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I Introduction

Sensor fusion is the process in which information from
diferent sensors is used for a unifed decla¡ation of ob
jects as detected by these sensors. Comrnonly a distinc_
tion is made between three diferent levels of sensor fu_
sion: data-level fusion, feature-level fusion and decision_
level fusion [l].

This paper describes a feature-level fusion procedure
for a polarimetric IR system and a GpR system ãnd shows
some preliminary results.

,he $:ili:TÄ,äî#;äïff#
for [2]inJu\y 2002.

Abstract

results of both single sensors and the sensor-fusion melh_
ods are presented in rcceiver operator characleristics

lraining set fealure-
s lhe besl síngle sen-
evaluation set there

are \OC poÍnts of thefeaîure-level sensorlfusion methods
lhat are better thon lhe best sensor

A.G. Yarovoy, V. Kovalenko
Faculty of Information Technology and Systems

Delft University of Technology
Mekelweg 4,2628 CD Delft

The Netherlands
E-mail : A.yarovoy@its.tudelft .nl

R.F. Bloemenkamp
Departrnent of Applied Earth Sciences

Delft University of Technology

In Sec. 2 the polarimetric IR measurements and classi€-
cation rezults are discussed. Sec. 3 describes the extraction
offeatures
gle sensor
and sensor-

and a discussion of the performance are given in 5. Finally
the conclusions are given and discussed in 6.

2 Polarimetric infrared measurements and
features

ed using a rotating flter setup,
mid-wave IR camera, a wire-
and a custom built rotational

setup [3].
Special pre-processing algorithms, which take into ac_

regions the features are measured in the feah¡re extraction
process. The l0 features ofeach object that are measured
and that are available for feature-level sensor ñsion are:

, contr
values

major
area and the convex area ofthe object, and the fraction of
the minor axis and major axis.

possible feature
best feature se_

optimisation is
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False alarms [-]
(a) Training set

Two different classifers have been trained on this data
set: Naive Bayes and LVQ-dist, see Sec. 4.3. These classi-
fers along with a th¡esbold on the intensity are trained and
evaluated using the leave-one-out evaluation method, see
Sec. 4.4. The classifcation results are shown in an ROC
curve in Fig. L To reoect the size of the training and eval-
uation set, absolute numbers are used in the ROC curves
that are shown in this paper. On i
improvement is shown for the two s
and LVQ-dist) compared to using e
intensity.

Video Impulse Radar measurements and
features

False alarms [-]
(b) Evaluation set
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i'igure l: The detection and classilcation results of the polarimetric infrared system on the training set (a) and on
independent evaluation set (b) using leave-one-out as evaluation method. Boths sets contain 2l landmines and 20 m2.

Extraction of some of these features requires consid .rable
processlng.

For this paper, only tl¡e most basic and easy to me¿lsure
features a¡e used namely: position, average depth, spatial
variation of depth, average projected energy, spatial vari-
ation ofprojected energy, average highest positive signal,
spatial variation of highest positive signal, area of the ob_
ject, major axis of the object, fraction of the area and the
convex area, and fraction of the minor and major axis.

The same classi€ers and evaluation methods as for the
polarimetric IR system have been used to determine the
single sensor performance of the VIR see Sec. 2. The clas_
sif ng set
the using
an

4 Se -.sor-fusion process

The feature-level sensor fi.rsion process starts with the
regions of interest with their featu¡es as measured by the
individual sensors (see Sec. 2 and Sec.3) and consists of
three steps. The f,rst step is object association. In this step
the features from the objects from the different sensors are
combined to form an associated object. This step is further
discussed in Sec. 4.1. Which features are used is discussed
in Sec.4.2. The second step is to classifothe features from
these associated objects. This is performed by the feahue
classif,cation algorithms as discussed in Sec.4.3. The third
and fnal step is the performance evaluation. In this step it
is discussed how the false alarm rate and the detection rate
are determined, see Sec. 4.4.

poses. This data has been pre-processed according to a
diffraction stack algorithm [6]. As a result a focused th¡ee
dimensional image (two horizontal coordinates and esti-
mated depth) of the subsurface has been obtained. Unlike
IR images, GPR images contain bc:h amplitude and phase
information of the received ele.iÍiì iiagn"ì¡. æl¿.

Regions of interest a¡e selected based on thresholding
the energy projected to the 2-D surface. For these ,egioni
a number of featwes that may be suitable for classif,ca-
tion can be extracted from GPR data (e.g., 3D object po-
sition, object shape, dielectric permittivity of the object¡.
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(b) Evaluation set
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an independent eva,ua,ion set (b)

4.1 Object association

featr¡re-
general

and are
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w¡en a-on9io-"'î"räi:*,* :t#n:advantage is that there is a chance that not the right objectsare assobiated.
By incruding more information the object association

information may be the
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4.7 Features for fusion

In principle feature_level ñ¡ston can handle all featuresÍÌom borh sensors. Furthermore ,*" 
"Jáii¡"¿ fearurescan be defned: the number of oUr.*un:on, îo. .u"i, ,"n_sor. For the polarimetric infrared p.o."rring1i.r. u." rno..observations ofthe same obj."t, ,in." on.'"ij".i.* o. ¿._tected in more than one image [4]. However"*i.-n tfr"." i.

been associated to a polarimetric
- of IR observations is zero. For

_:ct the number of VIR objects is

- 
By taking all possible feah¡res from both sensors a fea_ture vector of length 22 is reached. A;-._il"ive searchover

lion) ld require 222 -l (4 mil-

over al feasible (this will take

fthe l0 features ofeach sen_
lation time practical. These 5
used most extensively for the

,, a bove ü;jilï"",ff j:ffiï:"Ï ï:aveft¡ge Q value, the average U valueaná i¡".ãnt.rt ¡n ¡.For the VIR these feahres a¡e; the variation oi depth, thevalatjon ilenergy, the.average energy, the depth and thevariation of highest posltlve value.

43 Classifers

Two classifers have been used for feature classi€cation,see arso [a]. The frsr crassifer ¡r N"¡"ã-s"î;äiro tno*nas Bayes plug_in c ss
der the;";;;;; ,"; er works un-
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Naive Bayes and may produce suboptimal results.
The second classifer is the LVQ-dist classifer. It is an

extension based on the leaming vector quantisation (LVe)
algorithm [9] and uses the distance to tl¡e closest vector in
each class to determine a measure for classif,cation. This
classifer can model the probability distribution more accu-
rately, but may have nol enough ããtu to 

"orr"ctly 
estimate

the parameters.

4.4 Performance evaluation

A leave-one-out method [0] has been used for the per-
formance evaluation. In a leave-one-out evaluation method
the classifer is hained on all but one sample and tested on
the remaining sample, This process is repeaüed until all
samples have been part of the evaluation set. The haining
set rezults are averaged over all possible baining sets and
the evah¡ation set results are summed up over all evaluation
SEtS.

The sample size we used is not a single object, but one
landmine and its surrounding area [4]. Furthermore leave-
one-out by itself does not have a way to generate ROC
curyes. A modifed approach that uses a range of cost func-
tions solves this problem [4].

The training set is small with only 2l landmines and
20 mz area. The number of potential false alarms is high
(1485 for the polarimetric IR and 2616 for the VIR). How-
eveç these false alarms originate fiom test lanes that have
a low amount of clutter. In a real minefeld there are many
more sources of clutter. In this respect the sensor-fusion
performance should be related to the single sensor perfor-
mance, as presented in Fig. I and Fig. 2, and not seen Íui
measur€s of detection. To r@ect this all cr¡rves show the
absolute number of detected landmines and false alarms
and not percentages (implying detection meazures).

5 Results

The objects generated by the polarimehic infrared sen-
sor and the VIR are associated using the algorithm de-
scribed in Sec. 4.1. Additional measurements of features
are performed for objects that a¡e present at one specifc
location for one sensor but not for the other. Using this
form of association a complete joint data set is generated.

This joint data set has been classifed by the same two
feah¡re classi€cation methods that have also been for the
single sensor rezults in Sec. 2 and 3. The featu¡e-level fu-
sion results are presented in Fig. 3.

The LVQ-dist classif,er performs best on the haining
set. It reaches the ideal ROC point where it detects all land-
mines with zero false alarms. This point is obviously better
than the two single sensor results with the LVQ-dist clas-

sifer. Since there is only one point in the haining set (all
cost functions naturally select this point), therç is only one
point in the evaluation set. This point in the evaluation set
detects the most landmines of all LVQ-dist evaluation set
results. However, since the number of false alarms is also
higher, it depends on the cost function whether or not this
ROC point is indeed better than the single sensor LVe-dist
results.

The Naive Bayes classifær performs on the haining set
also better than the same classif,er on either single sensor.
On the evaluation set it performs better than the polarimet-
ric infr¿red sensor and for some part better than the VIR.
A Wty rema¡kable point on the evaluation set is the point
where all 2l landmines are detected with 19 false alarms
(The VIR started with 2612 and the polarimetric IR with
1485 false alarms at the point where all mines were de-
tected). Compared to the training set there is only a small
increase in the number of false alarms, but it still detects
all landmines.

6 Conclusions

A basic feature-level sensor-fusion implementation has
been applied to polarimehic IR data and quasi-monostatic
co-polarized GPR data. Basic steps in data pre-processing
and feature extraction for each sensor have bes¡ þriçoy ad-
dressed. Implementation of the fusion algorithm and its
object association has been described. The feature-level
sensor-fusion methods have been compared to the single
sensor rezults. Based on the results, we conclude that sen-
sor fusion is useful for the tr¿ining set, since for both clas-
sif,ers the fusion results are always better than the single
sensor rezults with the same classifer. Furthermore a cou-
ple of sensor-fi¡sion ROC points in the evaluation set are
better than the single sensor evaluation set results.

The best classifer is the LVQ-dist classif,er, but it seems
to have a larger difference between the training and classi-
fcation set results.

In short we conclude that we have described and im-
plemented a procedure for performing feature-level sensor
fusion that proves to be working on a limited data set.
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Figure 3: The sensor-fusion results of the VIR and the polarimehic infrared system on the training set (a) and on anindependent evaluation set (b) using leave-one-out as evaluation method. Boths sets contain 2l landmines and 20 m2.
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