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Abstract—The semantic gap is one of the challenges in the
GOOSE project. In this paper a Semantic Event Classification
(SEC) system is proposed as an initial step in tackling the
semantic gap challenge in the GOOSE project. This system uses
semantic text analysis, multiple feature detectors using the BoW
model, SVM-based concept classifiers, event classifiers and fusion
to classify if an event is present in a certain video.

The TRECVID Multimedia Event Detection task 2013 is used
to evaluate the SEC system. The results show that an initial step
in bridging the semantic gap and tackling the challenges in the
GOOSE project is made, but that there is room for improvement.
We expect that future research in learning and defining high-level
concepts and event classification will further bridge the semantic

gap.

I. INTRODUCTION

The GOOSE project [1] aims to create the capability to
search semantically for any relevant information within all
sensor streams in the entire Internet of sensors in real time.
In order to create this capability relevant sensors have to be
selected, the sensor database has to be maintained, computa-
tional power has to be scaled to accommodate any number of
user queries at any time, a semantic user interface must be
present and information and content has to be extracted from
sensor data streams [1]. The two main challenges for GOOSE
are scalability and the semantic gap. Scalability means dealing
with a very large number of sensors, users, queries and
scenarios. The semantic gap occurs in two ways in the GOOSE
project. Firstly, there must be an interpretation of the user
query in order to search for the right information: the user-
sensor gap. Secondly, the information from sensor data has to
be transformed into an answer for the user: the data-answer
gap. In this paper, we propose a Semantic Event Classification
system to bridge both ways of the semantic gap. This system
is derived from the TNO TRECVID MED 2013 system [2].
Differences between that system and our system is the use
of lemmas in the Semantic Text Analysis, a more extensive
explanation of event classifiers, the evaluation method and
results.

In the following section theoretical background about the
semantic gap in the domain of image retrieval is given. In the
third section our proposed system is explained. The fourth
section shows how we evaluated our system and the fifth
section displays the results. The sixth section contains the
discussion, conclusion and future research.

II. THEORETICAL BACKGROUND

The semantic gap is a hot research topic. In the image
retrieval domain the semantic gap can be defined as the ‘lack
of coincidence between the information that one can extract
from the visual data and the interpretation that the same data
have for a user in a given situation’ [3]. Another formulation is
that there is no direct link between the high-level concepts and
the low-level features [4]. Low-level features can be extracted
from three modalities: visual, audio and text [5]. Visual
features can be split up into color features, texture features,
shape features, appearance features and motion features [6][7].
An audio feature is ASR and a text feature is OCR. High-
level concepts are words or combination of words used in
user queries.

Hare et al. [8] split the semantic gap in two sections: the
gap between descriptors and object labels and the gap between
labeled objects and full semantics. Both sections address the
data-answer gap. Descriptors are feature vectors of an image
and labeled objects are the symbolic names of combinations of
descriptors. In order to bridge the gap between descriptors and
object labels the system should learn which combination of de-
scriptors represent objects and what the labels of these objects
should be. This is called automatic annotation of image content
[8] or image annotation [9]. Most existing approaches can be
divided into the categories classification based / discriminative
and probabilistic modeling based / generative [9] [10] [11].
Some use both categories [12] [13]. In the classification based
methods keywords are treated as classes and classifiers are
used to annotate an input image by taking the class with
the highest similarity measure. Both supervised methods such
as support vector machines (SVMs), Bayesian classifiers and
Decision Trees and unsupervised methods such as k-means,
NCut and LPC can be used [4]. Important for this category
is the image feature representation. The most popular feature
representation method is the bag-of-words (BoW) or bag-of-
visual-words model [14]. An advantage of this approach is that
we can use many machine learning techniques for learning and
it is effective and more accurate than probabilistic modeling
based methods. A disadvantage of this method is that it is
unscalable for a huge amount of images with infinite semantics
and it cannot handle missing data [9].

The probabilistic modeling based methods attempt to infer
correlations or joint probabilities between images and anno-



tations with for example a Gaussian Mixture Model, Latent
Dirichlet Allocation Model, correspondence LDA or a hybrid
probabilistic model [9]. An advantage of this approach is that
it is flexible, because is it not unscalable for a huge amount of
images and it can handle missing data. This approach also have
a better explanatory power than the classification approach.
A disadvantage of this approach is that performance is less
effective and less accurate than the classification approach [11]
[12].

In order to reduce the gap between labeled objects and full
semantics object ontologies can be used to define high-level
concepts [4] [8]. In object ontologies a qualitative definition
of the high-level semantics is given in terms of for example
color, position, size and shape.

Bridging the user-sensor gap is dependent on the type of
user, search data and querying modality [15]. All content-
based image retrieval systems use content-based query pro-
cessing with feature extraction and feature representation as
described above, assuming an image or graphics as input.
Our approach is to allow text input for which we use natural
language processing as a first step in bridging the user-
sensor gap [15]. This gap can also be bridged by introducing
relevance feedback to learn the users’ intention. Bridging the
user-sensor gap is sometimes seen as part of image annotation
[9]. The user can give feedback about initial retrieval results
after which the system can adjust weights, do query-point-
movement or use machine learning techniques to create new
results [4]. Several relevance models have been proposed
such as Cross-Media Relevance Model, Continuous Relevance
Model, Multiple Bernoulli Relevance model [8] [9].

In the next section, we propose a Semantic Event Clas-
sification system to bridge the user-sensor gap and the data-
answer gap with use of a classification based image annotation
method, ontologies and a text-based processing method using
natural language processing.

III. SEMANTIC EVENT CLASSIFICATION SYSTEM

We propose a Semantic Event Classification system to
classify events based on a textual description, because we
want our users to be able to type text input as a description
for their information need. The information need is in our
case an event, which is defined as ‘an observable occurrence
that interests users’ [16]. In Fig. 1 our proposed Semantic
Event Classification (SEC) system is shown. It needs to bridge
the user-sensor gap. This is especially necessary when no
example video for a certain information need is available.
For bridging the user-sensor gap we use a semantic text
analysis. Furthermore, we need to bridge the data-answer gap.
With concept classifiers and event classifiers we try to bridge
this gap. Fusion is used to fuse the outputs from the event
classifiers. The different parts of the SEC system are further
explained in the next subsections.

A. Semantic Text Analysis

In the process Semantic Text Analysis we interpret the
users needs. The type of user query used as input for this
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Fig. 1. Proposed Semantic Event Classification system
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Event Name Winning a race without a vehicle

Evidential
Description

scene outdoors (park, field, track, road, or stadium)
or indoors (indoor track, pool,

or large gymnasium)

runner, number worn on runner’s back/front/
arm, potato sack, marker for finish line

(tape stretched across road, potato sacks lying
on ground), running shoes, baton, spectators,
boundary markers/signs, signs supporting
/encouraging a particular runner,

water bottles, first aid tent

objects
/people

activities | running, swimming, hopping, climbing,
jumping, breaking through tape,

passing a baton, spectators running a
short distance with the runner, passing out

water bottles to the runners

audio onlookers cheering, verbal or other indication
of starting the race (yelling "Go!”,
gun shooting), narration of the race (speaking

through a microphone)

TABLE I
EXAMPLE OF EVENT DESCRIPTION; FROM TRECVID MED 2013

process is an event description, which is chosen based on our
evaluation set (see section V). This event description consists
of the name of the event and a short description of the event.
In this description information about the scene, object and/or
people, activities and audio can be provided. An example
is given in Table I. In a syntactic analysis all elements in
noun phrases and verb phrases are extracted from the textual
description using the Stanford Parser [17]. In this step we also
retrieve whether an element is used positive or negative. For
example ‘without’ and ‘not’ indicate that the element should
have a negative relation and should therefore not be present.
In the semantic analysis all elements and combination of



elements, which are called textual concepts, in a specific
phrase are lemmatized using the lemmatizer in the CoreNLP
library of the Stanford Parser and interpreted using WordNet
[18] and an OWL ontology [19]. For the interpretation we
match textual concepts with a set of known concepts. The
OWL ontology consists of a set of known concepts that are
particularly relevant for the task (see IV.A and [2]). WordNet
and the OWL ontology are also used to retrieve more known
concepts by selecting hyponyms and hypernyms of interpreted
concepts. In this step the semantic distance of the known
concepts is set as the Lin-measure [20]. From the known
concepts a system query is generated by combining the
known concepts using logical operators. The AND-operator
is used to combine all known concepts from the description
and the OR-operator is used to connect the concepts with
their known hypernyms and hyponyms. The set of concepts
combined with the OR-operator is called an OR-group. Each
of the concepts has information whether if it is positive or
negative and its semantic distance. An example is given below.

AND (

racing(1)

OR (NOT (vehicle (1), truck (1), tractor (1), car (1),
bus (1), ambulance (1), policecar (1), taxi (1), boat (1),
cruiseship (1), ship (1), sailingboat (1), rowingboat (1),
motorboat (1), train (1), bicycle/bike (1), motorcycle (1),
airplane (1), helicopter (1)))

park (1)

field (1)

track (1)

road (1)

stadium (1)

swimmingpool (1)

runner (1)

potato (1)

finishline (1)

tape (1)

shoes (1)

spectator (1)

OR (water (1), food (0.69))

bottle (1)

sign(1)

OR (tent (1), circustent (1))

run (1)

swim (1)

cheering (1)

yelling(1)

go (1)

gun (1)

shooting (1)

person (0.3)

microphone (1) )

EXAMPLE: System Query

B. SVM-based Concept Classifiers

For detection of high-level concepts in a video concept
classifiers are needed. Based on event descriptions of last years
of TRECVID MED, analysis of the ImageNet structure and
analysis of missing concepts in each of the categories of the
evidential description 546 concepts were defined. For each
concept videos and images are downloaded from ImageNet
[21], Google and Youtube (see Fig. 2). Both specific and
general concepts from different types of concepts are used
as recommended by Habibian et al. [22]. For the low-level
features LBP, SIFT and MFCC using the BoW model and
for each concept SVM-based classifiers are trained with a
histogram-intersection kernel using the downloaded videos and
images. Due to sparse training data for some objects 442
concept classifiers are used for LBP, 418 for SIFT and 86
for MFCC. MFCC needs audio information, so therefore less
training data could be used. For more information about the
low-level feature implementation and the feature representa-
tion see [2].
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Fig. 2. Training of Concept Classifiers

C. Event Classifiers

With the system query containing the concepts and relations
from an event description and output of each of the trained
SVM-based concept classifiers for the complete set of videos
the event classifiers can be applied. For each of the three con-
cept classifiers a different event classifier is used. Firstly, the
computed probabilities of each of the identified concepts are
normalized over all videos with zero mean and unity standard
deviation (NCV). Secondly, these normalized probabilities per
concept are multiplied by a weighting factor (W) in order to
create a concept score (S).

NCV(c,v)- W(c) if W(c)is >0
S(w)_{ (ev) WE) i W(e)is20
0 other
where S(c) is the score of concept ¢ for video v, NCV (c,v)
is the normalized probability per concept ¢ for video v and
W (c) is the weight of concept c.



W{(c) = POS(c)-SD(c) - DV (c) (2)

where W (c) is the weight of concept ¢, POS(c) is positive
(1) or negative (-1) concept, SD(c) is the semantic distance
of concept ¢ (see III.A) and DV(c) is the detectability value
of concept c.

The detectability value of a concept is an estimate of how
predictive a concept is for a certain event and it is implemented
as the average probability estimate of the concept classifier,
measured over all events in which the concept is identified by
the semantic text analysis. In our experiment the estimation of
the detectability value of each concept is based on the training
data from TRECVID MED 2013 [23] which consists of thirty
event kits.

1 IC| 1V
DV (c) = o > v > NCV(c,v) 3)
e=1 v=1

where DV (c) is the detectability value of concept c, |C] is
the amount of events in which the concept is expected (on
training set), V is the total amount of videos and NCV(c, v)
is normalized probability per concept ¢ for video v.

The total score per video for a certain event is the sum of
the highest concept score of each OR-group (see III.A). This
total score is adjusted to a value between zero and one with
the inverse function of the tangent.

D. Fusion

With total scores for all videos for each of the three
event classifiers a late fusion has to be done in order to get
one score for the event classification. First a double sigmoid
function is applied to normalize the scores for the computed
threshold around 0.5 [7]. We tested both the accuracy weighted
average and the threshold-distance weighted average as fusion
methods [7]. For the accuracy weighted average the accuracy
on the training set is used as weight and for the threshold-
distance weighted average the distance from threshold is used
as weight [7]. Both accuracy and threshold are estimated with
the same set as used to estimate the detectability value (see
I1.C).

IV. EVALUATION

The SEC system is evaluated using the training data from
the TRECVID Multimedia Event Detection task 2013. In this
task participants develop an automated system that determines
whether an event is present in a video clip by computing the
event probability for each video. We used the thirty training
event kits, which contains ten research event kits and twenty
evaluation events with 100 positive videos and 50 negative
videos per event and a textual description per event. The videos
from these sets have ground truth information about the event
they contain or do not contain.

From the textual description only the provided event name
and evidential description as shown in Table 1 are used for
our semantic text analysis. The detectability value of the event

classifiers is determined with the same set of events and videos
as our test set.

We measure performance with the Mean Average Precision
value as used by TRECVID and many other benchmarks.

1 Ne 1 Vrel
MAP = — . 4
Ne ; Vrel vz:pr(v,e) @

=1

where Ne is the number of events, Vrel is the number of
relevant videos and pr(v, e) is the precision

Ty /171y if v is retrieved and n; < Th
pr(v,e) = (5)
0 other
where r, is the number of relevant videos for event e found
at ranks 1 - v, rr, is the rank of relevant and retrieved video
v for event e
Because we are only using precision, the best method is to

assign every video as positive. The threshold Th is thus set to
0.

V. RESULTS

We calculated the MAP value for each of the different
event classifiers (LBP, SIFT and MFCC) and the two types
of fusion (threshold-weighted and accuracy-weighted). We
also implemented a random system for comparison with our
system. This random system gives a random number between
0 and 1 for each video and each event. We ran the system
100 times in order to calculate average performance. We
calculated average performance twice and the result was a
difference of 0,01%. The results are presented in Table II. Best
performance on accuracy-weighted fusion was 26,45% on the
event ‘Winning a race without a vehicle’, which was the only
event with negative concepts. In this event only 10 concepts
had a positive detectability value, but ‘racing’ and ‘stadium’
are high indicators for the event. The worst performance on
accuracy-weighted fusion was 3,37% on the event ‘Working
on a metal crafts project’. In this last event 16 concepts with
a positive detectability value were detected, but none had a
high detectability value. This means that none of the known
concepts gives a good indication for this event.

Condition MAP (in %)

RANDOM 2,56

LBP 5,00

SIFT 8,06

MFCC 3,09

FUSED THR | 8,07

FUSED ACC | 8,19
TABLE II
RESULTS



VI. DiscuUsSION, CONCLUSION AND FUTURE RESEARCH

The results show that an initial step in bridging the semantic
gap and tackling the challenges in the GOOSE project is made,
but that there is room for improvement. Performance on all
tested conditions is better than random, but a comparison to
other systems is hard to make because the official evaluation
of the TRECVID MED task 2013 is done on other test sets.
Furthermore, the concept classifiers and detectability value are
optimized for this test set, so the results show major overfitting.
In the future it would be interesting to calculate performance
on both other TRECVID MED sets or other test to make a
better evaluation of our system. In making further progress
on bridging the semantic gap between the user query and
sensor data research on the semantic representation of the
concepts (AND of ORs) can be done. Based on the results
quality of concepts seem more determining performance than
quantity. This implies that semantic text analysis must select
the concepts that are representative for a certain event. These
concepts should also be known by the system and concept
classifiers have to be trained on these concepts. A potential
improvement may thus be to select and train (more) concepts
representative for certain events.

The use of relevance feedback may also be an improvement.
The bridge between sensor data and answer can be tackled by
research on learning methods for both concept classifiers and
event classifiers. Concept classifiers are now trained with a
histogram-intersection kernel, but other methods such as tak-
ing the maximum may work better. The method of training and
applying the event classifiers may also improve performance.
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