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Abstract

Feature-level sensor fusion is the process where spe-
cifc information (i.e. features) from objects detected by
different sensors are combined and classifed. This pa-
per focuses on the feature-level fusion procedure Jfor a sen-
sor combination consisting of a polarimetric infrared (IR)
imaging sensor and a GPR: a video impulse radar ( VIR).

The single sensor detection methods and the Jeature-
level sensor-fusion methods are evaluated. The detection
results of both single sensors and the sensor-fusion meth-
ods are presented in receiver operator characlteristics
(ROC) curves. They show that on the training set feature-
level sensor-fusion always outperforms the best single sen-
sor. Furthermore, on the independent evaluation set there
are ROC points of the feature-level sensorifusion methods
that are better than the best sensor.

1 Introduction

Sensor fusion is the process in which information from
different sensors is used for a unifed declaration of ob-
Jects as detected by these sensors. Commonly a distinc-
tion is made between three different levels of sensor fu-
sion: data-level fusion, feature-level fusion and decision-
level fusion [1].

This paper describes a feature-level fusion procedure
for a polarimetric IR system and a GPR system and shows
some preliminary results.

The measurements with the polarimetric IR system and
the VIR have been performed at the TNO-FEL test facility
for humanitarian demining [2] in July 2002.
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In Sec. 2 the polarimetric IR measurements and classit-
cation results are discussed. Sec. 3 describes the extraction
of features in the video impulse radar followed by the sin-
gle sensor classifcation results. The object associations
and sensor-fusion methods are described in 4. The results
and a discussion of the performance are given in 5. Finally
the conclusions are given and discussed in 6.

2 Polarimetric infrared measurements and
features

Polarimetric IR is measured using a rotating £lter setup,
consisting of a Radiance HS mid-wave IR camera, a wire-
grid linear polarisation £lter and a custom built rotational
setup [3]. _

Special pre-processing algorithms, which take into ac-
count the motion of the platform and bending of the ray by
the £lter, result into 3 independent Stokes images [4). One
of the 3 Stokes images, the intensity image I, is input for
the region selection algorithm. This region selection algo-
rithm selects regions using a tophat £lter. For the selected
regions the features are measured in the feature extraction
process. The 10 features of each object that are measured
and that are available for feature-level sensor fusion are:
mean values of I, Q and U, contrasts between the object
and the background for the values of I, Q, U, the area of
the object, the length of the major axis, the fraction of the
area and the convex area of the object, and the fraction of
the minor axis and major axis.

By means of exhaustive search over all possible feature
combinations (2'° — 1 combinations), the best feature se-
lection for the training set is made. This optimisation is
performed for every point in the ROC.
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Figure 1: The detection and classifcation results of the polarimetric infrared system on the training set (a) and on an
independent evaluation set (b) using leave-one-out as evaluation method. Boths sets contain 21 landmines and 20 m?2.

Two different classifers have been trained on this data
set: Naive Bayes and LVQ-dist, see Sec. 4.3. These classi-
£ers along with a threshold on the intensity are trained and
evaluated using the leave-one-out evaluation method, see
Sec. 4.4. The classifcation results are shown in an ROC
curve in Fig. 1. To redect the size of the training and eval-
uation set, absolute numbers are used in the ROC curves
that are shown in this paper. On the training set a larg:
improvement is shown for the two classifers (Naive Bayes
and LVQ-dist) compared to using only a threshold on the
intensity.

3 Video Impulse Radar measurements and
features

GPR data has been acquired with a video impulse radar
developed in IRCTR especially for landmine detection [51.
Only part of the data set, which corresponds to a quasi-
monostatic co-polar scattering geometry (single transmit -
single receive polarization), has been used for fusion pur-
poses. This data has been pre-processed according to a
diffraction stack algorithm [6]. As a result a focused three
dimensional image (two horizontal coordinates and esti-
mated depth) of the subsurface has been obtained. Unlike
IR images, GPR images contain both amplitude and phase
information of the received ele.trc::iagnetic £eld.

Regions of interest are selected based on thresholding
the energy projected to the 2-D surface. For these Tegions
a number of features that may be suitable for classifca-
tion can be extracted from GPR data (e.g., 3D object po-
sition, object shape, dielectric permittivity of the object).

Extraction of some of these features requires consic -rable
processing.

For this paper, only the most basic and easy to measure
features are used namely: position, average depth, spatial
variation of depth, average projected energy, spatial vari-
ation of projected energy, average highest positive signal,
spatial variation of highest positive signal, area of the ob-
ject, major axis of the object, fraction of the area and the
convex area, and fraction of the minor and major axis.

The same classifers and evaluation methods as for the
polarimetric IR system have been used to determine the
single sensor performance of the VIR see Sec. 2. The clas-
sifcation results are shown in Fig. 2. For the training set
the best features for each ROC point are determined using
an exhaustive search (2!° — 1 combinations).

4 Sc.sor-fusion process

The feature-level sensor fusion process starts with the
regions of interest with their features as measured by the
individual sensors (see Sec. 2 and Sec. 3) and consists of
three steps. The £rst step is object association. In this step
the features from the objects from the different sensors are
combined to form an associated object. This step is further
discussed in Sec. 4.1. Which features are used is discussed
in Sec. 4.2. The second step is to classify the features from
these associated objects. This is performed by the feature
classifcation algorithms as discussed in Sec. 4.3. The third
and £nal step is the performance evaluation. In this step it
is discussed how the false alarm rate and the detection rate
are determined, see Sec. 4.4.
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Figure 2: The detection and classifcation results of the VIR on the training set (a) and on an independent evaluation set (b)
using leave-one-out as evaluation method. Boths sets contain 21 landmines and 20 m2.

4.1 Object association

Object association is the most important part of feature-
level sensor-fusion. The other remaining steps are general
steps for feature-based classifcation and detection and are
not specife for feature-level fusion.

A simple object association algorithm is used in our fu-
sion process. For each object from one sensor, the object
from the other sensor that is closest in distance is found.
If this distance is within jts maximum bound (smaller than
5.5 cm) then the two objects are associated.

With this form of object association there is always a
maximum of two associated sensor objects. This one-to-
one object association avoids ambiguity that might arise
when a@one-to-many object association is allowed. The dis-
advantage is that there is a chance that not the ri ght objects
are associated.

By including more information the object association
may be improved. One soitrce of information may be the
object depth [7], but this requires a different object asso-
ciation approach. For other features it is not easily deter-
mined how and if they have some correlation between sen-
sors. Therefore, it was chosen to keep the object assocation
simple and base jt solely on the Euclidian distance.

4.2 Features for fusion

In principle feature-leve] fusion can handle all features
from both sensors. Furthermore two additional features

can be defned: the number of observations for each sep-
sor. For the polarimetric infrared processing there are more
observations of the same object, since one object can be de-
tected in more than one image [4]. However when there is

a VIR object that has not been associated to a polarimetric
IR object then the num® - of IR observations is zero, For
a polarimetric infrared ot_ zct the number of VIR objects is
only one or zero,

By taking all possible features from both sensors a fea-
ture vector of length 22 is reached. An exhaustive search
over all feature combinations would require 222 — 1 (4 mil-
lion) evaluations and is not practical feasible (this will take
over 6 months of calculation).

We have selected only 5 of the 10 features of each sen-
sor in order to keep the calculation time practical. These 5
features are the ones that are used most extensively for the
single sensor classifers. For polarimetric infrared thege
features are: the levei above tophat threshold, the area, the
average () value, the average U value and the contrast in J.
For the VIR 'these features are: the variation of depth, the
variation in energy, the average energy, the depth and the
variation of highest positive value,

4.3 Classifers

Two classifers have been used for feature classifcation,
see also [4]. The £rst classifer is Naive Bayes also known
as Bayes plug-in ¢. ssifer [8]. This classifer works un-
der the assumption wat the features are independent. For
both classes (landmines and background) it estimates the
mean value and the standard deviation of each feature and
consequently returns an equivalent likelihood ratio. Due to
the assumption of independence of features, it is justifable
to have accurate estimates of the mean and standard devia-
tion for each clags. However, some of the features are not
likely to be independent; therefore the classifer is called
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Naive Bayes and may produce suboptimal results.

The second classifer is the LVQ-dist classifer. It is an
extension based on the learning vector quantisation (LVQ)
algorithm [9] and uses the distance to the closest vector in
each class to determine a measure for classifcation. This
classifer can model the probability distribution more accu-
rately, but may have not enough data to correctly estimate
the parameters.

4.4 Performance evaluation

A leave-one-out method [10] has been used for the per-
formance evaluation. In a leave-one-out evaluation method
the classifer is trained on all but one sample and tested on
the remaining sample. This process is repeated until all
samples have been part of the evaluation set. The training
set results are averaged over all possible training sets and
the evaluation set results are summed up over all evaluation
sets.

The sample size we used is not a single object, but one
landmine and its surrounding area [4]. Furthermore leave-
one-out by itself does not have a way to generate ROC
curves. A modifed approach that uses a range of cost func-
tions solves this problem [4].

The training set is small with only 21 landmines and
20 m? area. The number of potential false alarms is high
(1485 for the polarimetric IR and 2616 for the VIR). How-
ever, these false alarms originate from test lanes that have
a low amount of clutter. In a real mine£eld there are many
more sources of clutter. In this respect the sensor-fusion
performance should be related to the single sensor perfor-
mance, as presented in Fig. 1 and Fig. 2, and not seen as
measures of detection. To redect this all curves show the
absolute number of detected landmines and false alarms
and not percentages (implying detection measures).

S Results

The objects generated by the polarimetric infrared sen-
sor and the VIR are associated using the algorithm de-
scribed in Sec. 4.1. Additional measurements of features
are performed for objects that are present at one specifc
location for one sensor but not for the other. Using this
form of association a complete joint data set is generated.

This joint data set has been classifed by the same two
feature classi€cation methods that have also been for the
single sensor results in Sec. 2 and 3. The feature-level fu-
sion results are presented in Fig. 3.

The LVQ-dist classifer performs best on the training
set. It reaches the ideal ROC point where it detects all land-
mines with zero false alarms. This point is obviously better
than the two single sensor results with the LVQ-dist clas-

sifer. Since there is only one point in the training set (all
cost functions naturally select this point), there is only one
point in the evaluation set. This point in the evaluation set
detects the most landmines of all LVQ-dist evaluation set
results. However, since the number of false alarms is also
higher, it depends on the cost function whether or not this
ROC point is indeed better than the single sensor LVQ-dist
results,

The Naive Bayes classifer performs on the training set
also better than the same classifer on either single sensor.
On the evaluation set it performs better than the polarimet-
ric infrared sensor and for some part better than the VIR,
A very remarkable point on the evaluation set is the point
where all 21 landmines are detected with 19 false alarms
(The VIR started with 2612 and the polarimetric IR with
1485 false alarms at the point where all mines were de-
tected). Compared to the training set there is only a small
increase in the number of false alarms, but it still detects
all landmines.

6 Conclusions

A basic feature-level sensor-fusion implementation has
been applied to polarimetric IR data and quasi-monostatic
co-polarized GPR data. Basic steps in data pre-processing
and feature extraction for each sensor have been briety ad-
dressed. Implementation of the fusion algorithm and its
object association has been described. The feature-level
sensor-fusion methods have been compared to the single
sensor results. Based on the results, we conclude that sen-
sor fusion is useful for the training set, since for both clas-
sifers the fusion results are always better than the single
sensor results with the same classifer. Furthermore a cou-
ple of sensor-fusion ROC points in the evaluation set are
better than the single sensor evaluation set results.

The best classifer is the LVQ-dist classifer, but it seems
to have a larger difference between the training and classi-
£cation set results.

In short we conclude that we have described and im-
plemented a procedure for performing feature-level sensor
fusion that proves to be working on a limited data set.
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