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ABSTRACT

An analysis is presented showing the effects of refraction, aerosol extinction, and molecular extinction on transmission
measurements obtained during the EO Propagation Assessment in Coastal Environments (EOPACE) campaign carried out in
San Diego during March and April 1996. Infrared transmission measurements were made over both a 7 km path (mid IR) and
a 15 km path (mid IR and far IR) at heights below 10 m above sea level. The average difference between all the measured
transmissions and aerosol transmittances over the two paths with results obtained using the IR Boundary Layer Effects Model
(IRBLEM) were found to be relatively small, even though the difference for individual measurements can be significant. The
effect of molecular transmittance, as calculated using MODTRAN, is found to reduce the transmission by about 35% for the 7 km
path, 72% for the mid IR over the 15 km path, and between 70% and 90% for the far IR over the 15 km path. The effect of
aerosol transmittance, as calculated using a variation of the Navy Aerosol Model (NAM), is found to reduce the transmission
from 10% to 90% for the mid IR over both the 7 and 15 km paths, and from 10% to 60% for the far IR over the 15 km path. The
effect of refractance, the focussing and defocussing of radiation due to atmospheric refraction, on the predicted transmissions
is found to account for gains and losses up to 20% for the 7 km path, and gains and losses up to 100% for the 15 km path.
Consequently, any IR transmission model for the marine boundary layer (MBL) must properly take into account the effects on
the transmission due to molecular extinction, aerosol extinction, and refractance.
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1. INTRODUCTION

The intensive operational period (IOP) of the EO Propagation Assessment in Coastal Environments (EOPACE) campaign that
was conducted in San Diego during March and April 1996, was a good opportunity to obtain excellent transmission data within
the marine boundary layer (MBL) and to compare it to predictions made by the IR Boundary Layer Effects Model IRBLEM).
This was made possible due to the good quality of the mid-infrared (MIR) transmission data obtained by Carl Zeisse of NRaD
over his 7 km transmission path, the MIR and far-infrared (FIR) transmission data obtained by Arie de Jong of TNO over his
15 km transmission path, the basic meteorological data obtained at both ends and in the middle of each transmission path, and
the measurement of the aerosol size distribution over both transmission paths by Stewart Gathman of NRaD.

To better understand how the data was obtained and how the analysis was performed using IRBLEM', the following section
presents a brief discussion of the effects which can affect the transmission of IR radiation in the MBL and the modules that
IRBLEM uses to model them. The following section gives a short description of the various meteorological and transmission
equipment that was used and its location around San Diego Bay. The last three sections present the results of the study, a
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discussion of the results, and finally some conclusions.

2. IR TRANSMISSION IN THE MARINE BOUNDARY LAYER

The marine boundary layer (MBL) is a region of the atmosphere which extends from the marine surface to a height which may
vary from 20 to several 100 meters. As the air and marine surface can often be at different temperatures, this region of the
atmosphere, through convection and air transport, can possess strong vertical gradients of temperature, humidity, and aerosol
concentration. The MBL is also a region that is a source of maritime aerosols and a sink, particularly in coastal regions, for
terrestrial aerosols (particulates). The various gradients, the concentrations, type and particle distribution of the aerosols, and
the amount of water vapour in the MBL all have important consequences on the transmission of IR radiation. The gradients can
cause significant refractive effects (mirage formation, focussing and defocussing), while the composition of the MBL determines
the amount of IR radiation that is scattered or absorbed.

For a spherical wavefront of frequency, v, the intensity, I(r,v), at some vector position, r, from a point source can be expressed
by:
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where m is the number of images (m is greater than 1 when there are secondary images or mirages), j is an image index,
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is either the molecular transmittance, Ty (r,v), or the aerosol transmittance, T;,(r,v), and the integral is taken over the path
followed by the ray creating the image and the respective extinction coefficient, o (r,v). I(v) is the total emitted intensity and
p(r,v) is the refractance at the vector position, r for frequency, v. For straight rays (i.e., no refraction) the refractance equals 1;
however, if the rays are focussed, the refractance becomes greater than 1, and if they are defocussed, the refractance becomes
less than 1. Thus, the refractance can be thought of as an optical amplifier with a gain of p.

The IR Boundary Layer Effects Model (IRBLEM)' has been designed to calculate each of the above terms for rays which
propagate within the MBL. Figure 1 shows the internal modular structure of IRBLEM with the meteorological inputs situated
at the top and the various outputs at the bottom. The required meteorological data is passed to each of the four subsequent
routines which calculate the molecular extinction (ty,(V)), the vertical refractivity profile (N(h)), the vertical refractivity structure
parameter profile (C,%(h); turbulence), and the vertical aerosol extinction profile (e, (h)). The molecular extinction is spectrally
calculated using a call to MODTRAN? in the horizon mode for the height at which the air temperature was measured, the desired
wavelength band, and for a nominal resolution of 5 cm’. The molecular extinction is not height dependent. The vertical structure
parameter profile, which was not required for this study, is calculated using SRS_BULK?® and is not discussed any further. For
the calculation of the vertical aerosol extinction coefficient profile, a module was provided by TNO', that allows the user to select
one of three models to estimate the aerosol extinction at 10 m’s above the surface for a wavelength of either 4 pm (center of
the 3-5 pm waveband) or 10 pm (center of the 8-12 pm waveband). The model choices are the Navy Aerosol Model* (NAM),
the Open Ocean’ model, and the TNO MPN® model. The vertical variation is computed after de Leeuw ’ using LKB® for
estimating the characteristic MBL parameters and assuming that the vertical distribution for all particle sizes follows that for the
1 micron particles. Calculation of the vertical refractivity profile is carried out using subroutines taken from DREV’s LWWKD?
model that makes calculations for the mid IR and far IR bands. It is an MBL model that is based upon the similarity theory work
of Monin and Obukhov'’. The results of these calculations are then passed to a DREV developed ray-tracing program' that is
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capable of calculating the change in the intensity along any ray due to lensing effects (the refractance) using a technique
developed by Blanchard"', and calculates the molecular transmittance and aerosol transmittance by performing the integral in
Eq. 3 over each ray.
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Figure 1 - Schematic diagram showing the modular structure of IRBLEM.
3. EXPERIMENTAL DETAILS

Figure 2 shows a map of Southern California and San Diego Bay which indicates the sites where the various equipment was used
during EOPACE’s intensive operational period (IOP) of March-April, 1996. The Naval Postgraduate School in Monterey had
positioned a “MEAN” weather buoy at the midpoint of the 7 km transmission path (between the Subbase and Coronado), and
a “FLUX” weather buoy at the midpoint of the 15 km transmission path (between the Subbase and the pier at Imperial Beach).
Both buoys made continuous measurements of the air temperature, water temperature, relative humidity, atmospheric pressure,
wind speed and direction during most of the IOP. The FLUX buoy also made measurements of the wave spectra and their
amplitudes. TNO had meteorological stations placed at both ends of the 15 km path where they measured the relative humidity,
air temperature, atmospheric pressure, wind speed and direction. Similarly, NRaD had meteorological stations placed at both
ends of the 7 km path where they measured the air temperature, relative humidity, wind speed and direction. The visibility was
also measured continuously at the Subbase by either DREV or NRaD, and measurements of irradiance, condensation nuclei (CN),
and radon were taken by NRaD out at Pt. Loma. The air temperature, water temperature and relative humidity were also obtained
almost once a day, over each of the transmission paths by a small boat operated by NRaD. NRaD also measured the aerosol size
distribution from the boat and used Mie theory to calculate aerosol extinction coefficients for 3.5 pm and 10.6 pm.

To properly compare the waveband transmission measurements, over the different paths, with the spectrally dependent (every
5 cm’) predictions from IRBLEM, the predictions must be weighted by the weighting function, w(v), over the appropriate
waveband (weighted average). The total waveband transmission, T(V,;,, Vi), between the frequencies v,;, and v,,,,, can be
expressed by;

v v v
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where T(v) is the total transmission given by Eq. 2, and p (v,) and t,(V,) are the refractance and aerosol transmittance for the
waveband, as produced by IRBLEM, respectively. (Note: the vector position, r, has been suppressed for clarity.) T}, is the
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molecular transmittance for the waveband and the j image, and is given by:

v
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v
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where the integral has been replaced by a summation over n frequency intervals, w; = W(V,;, +1Av), and Ty = TV, + 1A V).
Finally, assuming that the source emission is spatially uniform (i.e., I, is independent of angle), the frequency dependent
weighting function, w(v), can be expressed as a function of the emission, I,(v,T), of the transmissometer’s source, the temperature

of the source, T, and the response, €, of its detector by:
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Figure 2 - Map of San Diego Bay and Southern California
form Mexico to the Scripps Institute of Oceanography.
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The transmission measurements, taken with NRaD’s transmissometer'? over the 7 km path, were obtained using a wire coil emitter
assumed to have a black body temperature of 800 °C, and a detector composed of an InSb photon counter (5.4 pm bandgap) in
combination with a narrow band filter centered on the mid-infrared band. Both the source and receiver collimators had 20 cm
diameter apertures and 1.2 m focal lengths (F/6). Figure 3 shows the response of both detector components and the calculated
weights (WA V) for the system. The TNO transmissometer'>'*, used over the 15 km path, was a dual band system which could
be alternately operated in either the mid-infrared (50% bandwidths at 3.7 and 5.7 pm) or the far-infrared (50% bandwidths at
8.0 and 13.1 pm) wavelength band. However, as the response of the detectors and the temperature of the source was not known
during the study, average (w(v) constant) weighting functions were used over the 50% bandwidths for each band (see Fig. 4).

4. RESULTS

The first six graphs (Figs. 5a,b,c and Figs. 6a,b,c) are designed to give the reader an idea of the range of boundary layer
conditions that were treated in this study over both the 7 km path and the 15 km path, respectively. The data points in each graph
correspond to periods during which aerosol measurements were being taken by the small by boat (usually mid-morning or
mid-afternoon), during the early morning (near 1300 GMT) when the air temperature was near its daily minimum, or during the
late afternoon (near 2400 GMT) when the air temperature was near its daily maximum. For these periods (see Figs. 5a and 6a),
the diurnal variations in the air temperature were from 23 °C, during the Santa Anna event (warm air mass) between April 6™ and
April 8", to 12°C at dawn. During the same period the water temperature varied slightly each day, and only varied between 14
and 16 °C during the two week IOP. As a result, the study contained ASTDs from -4 °C to +7 °C! Figs. 5c and 6¢ show that the
wind also behaved diurnally, in that it generally came from the northeast in the late afternoon at 6 to 7 nvs, and from the south
or east in the early morning at 2 to 4 nv/s. The relative humidity and visibility (see Figs. 5b and 6b) also show diurnal behaviour.
In general the visibility is better in the late evening then it is in the early morning, and the relative humidity is greater in the early
morning than it is in the late afternoon. The one noticeable exception to this pattern occurred during the Santa Anna event.

Figures 7a-i, Figs. 8a-i, and Figs. 9a-i show various results of the study for the mid IR transmission measurements taken over
the 7 km path, the mid IR transmission measurements taken over the 15 km path, and the far IR transmission measurements taken
over the 15 km path, respectively. Before describing these graphs, the various calculation modes that are used are described
below:
A. The refractance or the aerosol transmittance are calculated using IRBLEM. They are band averages
and have no spectral dependence within the band.
B. The molecular transmittance and the total transmission for a waveband are calculated using IRBLEM
and then either averaging the results over the waveband, or weighting the results over the waveband.
This is necessary because of the spectral dependence of the molecular extinction coefficients within
the waveband.
C. The quantity of concern is calculated using both experimentally measured values and IRBLEM
calculated values. For example, the total transmission could be calculated using the refractance and
the molecular transmittance from IRBLEM, and the measured aerosol transmittance. In this case, the
same measured aerosol transmittance would be used for both the primary and secondary images. A
second example, would be the calculation of the aerosol transmittance using the measured total
transmittance with the refractance and molecular transmittance calculated by IRBLEM.
In each case, Figs. 7-9a show the total band transmissions calculated using IRBLEM for the primary image (¢’s), the secondary
image (a’s) when there is a mirage, and the total or sum of both images (C’s). It also shows the total obtained by using the ten
measured aerosol transmittances for both the primary and secondary images instead of those calculated by IRBLEM (W’s), and
the transmissions measured by the transmissometer ((J’s). Figures 7-9b illustrate the differences between the measured and the
model calculated transmissions (O’s for the actual measurements, and l’s when the measured aerosols transmittances are
substituted in place of those produced by IRBLEM). Figures 7-9c show the aerosol transmittances calculated by IRBLEM for
both the primary image (¢’s) and the secondary image (a’s), the measured aerosol transmittances (l’s), and those calculated using
the molecular transmittance and refractance from IRBLEM with the measured total transmissions ((’s). Figures 7-9d illustrate
the differences between the measured and the calculated aerosol transmittances (l’s for the actual measurements, and O©’s when
the measured transmissions are used). Figures 7-9e show the variation of the aerosol transmittances with visibility for the primary
image (¢’s) and secondary image (a’s) calculated by IRBLEM for the measured aerosol transmittances (l’s), for the calculation
using the measured transmissions (O’s), and a linear fit to this data. Figure 7f shows the calculated molecular transmittances
using the weighting (weighted) function show in Fig. 3 (a’s) and using a uniform (average) weighting function (O’s) as in Fig. 4.
Figures 8f and 9f only show this for the average weighting function. Figures 7-9g show the variation of these same molecular
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transmittances with respect to the relative humidity. Figures 7-%h illustrate the values for the refractance calculated by IRBLEM
for both the primary (O0’s) and secondary (a’s) images. Zero-values indicate that the image doesn’t exist. Figures 7-9i show the
variation of these refractances with respect to the ASTD for both the primary (¢’s) and secondary (a’s) images. A second order
fit to the primary image data is also shown on each graph.

5. DISCUSSION
5.1 MID IR OVER THE 7 KM PATH

Looking at Fig. 7a, one notices that the measured transmissions ((J’s) vary from 0.1 to 0.8, that those obtained using the measured
aerosol transmittance (l’s) range from 0.4 to 0.6, and that the model predicts total transmissions for the waveband ranging from
0.16 to 1.02! Three of the largest transmissions are predicted for the first week, during periods of negative ASTD, and coincide
with the formation of secondary images (a’s). The addition of their intensity to that for the primary image is what significantly
increases these transmissions by about 0.3 (or 50%). From Fig. 7b, one further notices that while the differences between the
measured transmissions and the model predictions vary quite significantly about zero (¢ = 0.19), the average of these differences
is only 0.02. For the transmissions using the measured aerosol transmittance, the average difference is 0.09 £ 0.15 (= o).

Figure 7c shows that the measured aerosol transmittances (l’s) vary from 0.55 to 0.9, that those obtained using the measured
transmission measurements ((J’s) range from 0.15 to 1.1, and that the NAM based model used within IRBLEM predicts
transmittances ranging from 0.25 to 0.95 for the primary images. The predictions for the secondary images are generally about
0.05 less. From Fig. 7d, the average differences between the measurements and the predictions is 0.13 + 0.22, while that with
the transmittances calculated using the measured transmissions is 0.04 + 0.28. Furthermore, comparing Figs. 7b and 7d, one
notices that their highs and lows are very similar except that the differences calculated for the aerosol transmittances have a
greater variance. Figure 7e shows that, in general, the measured and calculated aerosol transmittances increase as the measured
visibility increases. A possible reason for the large scatter, in both Figs. 7d , 7e and 7b, may be due to the site at which the
visibility was measured. As mentioned earlier, it was measured at the Subbase; however, this site is not necessarily representative
of the visibility along the transmission path, and in particular near the midpoint of the path where the light rays are generally at
their minimum elevation above the sea. Furthermore, this path is highly nonhomogeneous, particularly on the Coronado end,
where there is a significant surf zone.

Figure 7f shows the variation of the predicted molecular transmittances over the mid IR waveband for both the weighted
weighting function (a’s) and the average weighting function ((J’s). As can be seen, the values for the weighted function are
always about 0.055 (~10%)greater then for the average function, and the transmittances only range from 0.67 to 0.75. Figure 7g
shows that this slight variation is essentially due to changes in the relative humidity.

Finally, Fig. 7h shows the predicted values of the refractance for both primary and secondary images. The refractance for the
primary images vary from 1.25 to 0.8, and as seen in Fig. 7i, this variation is essentially due to the air-sea temperature difference
(ASTD). The refractance for the four cases where secondary images are predicted are about half the values for the respective
primary images, and have no obvious dependence on the ASTD.

5.2 MID IR OVER THE 15 KM PATH

Looking at Fig. 8a, one notices that the measured transmissions ((’s) vary from 0.02 to 0.18, that those obtained using the
measured aerosol transmittance (l’s) range from 0.01 to 0.14, and that the model predicts total transmissions for the waveband
ranging from 0.0 to 0.2. The model also predicts nine cases where secondary images are expected, and three cases, during the
first week, when the source should be below the horizon (transmission zero). However, while in one of the three cases there is
good agreement, in the other two, the measured transmission is greater than 0.15. These are significant transmissions and when
compared with some of the other data, indicates that rather than the source being below the transmissometer’s horizon for these
two cases, the transmissometer was probably seeing both a primary and secondary image of the source. From Fig. 8b, one
discerns, that while the differences between the measured transmissions and the model predictions vary somewhat about zero
(0 =0.03), the average of these differences is only -0.02. For the transmissions using the measured aerosol transmittance, the
average difference is 0.02 * 0.05. Furthermore, if not for several strong negative ASTDs during the first week, the variances
would be even less.
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Figure 8c shows that the measured aerosol transmittances (l’s) vary from 0.25 to 0.87, that those obtained using the measured
transmission measurements ((J’s) range from 0.05 to 0.6, and that the NAM based model predicts transmittances ranging from
0.08 to 0.9 for the primary images. Again, the predictions for the secondary images are generally about 0.05 less. From Fig. 8d,
the average differences between the measurements and the predictions is 0.08 £ 0.25, while that with the transmittances calculated
using the measured transmissions is -0.13 + 0.16. Figure 8e shows that, in general, the measured and calculated aerosol
transmittances increase as the measured visibility increases.

Figure 8f shows the variation of the predicted molecular transmittances over the mid IR waveband for the average weighting
function ((°s). As can be seen, the transmittances only range from 0.17 to 0.20, and this slight variation is essentially due to
changes in the relative humidity (see Fig. 8g).

Finally, Fig. 8h shows the predicted values of the refractance for both primary and secondary images. The refractance for the
primary images vary from 1.55 to 0.0 (source below the horizon), and as seen in Fig. 8i, this variation is essentially due to changes
in the ASTD; however, the spread of the points about the curve fit becomes much more significant once mirage formation occurs
at sufficiently negative ASTD. One of the reasons for this is due to the high sensitivity which mirage (secondary image)
formation has on the elevation heights of both the source and the receiver, and on the heights of the waves. In San Diego bay
this is further complicated by the comings and goings of the tide. In fact, this is why no mirage is predicted on March 28", for
the 7 km path, when the ASTD is almost -4 °C. The refractance for the cases where secondary images are predicted are, again,
about half the values for the respective primary images, and have no evident dependence on the ASTD. There are also three cases
early in the week where the source is predicted to be below the horizon.

5.3FAR IR OVER THE 15 KM PATH

Looking at Fig. 9a, one notices that the measured transmissions ((’s) vary from 0.00 to 0.20, that those obtained using the
measured aerosol transmittance (l’s) range from 0.05 to 0.28, and that the model predicts total transmissions for the waveband
ranging from 0.0 to 0.6. The model also predicts at least 14 cases where secondary images are expected, and four cases, during
the first week, when the source should be below the horizon (transmission zero). Unfortunately, because of the switching
schedule of the dual transmissometer, no measurements were made in the FIR at these times. From Fig. 9b, one notices that while
the differences between the measured transmissions and the model predictions vary somewhat about zero (o = 0.06), the average
of these differences is only -0.04. For the transmissions using the measured aerosol transmittance, the average difference is
0.02 *+ 0.04. Furthermore, as for the MIR case, if not for several strong negative ASTDs during the first week, the variances
would again be less.

Figure 9c shows that the measured aerosol transmittances (l’s) vary from 0.6 to 0.95, that those obtained using the measured
transmission measurements ((J’s) range from 0.25 to 1.06, and that the NAM based model predicts transmittances ranging from
0.35 to 0.95 for the primary images. The predictions for the secondary images are generally about 0.05 less. From Fig. 9d, the
average differences between the measurements and the predictions is 0.11 % 0.18, while that with the transmittances calculated
using the measured transmissions is -0.10 + 0.28. Figure 9e shows that, in general, the measured and calculated aerosol
transmittances increase as the measured visibility increases.

Figure 9f shows the variation of the predicted molecular transmittances over the mid IR waveband for the average weighting
function ((0’s). As can be seen the transmittances have a much greater range than for the MIR, varying from 0.07 to 0.32.
Figure 9g illustrates that this variation is mostly due to changes in the relative humidity.

Finally, Fig. 9h shows the predicted values of the refractance for both primary and secondary images. The refractance for the
primary images vary from 2.2 to 0.0 (source below the horizon), and as seen in Fig. 9i, this variation is essentially due to changes
in the ASTD; however, as for the MIR case, the spread of the points about the curve fit becomes more significant once mirage
formation occurs at sufficiently negative ASTD. The refractance for the cases where secondary images are predicted are, again,

about half the values for the respective primary images, and show no dependence on the ASTD. There are also four cases early
in the week where the source is predicted to be below the horizon.

6. CONCLUSIONS

An analysis is presented showing the effects of refraction, aerosol extinction, and molecular extinction on transmission
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measurements obtained during the EO Propagation Assessment in Coastal Environments (EOPACE) campaign carried out in
San Diego during March and April 1996. Infrared transmission measurements were made over both a 7 km path (mid IR) and
a 15 km path (mid IR and far IR) at heights below 10 m above sea level (i.e., within the marine boundary layer). The average
difference between all the measured transmissions and aerosol transmittances over the two paths with results obtained using the
IR Boundary Layer Effects Model (IRBLEM) were found to be relatively small, even though the difference for individual
measurements can be significant. The effect of molecular transmittance, as calculated using MODTRAN, is found to reduce the
transmission by about 35% for the 7 km path, 72% for the mid IR over the 15 km path, and between 70% and 90%, depending
upon the relative humidity, for the far IR over the 15 km path. The effect of aerosol transmittance, as calculated using a variation
of the Navy Aerosol Model (NAM), is found to reduce the transmission from 10% to 90% for the mid IR over both the 7 and
15 km paths, and from 10% to 60% for the far IR over the 15 km path and seems to depend mostly upon the visibility. The effect
of refractance, the focussing and defocussing of radiation due to atmospheric refraction, on the predicted transmissions is found
to account for gains up to 20% and losses up to 20% for the 7 km path, and gains up to 100% and losses of 100% (source below
the horizon) for the 15 km path. Losses in transmission are predicted for positive air-sea temperature differences (ASTDs), while
gains are predicted for negative ASTDs if the source hasn’t disappeared below the horizon (100% loss). Due to the importance
of these effects and their dependence on different, though not necessarily completely independent, meteorological parameters,
any IR transmission model for the marine boundary layer (MBL) must properly take the effects of molecular extinction, aerosol
extinction, and refractance into account. Furthermore, due to the relative constant behaviour of the molecular transmittance
compared to the high variability of the aerosol transmittance, and the sometimes dramatic effects produced by refractance, the
total transmission can be thought of as fluctuating about the molecular transmittance with the fluctuations being controlled by
the amount of aerosol in the MBL, and then being further refined by the air-sea temperature difference.
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