tumour is a complex system in which distinct populations of can-
cer cells interact in a competitive manner. The more aggressive tumour  populations, 
e.g. those that proliferate faster, have a higher neo-angiogenesis level or are less 
sensitive to treatment, will suppress the less aggressive populations. There is also 
clinical evidence that recurrent tumours are often  more malignant than the primary 
tumour: the more aggressive populations have survived. In this respect, visualisation 
and quantification of tumour heterogeneity is a useful tool in grading, differentia-
tion, monitoring response to tumour treatment, and predicting outcome. Tumour 
heterogeneity, quantified from radiological images, has the potential to become an 
important biomarker for grading, differentiation, monitoring treatment response 
and predicting outcome.

The aim of this thesis is to develop and evaluate tumour heterogeneity quantifica-
tion techniques and to investigate their importance for tumour treatment monitor-
ing and outcome prediction. In particular, this thesis focuses on the following ques-
tions:

•	 Do MR imaging data reveal the tumour heterogeneity?
•	 Which analysis methods are used to quantify tumour heterogeneity for 

diagnostic and/or treatment purposes, and what is the reported performance of 
these methods?

•	 Is tumour heterogeneity in Dynamic Contrast Enhanced (DCE)-MRI, as quantified 
with texture analysis methods, sensitive to changes due to therapy, and can 
patient outcome be predicted?
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Summary

Chapter 1 provides a general introduction to this thesis. The epidemiology of cancer, 
the biological background of intra-tumour heterogeneity, radiological imaging meth-
ods and the methods available for the quantification of heterogeneity are briefly 
discussed, and the main aim of the thesis is outlined.

Chapter 2 presents a methodology for obtaining an accurate 3D relation between 
high resolution in vivo T2*-w MRI and the corresponding 3D histology of the tumour 
tissue. The key features of the methodology are: 1) standardized acquisition and pro-
cessing, 2) use of an intermediate ex vivo MRI, 3) use of a reference cutting plane, 
4) dense histological sampling, 5) elastic registration, and 6) use of complete 3D 
data sets. The methodology consists of two separate registration steps, both ex-
ploiting a three-step strategy of gradually increasing degrees of freedom (rigid, af-
fine, and elastic transformation). These two registration steps involve in vivo MRI 
to ex vivo MRI registration, and ex vivo MRI to histology registration. The resulting 
accuracy was assessed by two independent observers and was on average 0.7 mm, 
between in vivo MRI and 3D reconstructed histology. This accuracy corresponds (on 
average) with 30-50 cells and is similar to the inter-observer variation of the manual 
annotations. We have shown that, based on T2*-w MRI signal intensity, automatic 
identification of necrotic tissue is feasible. However, the separation of two other tis-
sue types, i.e. haemorrhagic and viable tissue, was not possible. For the separation 
of these tissue types, other MRI sequences are needed. This work is a first step in 
MRI tumour characterization. Now that spatial correspondence between in vivo MRI 
and 3D H&E histology has been established, the extension to multi-spectral MR and 
multi-stained histological sections is the next logical step. The 3D correspondence of 
tumor histology and in vivo MRI enables extraction of MRI signatures for histologi-
cally defined regions. 

Chapter 3 provides a systematic review of the literature on tumour heterogeneity 
quantification methods computed from radiological images for grading, differentia-
tion, outcome prediction and tumour-response monitoring. The heterogeneity analy-
sis methods are divided into four categories, i.e., non-spatial methods (NSM), spatial 
grey level methods (SGLM), fractal analysis (FA) methods, and filter and transforms 
(F&T). The reported performance of the heterogeneity features in terms of mea-
sures such as accuracy, sensitivity, specificity and AUC, or by statistical tests report-
ing significance levels, was compared. We found that, among the 8,956 unique stud-
ies identified, 192 studies reported heterogeneity as a biomarker in cancer imaging. 
Since 2009, the number of publications reporting the quantification of tumour het-
erogeneity has increased. Up until 2006 most heterogeneity papers were based on 
ultrasound (US), whereas after 2007 the number of studies using MRI has increased. 
The NSM and the SGLM are the two methods most frequently used during that pe-

riod. Most papers focus on heterogeneity quantification for differentiation, grading, 
or outcome prediction has recently increased. The performance of the heteroge-
neity features was mostly (68%) evaluated by classification experiments reporting 
performance measures such as accuracy, sensitivity, specificity and AUC. The other 
papers used only statistical tests (30%) or did not perform a quantitative study (2%). 
Almost 98% of the studies reported positive findings. The reported AUC ranged from 
0.5 to 1 with a median of 0.89. No relation was found between the performance 
measures and the imaging method or quantification method used. Of all the clas-
sification publications, 41% did not report the use of cross-validation as a technique 
to limit the effect of overfitting on the available data. A negative correlation was 
found between the tumour-feature ratio and the AUC, which might be caused by 
overfitting. Publications reporting significance testing often did not perform a cor-
rection of the significance levels for multiple comparisons. For 36% of the papers a 
significant decrease in the number of significant features was observed after the 
Holm-Bonferroni correction. Only 12% of all included studies had a prospective study 
design. Although the use of retrospectively collected data is necessary to develop, 
test and evaluate heterogeneity as a biomarker for tumour grading, differentiation, 
outcome prediction and treatment response monitoring the real test is to evaluate 
the performance of the developed features in a prospective study design. More-
over, in most retrospective studies the performance of the heterogeneity feature is 
evaluated without taking into account other available clinical predictive information. 
While the researcher may be interested in the performance of the feature itself, the 
clinician is interested in the additional value of the feature on top of the already 
available clinical features. To enable the translation of imaging biomarkers from the 
research stage to clinical practice, future research should focus on prospective stud-
ies to investigate the additional value of the proposed heterogeneity biomarker on 
top of the clinically established markers. 

Chapter 4 uses the DCE-MRI images of sarcoma patients undergoing isolated limb 
perfusion (ILP) with TNF-α and melphalan, to evaluate promising imaging-biomark-
ers: enhancing fraction, SGLM and FA. The potential of these imaging biomarkers to 
monitor tumour changes and predict tumour response to treatment was evaluated 
in 18 patients. Using routinely acquired DCE-MRI scans, this study investigates the 
potential of SGLM and FA to measure the treatment-induced tumour changes for 
different pharmacokinetic modelling approaches. The correlation between pharma-
cokinetic and different heuristic parametric maps, averaged over all tumours, was 
estimated by Spearman’s rank correlation coefficient and ranged between 0.44 and 
0.61. The monitoring study demonstrated that, regardless of the origin of the es-
timated parametric map (pharmacokinetic or heuristic model-based), the enhanc-
ing fraction and coherence showed a significant difference between baseline and 
follow-up acquisitions for the group that responded to therapy. When evaluating 
the enhancing fraction and coherence on the pre-treatment scan, it was found that 
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both features differentiate between outcome categories. It seems that patients with 
a large viable tumour fraction and a high coherence respond well to therapy, where-
as patients with large necrotic areas and a low coherence show less response to 
treatment. Moreover, we demonstrated that heterogeneity measures derived from 
DCE-MRI parametric maps (irrespective of the exact nature of the parametric map) 
were related to tumour response to chemotherapy. Therefore, we can conclude that 
DCE-MRI has potential for in vivo monitoring of the tumour during chemotherapy. 
When correlated to histopathological findings, this method may be clinically useful in 
understanding pathophysiological changes, predicting tumour response and guiding 
the therapeutic approach.

Chapter 5 investigates the regional heterogeneity changes in DCE-MRI as response 
to ILP in an experimental soft-tissue sarcoma model. DCE-MRI of drug-treated and 
sham-treated rats was performed at baseline and 1 h after ILP intervention. The en-
hancing data were acquired using a macromolecular contrast medium (MMCM), 
albumin-(Gd-DTPA)45. To pinpoint the regional changes accurately, the DCE-MRI at 
baseline and follow-up were spatially registered. To assess the regional heteroge-
neity, tumours were divided into 16 sectors. For each sector the cumulative map-
volume (CMV) histogram of Ktrans was computed and the variance in its slope was 
used as a measure for tumour heterogeneity. The results indicate that the heteroge-
neity between sectors decreases due to treatment. This implies that the treatment 
induces tumour homogenization with respect to Ktrans demonstrating the potential 
of regional analysis for evaluating local treatment effects of ILP intervention. When 
part of the tumour ‘escapes’ from treatment, this can be detrimental for the whole 
treatment effect. Using a regional analysis this ‘escape’ could potentially be spotted 
within hours after the start of treatment. Therefore, CMVs may serve as non-invasive 
biomarker of early treatment effects and may guide therapy adaptation.

Appendix A presents a brief review of the automatic registration approach to trans-
form different datasets into one coordinate system. In this thesis, the registration 
is used to correct for different deformations of ex vivo tumours with respect to the 
original in vivo shape (Chapter 2), to compensate for motion artefacts (Chapter 5), 
and to pinpoint the region-based tumour treatment changes between baseline and 
follow-up scans (Chapter 5).

Discussion and future prospective

Quantification of tumour heterogeneity in diagnostic images has the potential to 
improve tumour grading, differentiation, outcome prediction and response monitor-
ing. The challenge is to identify, per tumour type, the imaging modality in conjunc-
tion with the analysis method that is suitable for clinical application.

This thesis contributes a number of possibilities to address this challenge. First, we 
developed a method to establish an accurate 3D-relation between in vivo MRI and 
histological sections. This method will enable the verification of MRI-based signa-
tures by histologically confirmed regions. Although this study demonstrated the fea-
sibility of automatic identification of parts of the tumour, full characterisation of 
the whole tumour was not possible using only one MRI sequence. We hypothesize 
that different imaging sequences and, possibly, different imaging modalities will be 
required for this purpose.  

Second, we provide evidence that heterogeneity in DCE-MRI pharmacokinetic 
maps is a promising technique for tumour diagnosis and evaluation of therapeutic 
response to anti-angiogenic drugs. The preclinical and clinical studies included in 
this thesis indicate that the treatment effect may be monitored and predicted by 
heterogeneity measures derived from parametric maps, which are obtained from 
non-model-based statistical features such as co-occurrence matrices. In addition, we 
show the potential of regional tumour heterogeneity patterns in DCE-MRI pharma-
cokinetic maps, as measured with CMV, to measure short-term tumour changes in 
response to chemotherapy.

To develop and implement tumour heterogeneity as a biomarker for tumour grading, 
differentiation, response monitoring and outcome prediction in clinical practice, a 
careful evaluation strategy is required. Generally, the publications using heteroge-
neity features only evaluate the value of the heterogeneity features, without tak-
ing into account currently accepted clinical features such as mean signal intensity, 
tumour size, grade or border regularity. Other studies report only the combined 
classification performance of heterogeneity and clinical features. A large number of 
publications even use the mean signal intensity as a feature to estimate tumour het-
erogeneity, even though this is clearly not a heterogeneity measure (i.e., mean signal 
intensity does not measure intra-tumour heterogeneity). Based on these types of 
studies, it is not possible to evaluate the added value of heterogeneity to currently 
accepted clinical features (e.g. mean signal  intensity, tumour size, grade or  border 
regularity). Since the quantification of heterogeneity is usually more complex and 
computationally more costly than computing the mean intensity, the benefit of the 
added effort to characterise heterogeneity should be justified. Many studies sup-
port enhancing fraction (EF) or non-enhancing fraction (NEF) of a tumour volume 
as an important feature for treatment monitoring and outcome prediction. The rela-
tion between EF/NEF and heterogeneity features needs to be further investigated. 
In addition, most of the studies lack a balanced study design in terms of the require-
ments for a pattern recognition study. Generally, a large number of features is used 
compared to the number of validated tumours, which introduces data overfitting. 
Also, cross validation is often not performed during the estimation of classification 
power. Moreover, in most studies the performance of the heterogeneity feature is 
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evaluated without taking into account currently accepted clinical-features. Future 
studies need a careful design that takes into account the requirements from pattern 
recognition: i.e. a balanced number of subjects and features, cross-validation, inde-
pendent test dataset, and a prospective study design,  and focus on the added value 
of the proposed heterogeneity biomarker on top of the clinical established markers. 
In satisfying these requirements, the real performance of heterogeneity features 
can be assessed more reliably.

In conclusion, monitoring of tumour treatment and prediction of outcome using het-
erogeneity biomarkers could have widespread clinical applications. These imaging 
biomarkers could be used to optimize treatment for the individual patient. Currently, 
however, most research is still in the proof-of-concept stage. For clinical acceptance 
and applicability, prospective studies with an appropriate study design are required.
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Medical image registration (also referred to as fusion, superposition, matching or 
alignment) considers the process of transforming different data sets into one coor-
dinate system to achieve biological, anatomical or functional correspondence. This 
transformation is necessary to compare (or integrate) the information from differ-
ent modalities, from baseline to follow-up scans, from pre to post contrast scans, 
from pre to post treatment scans, and between different subjects. Thereby, it re-
veals additional information not apparent in the separate images. A comprehensive 
review on the subject is given by [1, 2]. The choices regarding implementation of 
the different registration components can have considerable impact on the registra-
tion results. All registrations in this paper were performed using Elastix [Figure 1. 
The basic components of the registration framework containing two input images, 
a transform, a metric, an interpolator and an optimizer (adopted from Ibanez et al. 
[4]).1 and are described in more detail in this section.  

One image, called the moving image IM, is deformed to fit the other image, called 
the fixed image IF. More formally, registration is the problem of finding a coordinate 
transformation T that aligns IM(T) spatially with IF. The quality of alignment is defined 
by a cost function C(T ; IF , IM). The optimal coordinate transformation is estimated 
by minimizing the cost function with respect to T, usually by means of an iterative 
optimization method embedded in a hierarchical (multi-resolution) scheme. 

Mathematically, the registration is defined as an optimization problem where the 
cost function C is minimized with respect to T, eq. 1. 

 
),;(minarg MF IITC μμ

μ =
∧

 Eq.1

 
where the subscript µ indicates the transform parameterization, and contains the 
transformation parameters. The minimization problem (eq. S1) is solved with an it-
erative optimization method, usually in a multi-resolution setting. 

Cost Function. The cost function C measures the similarity between the images. We 
have used mutual information (MI) [5] as it only assumes a statistical relation be-
tween image intensities, and is therefore suitable for registration of images acquired 
by different modalities [6, 7]. The MI was parameterized using a 32-bin image inten-
sity histogram. 

Optimizer. To optimize the metric criterion with respect to the transform parame-
ters, an iterative optimization procedure is employed. We used an adaptive stochas-
tic gradient descent algorithm [8].
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Transform. For the coordinate transformation T, different deformations with vary-
ing degrees of freedom are available. In order of increasing transformation flexibil-
ity: the rigid, the affine, the deformable (non-rigid, or elastic) transformations. Af-
ter proper rough initialization, achieved by reference plane orientation, we used a 
three-step strategy of gradually increasing degrees of freedom, starting with rigid 
registration, followed by affine registration, and finalized by non-rigid refinement. 
The displacement field was parameterized using a third order B-spline model. 

Sampling Strategies. To compute the cost function C, a set of samples needs to be 
selected. The most straightforward strategy is to use all voxels from the fixed im-
age, which has the obvious disadvantage that it is time consuming for large images. 
A common methodology is to use a subset of voxels, selected on a uniform grid, or 
sampled randomly. Another strategy is to pick only those points that are located on 
striking image features, such as edges. In our application, we used a subset of voxels 
sampled randomly.

Interpolation. For computation of the cost function, the moving image IM needs to be 
evaluated at non voxel positions which requires the intensity interpolation. Several in-
terpolation methods (varying in quality and speed) have been proposed and compared 
by Pluim et al. [9]. In this paper we have used a third order B-spline interpolation.

Optimization. Multi-resolution (hierarchical) strategies are an important aspect of 
image registration [2, 10]. Such coarse-to-fine schemes in general improve registra-
tion accuracy and increase robustness by eliminating local minima of the cost func-
tion at coarser scales. The basic idea is to perform the first registration at a coarse 
scale with down sampled images. The spatial mapping determined at the coarse level 
is then used to initialize registration at the next finer scale. This process is repeated 
until it reaches the finest scale. 

Metric

Interpolator

Optimizer

Transform

Fixed Image
Pyramid

Moving Image
Pyramid

�tness value

transform
parameters

pointspixels

pixels

pixels

Figure 1.  The basic components of the registration framework containing two input images, a trans-
form, a metric, an interpolator and an optimizer (adopted from Ibanez et al. [4]).
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Verschillende soorten kanker vertonen een grote verscheidenheid in hun oorsprong, 
locatie, genetische expressie en pathologische verschijningsvorm. Dankzij moleculai-
re studies weet men nu dat ook binnenin de tumor  verscheidenheid aanwezig is. On-
derdelen van dezelfde tumor tonen verschillen, zowel biologisch als in de reactie op 
behandeling. Biologisch gezien is een tumor een complex systeem waarin verschil-
lende populaties van kankercellen op een concurrerende wijze op elkaar inwerken. 
Agressievere tumorpopulaties, bijvoorbeeld populaties die zich sneller vermenigvul-
digen, of een hoger neo-angiogenetisch potentieel hebben of minder gevoelig zijn 
voor behandeling, onderdrukken de minder agressieve populaties. Klinische studies 
tonen aan dat terugkerende tumoren vaak kwaadaardiger zijn dan de oorspronkeli-
jke tumor, de meer agressieve kankercellen hebben de overhand gekregen. In dit 
opzicht is visualisering en kwantificering van de heterogeniteit binnen een tumor  
een belangrijk instrument in het graderen, het differentiëren, het volgen van behan-
deleffecten het voorspellen van de uiteindelijke uitkomst. 

Het doel van deze thesis is enerzijds ontwikkeling en evaluatie van kwantitatieve 
technieken ten behoeve van de bepaling van tumorheterogeniteit, en anderzijds 
analyse van het belang van deze technieken voor het volgen van het behandeleffect 
en het voorspellen van de uiteindelijke uitkomst. Deze thesis richt zich voornamelijk 
op de volgende vragen:

• Kunnen MRI-beelden de tumorheterogeniteit weergeven? 
• Welke analysemethoden worden gebruikt voor kwantificatie van tumorhet-

erogeniteit ten behoeve van diagnose en/ofbehandeling en wat zijn de gerap-
porteerde prestaties van deze methoden?

• Is tumorheterogeniteit in Dynamisch Contrast Enhanced (DCE)-MRI-beelden, zo-
als gekwantificeerd met  textuur-analysemethoden, gevoelig voor veranderin-
gen als gevolg van therapie,en kan de uitkomstvoor de patiënt worden voor-
speld? 

Hoofdstuk 1 bevat een algemene inleiding van het onderzoek. De epidemiologie van 
kanker, de biologische achtergrond van intra-tumor heterogeniteit, de beeldvor-
mende technieken in de oncologie en de beschikbare methoden voor kwantificatie 
van heterogeniteit binnen een tumor worden kort besproken en het hoofddoel van 
het proefschrift wordt geschetst. 

Hoofdstuk 2 introduceert een methodologie voor het verkrijgen van een nauwkeu-
rige 3D relatie tussen in vivo MRI-beelden met een hoge resolutie en de bijbehorende 
3D-histologische datasets van het tumorweefsel. De belangrijkste kenmerken van 
dezemethodologie zijn: 1) de gestandaardiseerde data-acquisitie en verwerking, 2) 
het gebruik van ex vivo MRI-beelden, 3)  het gebruik van een referentiesnijvlak, 4) 
het gebruik van histologiebemonstering met een hoge dichtheid, 5) het gebruik van 
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elastische registratie en 6) het gebruik van volledige 3D datasets. De methode besta-
at uit twee aparte registratiestappen, beide met een geleidelijk toenemend aantal 
vrijheidsgraden (rigide, affine en elastische). Deze twee registratiestappen koppelen 
in vivo MRI-beelden aan ex vivo MRI-beelden en ex vivo MRI-beeldenaan histolo-
gische beelden. De resulterende nauwkeurigheid werd geëvalueerd door twee onaf-
hankelijke waarnemers en was gemiddeld 0.7 mm tussen de in vivo MRI-beeldenen 
de gereconstrueerde 3D-histologische beelden. Deze nauwkeurigheid komt overeen 
met ongeveer  30 tot 50 cellen en is vergelijkbaar met de inter-waarnemer nauwkeu-
righeid. Automatische identificatie van necrotisch weefsel op basis van MRI intensit-
eit lijkt mogelijk. De identificatie van twee andere weefselsoorten, hemorragischen 
vitaal weefsel, was echter niet mogelijk met behulp van een T2*-W MRI sequentie. 
Voor de scheiding van deze weefseltypes zijn andere MRI-sequenties nodig. Dit werk 
is een eerste stap in het karakteriseren van tumoren met behulp van MRI-beelden. 
Nu de ruimtelijke correspondentie tussen de in vivo MRI-beelden en de 3D-H&E his-
tologische data is vastgesteld, is de uitbreiding naar multi-spectrale MRI en meer-
dere histologie kleuringen  een logische volgende stap. De 3D correspondentie van 
tumor histologie met in vivo MRI-beeldenmaakt de extractie van MRI-karakteristiek-
en voor histologisch gedefinieerde regio’s mogelijk. 

Hoofdstuk 3 biedt een systematisch literatuuroverzicht van de methoden voor kwan-
tificatie van heterogeniteit voor tumor gradering, tumor differentiatie, uitkomst-
voorspelling en het monitoren van behandeleffecten in oncologische beelden. De 
analysemethoden werden ingedeeld in vier categorieën: niet-ruimtelijke methoden 
(NSM), ruimtelijke grijswaarde methoden (SGLM), fractale analyse (FA) methoden, 
en filter en transformaties (F&T) methoden. De prestaties van de heterogeniteitsken-
merken, gerapporteerd met behulp van maten zoals sensitiviteit, specificiteit, nau-
wkeurigheid en AUC, of met behulp van statistische testen, werden vergeleken. Van 
de 8956 unieke studies, rapporteerden 192 heterogeniteit als een biomarker voor 
oncologische belden. Sinds 2009 groeit het aantal studies dat over de kwantificatie 
van heterogeniteit in oncologische beelden rapporteert. Tot 2006 waren de meeste 
publicaties gebaseerd op echografie, na 2007 is een duidelijke toenamete zien van 
het aantal publicaties dat gebruik maakt van MRI. De meest gebruikte methoden 
in de hele periode zijn de NSM en SGLM. De meeste publicaties waren gericht op 
tumor gradering, differentiatie of voorspellen van de uitkomst. De prestaties van 
de heterogeniteitkenmerken werdenvooral gemeten met behulp van classificatie ex-
perimenten (68%) en statistische testen (30%). In 2% van de publicaties werd er geen 
kwantitatief onderzoek uitgevoerd. Bijna 98% van de studies vermelden positieve 
bevindingen. De AUC varieerde tussen de 0.5 en 1 met een mediaan van 0.89. Er is 
geen relatie gevonden tussen de verschillende prestatiematen en de bijbehorende 
beeldvormende modaliteit noch met de analysemethode. Van alle classificatie-stud-
ies gebruikte 41% geen cross-validatie als techniek om het effect van ‘inleren’ op de 
beschikbare data te voorkomen. Er werd een negatieve correlatie gevonden tussen 

de tumor-kenmerk ratio en de AUC. Het vermoeden bestaat dat deze negatieve cor-
relatie veroorzaakt zou kunnen zijn door het ‘inleren’. In een groot deel van de pub-
licaties die testen op significantie, is geen correctie voor multiple tests uitgevoerd. 
In 36% van deze studies werd een significante afname van het aantal significante 
kenmerken geconstateerd na een Holm-Bonferroni correctie. Niet meer dan 12% van 
de geincludeerde studies hadden een prospectief studie-ontwerp. Hoewel het ge-
bruik van retrospectief verkregen data  noodzakelijk  is voor het  ontwikkelen, testen 
en evalueren van heterogeniteitsmaten als biomarker voor graderen, differentiëren,  
monitoren van behandeleffecten en voorspellen van uitkomsten, de werkelijke test 
is om de prestatie van de ontwikkelde kenmerken te bepalen in een prospectieve 
studie. Bovendien worden in de meeste retrospectief uitgevoerde  studies de uit-
komsten geëvalueerd zonder rekening te houden met andere beschikbare klinische 
informatie. Waar de onderzoeker voornamelijk geïnteresseerd kan zijn in de pres-
tatie van het kenmerk op zich, is de arts geïnteresseerd in de toegevoegde waarde 
van het kenmerk in combinatie met de al beschikbare informatie.  Om de hetero-
geniteitskenmerken uit hetonderzoekslab de klinische praktijk in te helpen, zouden 
onderzoekers zich moetenmeer moeten gaan richten op prospectieve studies voor 
de evaluatie van de toegevoegde waarde van de voorgestelde heterogeniteit bio-
markerin aanvulling op de beschikbare klinische kenmerken. 

In Hoofdstuk 4 worden dynamische contrast MRI data (DCE-MRI) van sarcoom 
patiënten, behandeld met TNF-α en melphalan, gebruikt om veel belovende hetero-
geniteitsmethoden te evalueren: de aankleurende fractie, SGLM en FA. Het vermo-
gen van deze beeldgebaseerde biomarkers om behandelingseffecten te volgen en 
de uitkomst te voorspellen werd geëvalueerd met data van 18 patiënten. Met behulp 
van routinematig vervaardigde DCE-MRI scans, wordt in dit hoofdstuk onderzocht of 
SGLM en FA in staat zijn om veranderingen veroorzaakt door de therapie  te meten 
wanneer gebruik  gemaaktwordt van verschillende farmaco-kinetische modellerings-
methoden.  De correlatie tussen de  farmaco-kinetische en heuristische kenmerken, 
is bepaald met de Spearman’s rangorde correlatiecoefficient. Deze coëfficiënt 
varieerde, gemiddeld over alle tumoren, tussen de 0.44 en 0.61. Uit de resultaten is 
gebleken dat, ongeacht de oorsprong van de geschatte parametrische map (farma-
co-kinetisch of heuristisch), de aankleurende fractie en de coherentie, een SGLM-
kenmerk, in staat waren om een significant verschil te meten tussen de follow-up 
scans en de uitgangs-scans voor de groep patiënten die reageerde op de therapie. 
Met deze kenmerken konden ook, wanneer ze bepaald werden op de uitgangs-scan, 
de twee groepen (de groep die reageerde op de therapie en de groep die niet rea-
geerde) van elkaar onderscheiden worden. Het lijkt erop dat  de patiënten met een 
grote vitale tumorfractie en een hoge coherentie goed reageren op de behandeling. 
Daarnaast reageren de patiënten met grote necrotische gebieden en een lage coher-
entie veel slechter op de behandeling. In deze studie werd aangetoond dat hetero-
geniteits kenmerken afgeleid van DCE-MRI beelden, onafhankelijk van de pharmaco-
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kinetische analysemethode, gerelateerd zijn aan de response van de tumor op de 
therapie. We kunnen hieruit  concluderen dat DCE-MRI beelden geschikt kunnen zijn 
om in vivo het effect van therapie op de tumor te volgen. In combinatie met histopa-
thologische bevindingen, zou deze methode klinisch bruikbaar kunnen zijn voor de 
begripsvorming van de pathofysiologische veranderingen die optreden gedurende 
de behandeling, voor het bijsturen van de therapie en voor het voorspellen van de 
tumorrespons. 

In Hoofdstuk 5 worden deveranderingen onderzocht in de regionale heterogeniteit, 
gemeten in DCE-MRI, als gevolg van behandeling met Isolated Limb Perfusion (ILP) 
met behulp van een sarcoom-diermodel. DCE-MRI werd geacquireerd voor en 1 uur 
na de ILP. Als contrastmiddel, is er gebruik gemaakt van een macromoleculair con-
trastmiddel, albumin-(Gd-DTPA)45. Om regionale verschillen te kunnen beoordelen is 
er beeldregistratie uitgevoerd tussen de beelden voor en na behandeling. Om de het-
erogeniteit in de tumor te bepalen, zijn alle tumor volumes verdeeld in 16 sectoren 
waarover het cumulatieve mapvolume (CMV) van Ktrans is uitgerekend. De variantie in 
de hellingshoek tussen de CMV curves van de verschillende sectoren is bepaald als 
maat voor de heterogeniteit. De resultaten geven aan dat de heterogeniteit van Ktrans 
tussen de sectoren afneemt als gevolg van behandeling. Dit impliceert dat de be-
handeling een homogenisering van de tumor induceert, en geeft het potentieel aan 
van regionale analyse om een lokale behandelingseffect van ILP te evalueren. Wan-
neer een deel van de tumor aan de behandeling ‘ontsnapt’, kan dat funest zijn voor 
het totale behandelingseffect. Door gebruik te maken van deze regionale analyse 
zou deze ‘ontsnapping’ mogelijk binnen uren na aanvang van therapie opgemerkt 
kunnen worden. Resumerend, CMV’s zouden  kunnen fungeren als niet invasieve 
biomarkers van vroege behandeleffecten en dus gebruikt kunnen worden om tot 
therapie-aanpassingen te besluiten. 

Appendix A  geeft een kort overzicht van de beeldregistratietechnieken om verschil-
lende data sets naar één coördinatensysteem te transformeren. Deze technieken 
zijn in dit proefschrift gebruikt om de verschillende vervormingen te corrigeren van 
de ex vivo tumorenten opzichte van de in vivo tumoren, zoals afgebeeld met MRI 
(Hoofdstuk 2). In Hoofdstuk 5 zijn deze technieken gebruikt voor bewegingscorrec-
tie en voor het matchen van baseline en follow-up scans.



PhD portfolio



148 149

PhD portfolio

Name PhD Student Lejla Alić
Erasmus MC Departments Radiology & Medical Informatics
Graduate school ASCI & Molecular Medicine 
PhD period 2005-2010
Promotor   Prof.dr. WJ Niessen

General academic scills year ECTS1

Biomedical Scientific English Writing (MolMed) 2010 4

Research Management (MolMed) 2009 1

Grant proposal writing (MolMed) 2009 0.5

SPSS (MolMed) 2009 1

LaTeX (MolMed) 2009 1

Good clinical practice 2006 0.3

In-depth courses year ECTS

Measuring features (ASCI) 2008 4

Knowledge Driven Image Segmentation (ASCI) 2005 4

Mathematical  morphology(ASCI) 2005 4

International Conferences

ECR: European Congress of Radiology, Vienna. 2011 1

EMIM: 6th European Molecular Imaging Meeting, Leiden. 2011 1

ECR: European Congress of Radiology, Vienna. 2010 1

SPIE Medical Imaging, San Diego. 2010 1

ESMRMB: 26th European Society for Magnetic Resonance in 
Medicine and Biology, Antalya.

2009 1

EMIM: 4th European Molecular Imaging Meeting, Barcelona. 2009 1

IEEE International Symposium on Biomedical Imaging, 
Arlington.

2006 1

1  European Credit Transfer System (1 ECTS equals 28h of study)

Seminars, symposia, meetings and workshops

BME: 3th Duch Bio-Medical Engineering Conference,  
Egmond aan Zee

2011 1

Photoshop & Illustrator workshop(MolMed) 2010 0.3

Medical Informatics days 2009 1

PK modeling workshops 2009 1

3rd Animal Imaging Workshop by AMIE (MolMed) 2009 1.4

ANGIONET 2007 1

Basic and Translational Oncology (MolMed) 2007 1.8

Medical Imaging Symposium for PhD students 2006 1

Medical Imaging symposium for PhD students, Rotterdam 2006 1

MICCAI: 9th International Conference on Medical Image 
Computing and Computer Assisted Intervention. Challenges in 
Clinical Oncology workshop

2006 1

Medical Informatics days 2005 1

Other

Reviewing for Journal of Magnetic Resonance Imaging, 
International Journal of Computer Assisted Radiology 
and Surgery, Journal of the American Medical Informatics 
Association, International Conference on Medical Image 
Computing and Computer Assisted Intervention.

2009- 4

Research seminars at BIGR 2008- 1

Introduction MevisLab, MeVis, Bremen. 2006 0.5

Total 43.8



Acknowledgements



152 153

Acknowledgements

Many are accountable for this thesis (and research behind it) and the preparation of 
its public defense. As I am aware of the danger of forgetting people, I would like to 
start with expressing my most sincere gratitude to everybody who contributed to it 
in any way. However, there are certain people I wish to acknowledge in more detail.

First of all professor Niessen (beste Wiro), I am honored to have you as my supervi-
sor. I always have valued your promptness in reading my work all over again. De-
spite your tight schedule, you have always been very creative in making time for a 
quick meeting, even though that sometimes include Skyping from another part of 
the world. 

I also would like to express my sincere gratitude to Dr Veenland. Beste Jifke, I am 
grateful for you as my co-supervisor, however I would like to express my apprecia-
tion to your family first. Jan, Hendrik, Yme, and Afke, thank you for all weekends and 
evenings you have had to miss Jifke during the long discussions we sometimes had, 
and during the preparation of the manuscripts. I suppose the quantity of cookies 
you get on weekly basis could go down by now. Dear Jifke, thank you for numerous 
and valuable scientific advice, incredible responsiveness and energetic support that 
helped to improve the quality of this research.

This thesis would never be a fact without support and assistance of many people dur-
ing the planning and execution of numerous experiments. Thanks to the departments 
of Experimental Surgical Oncology (Timo, Sandra, Linda), Radiology (Marion, Joost,  
Monique), Nuclear medicine (Marion, Magda, Harald), Pathology (Peter, Bart). 
Thanks are also due to those who preceded my research and those who have con-
tinued my research, both represented in my two paranymphs during the defense: 
Marion van Vliet and Karin Bol. 

I also want to thank Ton for having beeen so helpful in creating many nice figures, 
and Laraine for helping me juggling between UK and USA English and improving my 
writing skills. The two secretaries (Petra and Desiree), they provided invaluable prac-
tical support and managed to get me organized. I also would like to thank all people I 
shared a room with during those years I spend at the Erasmus MC: Henri, Jifke, Oleh, 
Ihor, Rashindra, Danijela, Azadeh, Reinhardt, and Edward. 

I would like to express my gratitude to prof.dr. Sir Mike Brady for inspiring me during 
my stay at Robotics Research Laboratory in Oxford, UK. I am also grateful to prof.dr. 
Alison Noble for sorting out all paper work before I started there, even though she 
was on maternity live at the time. To all lab members and friends in UK, I had a great 
stay in Oxford. 

During my working experience outside the university, I enjoined company of a num-
ber of nice people. At i-Optics I discovered ways the applications in medical image 
processing fit in a commercial setting. I would like to thank my colleagues at Topcon 
for teaching me some valuable commercial lessons. Erik, Pierre, Toru-san, I think with 
pleasure about my time at Topcon.

I would like to express my sincere gratitude to my TNO colleques for their guidance 
and encouragement. It felt almost surreal to come back and walk same corridors 
after almost ten years after I left in the first place. As there are many colleagues, to 
many to mention individually here, I wish to acknowledge the kindness of all of you. 

I wish to thank my parents for things one can receive only from parents, things 
generally taken for granted but which for many turn out to be true only in theory.  
I also wish to show appreciation to my family and friends for their understanding I 
couldn’t be on yet another family event. I promise to do better now. My two lovely 
sisters (Enisa and Dinka): each time I see you, I feel we are not spending enough time 
together. Last and most important my own household (I can’t even say ‘little family’  
as it has grown to a respectable size of five) ... Renato, Ben, Om and Hannah, all my 
love is for you.



Curriculum vitae



156 157

Curriculum vitae

 http://nl.linkedin.com/in/lejlaalic

 https://twitter.com/#!/Lejla_Alic

 LejlaResearch@gmail.com

Lela Alic (MSc, 2001) studied Electrical Engineering at Delft University of Technology, 
the Netherlands. Part of the MSc program was carried out at Leiden University Medi-
cal Center, the Netherlands  (department of Radiology, Division of Image Processing 
-LKEB); and Academic Medical Center university of Amsterdam (department of Ex-
perimental Anesthesiology).

In 2001 she joined the TNO-FEL laboratory at The Hague where she worked on image 
analysis of ground penetrating radar data. In 2004 she started working as a research 
assistant at BIGR where she was awarded with a NWO grant. From Mei 2006 to Au-
gust 2007 she visited the Robotics Research Group at the Department of Engineering 
Science of University of Oxford, UK. Lejla co-organized the MICCAI 2006 workshop: 
‘Medical Image Processing: The Challenges in Clinical Oncology’.

Currently she holds a scientist position at TNO  (department of Intelligence Imaging) 
where she works on medical imaging applications. She is involved in hyperspectral 
data analysis within 'van het Hoff' program on medical photonics. Her research inter-
ests include many aspects of image processing, image analysis and pattern recogni-
tion, and their applications in oncology and molecular imaging. 

http://nl.linkedin.com/in/lejlaalic
https://twitter.com/#!/Lejla_Alic
http://www.robots.ox.ac.uk/



	_Ref343994916
	_ENREF_1
	_ENREF_2
	_ENREF_3
	_ENREF_4
	_ENREF_5
	_ENREF_6
	_ENREF_7
	_ENREF_8
	_ENREF_9
	_ENREF_10
	_ENREF_11
	_ENREF_12
	_ENREF_13
	_ENREF_14
	_ENREF_15
	_ENREF_16
	_ENREF_17
	_ENREF_18
	_ENREF_19
	_ENREF_20
	_ENREF_21
	_ENREF_22
	_ENREF_23
	_ENREF_24
	_ENREF_25
	_ENREF_26
	_ENREF_27
	_ENREF_28
	_ENREF_29
	_ENREF_30
	_ENREF_31
	_ENREF_32
	_ENREF_33
	_ENREF_34
	_ENREF_35
	_ENREF_36
	_ENREF_37
	_ENREF_38
	_ENREF_39
	_ENREF_40
	_ENREF_41
	_ENREF_42
	_ENREF_43
	_ENREF_1
	_ENREF_2
	_ENREF_3
	_ENREF_4
	_ENREF_5
	_ENREF_6
	_ENREF_7
	_ENREF_8
	_ENREF_9
	_ENREF_10
	_ENREF_11
	_ENREF_12
	_ENREF_13
	_ENREF_14
	_ENREF_15
	_ENREF_16
	_ENREF_17
	_ENREF_18
	_ENREF_19
	_ENREF_20
	_ENREF_21
	_ENREF_22
	_ENREF_23
	_ENREF_24
	_ENREF_25
	_ENREF_26
	_ENREF_27
	_ENREF_28
	_Ref320536526
	_ENREF_1
	_ENREF_2
	_ENREF_3
	_ENREF_4
	_ENREF_5
	_ENREF_6
	_ENREF_7
	_ENREF_8
	_ENREF_9
	_ENREF_10
	_ENREF_11
	_ENREF_12
	_ENREF_13
	_ENREF_14
	_ENREF_15
	_ENREF_16
	_ENREF_17
	_ENREF_18
	_ENREF_19
	_ENREF_20
	_ENREF_21
	_ENREF_23
	_ENREF_24
	_ENREF_25
	_ENREF_26
	_ENREF_27
	_ENREF_28
	_ENREF_29
	_ENREF_30
	_ENREF_31
	_ENREF_32
	_ENREF_33
	_ENREF_34
	_ENREF_35
	_ENREF_36
	_ENREF_37
	_ENREF_38
	_ENREF_39
	_ENREF_40
	_ENREF_41
	_ENREF_42
	_ENREF_43
	_ENREF_44
	_ENREF_45
	_ENREF_46
	_ENREF_47
	_ENREF_48
	_ENREF_49
	OLE_LINK1
	OLE_LINK10
	OLE_LINK11
	_ENREF_1
	_ENREF_2
	_ENREF_3
	_ENREF_4
	_ENREF_5
	_ENREF_6
	_ENREF_7
	_ENREF_8
	_ENREF_9
	_ENREF_10
	_ENREF_11
	_ENREF_12
	_ENREF_13
	_ENREF_14
	_ENREF_15
	_ENREF_16
	_ENREF_17
	_ENREF_18
	_ENREF_19
	_ENREF_20
	_ENREF_21
	_ENREF_22
	_ENREF_23
	_ENREF_24
	_ENREF_25
	_ENREF_26
	_ENREF_27
	_ENREF_28
	_ENREF_29
	_ENREF_30
	_ENREF_31
	_ENREF_32
	_ENREF_33
	_ENREF_34
	_ENREF_35
	_ENREF_36
	_ENREF_37
	_ENREF_39
	_ENREF_40
	_ENREF_41
	_ENREF_42
	_ENREF_43
	_ENREF_44
	_ENREF_45
	_ENREF_46
	_ENREF_47
	_GoBack
	_ENREF_1
	_ENREF_2
	_ENREF_3
	_ENREF_4
	_ENREF_5
	_ENREF_6
	_ENREF_7
	_ENREF_8
	_ENREF_9
	_ENREF_10
	_ENREF_11
	_ENREF_12
	_ENREF_13
	_ENREF_14
	_ENREF_15
	_ENREF_16
	_ENREF_17
	_ENREF_18
	_ENREF_19
	_ENREF_20
	_ENREF_21
	_ENREF_22
	_ENREF_23
	_ENREF_24
	_ENREF_25
	_ENREF_26
	_ENREF_27
	_ENREF_28
	_ENREF_29
	_ENREF_30
	_ENREF_31
	_ENREF_32
	_ENREF_33
	_ENREF_34
	_ENREF_35
	_ENREF_36
	_ENREF_37
	_ENREF_38
	_ENREF_39
	_ENREF_40
	_ENREF_41
	_ENREF_42
	_ENREF_43
	_ENREF_44
	_ENREF_45
	_ENREF_46
	_ENREF_47
	_ENREF_48
	_ENREF_49
	_ENREF_50
	_ENREF_51
	_ENREF_52
	_ENREF_53
	_ENREF_54
	_ENREF_55
	_ENREF_56
	_ENREF_57
	_ENREF_58
	_ENREF_59
	_ENREF_60
	_ENREF_61
	_ENREF_62
	_ENREF_63
	_ENREF_64
	_ENREF_65
	_ENREF_66
	_ENREF_67
	_ENREF_68
	_ENREF_69
	_ENREF_70
	_ENREF_71
	_ENREF_72
	_ENREF_73
	_ENREF_74
	_ENREF_75
	_ENREF_76
	_ENREF_77
	_ENREF_78
	_ENREF_79
	_ENREF_80
	_ENREF_81
	_ENREF_82
	_ENREF_83
	_ENREF_84
	_ENREF_85
	_ENREF_86
	_ENREF_87
	_ENREF_88
	_ENREF_89
	_ENREF_90
	_ENREF_91
	_ENREF_92
	_ENREF_93
	_ENREF_94
	_ENREF_95
	_ENREF_96
	_ENREF_97
	_ENREF_98
	_ENREF_99
	_ENREF_100
	_ENREF_101
	_ENREF_102
	_ENREF_103
	_ENREF_104
	_ENREF_105
	_ENREF_106
	_ENREF_107
	_ENREF_108
	_ENREF_109
	_ENREF_110
	_ENREF_111
	_ENREF_112
	_ENREF_113
	_ENREF_114
	_ENREF_115
	_ENREF_116
	_ENREF_117
	_ENREF_118
	_ENREF_119
	_ENREF_120
	_ENREF_121
	_ENREF_122
	_ENREF_123
	_ENREF_124
	_ENREF_125
	_ENREF_126
	_ENREF_127
	_ENREF_128
	_ENREF_129
	_ENREF_130
	_ENREF_131
	_ENREF_132
	_ENREF_133
	_ENREF_134
	_ENREF_135
	_ENREF_136
	_ENREF_137
	_ENREF_138
	_ENREF_139
	_ENREF_140
	_ENREF_141
	_ENREF_142
	_ENREF_143
	_ENREF_144
	_ENREF_145
	_ENREF_146
	_ENREF_147
	_ENREF_148
	_ENREF_149
	_ENREF_150
	_ENREF_151
	_ENREF_152
	_ENREF_153
	_ENREF_154
	_ENREF_155
	_ENREF_156
	_ENREF_157
	_ENREF_158
	_ENREF_159
	_ENREF_160
	_ENREF_161
	_ENREF_162
	_ENREF_163
	_ENREF_164
	_ENREF_165
	_ENREF_166
	_ENREF_167
	_ENREF_168
	_ENREF_169
	_ENREF_170
	_ENREF_171
	_ENREF_172
	_ENREF_173
	_ENREF_174
	_ENREF_175
	_ENREF_176
	_ENREF_177
	_ENREF_178
	_ENREF_179
	_ENREF_180
	_ENREF_181
	_ENREF_182
	_ENREF_183
	_ENREF_184
	_ENREF_185
	_ENREF_186
	_ENREF_187
	_ENREF_188
	_ENREF_189
	_ENREF_190
	_ENREF_191
	_ENREF_192
	_ENREF_193
	_ENREF_194
	_ENREF_195
	_ENREF_196
	_ENREF_197
	_ENREF_198
	_ENREF_199
	_ENREF_200
	_ENREF_201
	_ENREF_202
	_ENREF_203
	_ENREF_204
	_ENREF_205
	_ENREF_206
	_ENREF_207
	_ENREF_208
	_GoBack
	_ENREF_1
	_ENREF_2
	_ENREF_3
	_ENREF_4
	_ENREF_5
	_ENREF_6
	_ENREF_7
	_ENREF_8
	_ENREF_9
	_ENREF_10
	_ENREF_7
	_ENREF_8
	_ENREF_9
	_ENREF_10
	_ENREF_11
	_ENREF_12
	_ENREF_13
	_ENREF_18
	_ENREF_19
	_ENREF_20
	_ENREF_21
	_ENREF_22
	_ENREF_23
	_ENREF_24
	_ENREF_25
	_ENREF_26
	_ENREF_27
	_ENREF_28
	_ENREF_29



