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ABSTRACT

In this paper the landmine detection performance of an infrared and a visual light camera both equiped with a polarisation filter
are compared with the detection performance of these cameras without polarisation filters. Sequences of images have been
recorded with in front of these cameras a rotating polarisation filter.

Due to optical distortion of the rotating filter the sequence contains apparent motion. This motion is estimated from the
images and corrected using bilinear interpolation. From the motion corrected sequences both the unpolarised intensity and the
polarisation parameters are estimated.

The detection performance is evaluated with Receiver Operator Characteristics curves. It is shown that, for higher detection
rates' classifiers based on polarisation features perform better than classifiers based on the intensity cue only. The linear
combination of both has the best overall performance for the scenes considered. The infrared camera outperforms the visual
light camera in the difûcult scene.
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1. INTRODUCTION
One of the sensors often used for the detection of abandoned landmines is the infrared camera. flowever, since the detection
requirements are very high,l the detection performance has to be increased. A possibility to increase the detection performance
oT cameras is by using polarisation features. With the polarisation technique (parts of) mines can be discriminated from a
cluttered background, since man made objects have different polarisation features from natural objects. This effect holds
both in the visible and the IR, where IR is not suffering from low light tevel conditions. Using the polarisation filter with an IR
camera especially enhances the IR performance in situatjons with very low thermal contrast, tin." tir. IR polarisation contrast is
independent of temperature contrast. This enhanced performance may be used to improve a subsequent sensor-fusion process2
under these conditions.

To test the hypothesis of enhanced performance we conducted several measurements with a VIS and MV/IR camera, both
equipped with a rotating polarisation filter. This paper will show if and by how much these filrers improve the detection
Performance. The performance increase of the IR camera will be compared with the performance of a visual light camera, with
and without polariser.

. Due to optical imperfections in the rotating filter a specific spot in the field of view of the cameras will appear on different
pixels in subsequent images of a sequence. This so called motion reduces the accuracy of the estimation of polarisation
parameters from the image sequence. To'avoid this effect, the motion between the images is estimated and corrected before the
polarisation parameters are determined.

Stokes-Müller3 polarisation parameters.
background. The detection results are

ction results of the unpolarised images.
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2. POLARISATION
smooth surfaces. These smooth surfaces will reflect and/or emit polarised visual andfpolarisation depends on the surface properties and the angle betweenthe surface normalg objects, however, have generally rougher surfaces and thJy will u. ,"n..tlng ã]iiil"*

","*ii;:î::,ïîtïï1ijí åfr1 
tun""on of the angle s, where rp is the angle berween the principar axis of the polarisation

Io(p) = I + ecos(2ç) + I/sin(2rp), (l)where rp = 0 represents the situation that all horizontal polarised light waves pass the ¡inear polariser.If the intensity is measured for half a period (or lcn , le e {1,2, . .. } ), then the Stokes-Mülrer porarisation parameÞrs î, QandU are estimated by:

with lV the number of frames, i the frame number and g¿ - S the angle of the linear polariser.

_1NI = nD"t''¡i=l
_nNA : ¡Dt"t Scos(2e¿)

i=1

-,Nu: nD,'rrrssin(2pi), (2)

3. MEASUREMENTS
The experiments have been performed i
weather was quite unstable with rain, hai r test facility'a During these measurements the

was relatively low (2 to 3 degrees C) sin hermal contrast between mines and background

rain. autumn sun and a contrast reduction due to the

3.1. Scenes and mines

different kind of mines have been used. The mine set consisted of a metal theplastic AT mine with a camouflage paint. Several anti personnel (Ap) mines sricnar casings, medium sized Ap mines with a rubber top, a wooden mine u th.

3.2. Measurement setup

er. The IR filter consisted of a wire grid on a KRS_5 substrate

rhe rotation ,"ip ,rurt"d the acquisition of the frame
rate, the time between the frames and thus the rotation

complete sequence consisrs of 4g images for the VIS and 100
otation of the filter, which had a rotation time of just underZ
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Figure 1. Estimated translation of the images in the MWIR forest sequence, relative to the first image.

4. ANALYSß

{.1. Motion estimation and correction

Il' cach pixel contains independent Gaussian noise with variance ø2 then the estimation of I , Q and [/ also contains Gaussian

noise. The variance of this noise ls Ç for the noise on Í and Ç fo. the noise on Q and Ú. An estimate of the variance of the

Caussian noise ã2 on every pixel is given by:
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This estimated variance gives an indication of the motion induced by optical distortion of the rotating polariser in the
\cquence. When there is motion in the sequence, the edges between surfaces with different polarisation parameters will have a

lli-sher variance than the surfaces themselves. For the rest of the paper these edges will be identified by their higher than average
vrriance. The surfaces are defined as non edges.

To correct for this motion, only translations in the horizontal and vertical directions are considered. After estimation of this
trnnslations of each image relative to the first image, the images are translated back using bilinear interpolation.

'1 he performance of the motion corection and estimation is measured by estimating the standard deviation or Root Mean
Square (RMS) of the residual noise in the image: the root of Eq. 3. Two different parts of the image are evaluated separately:
the cdges and tbe surfaces of objects.

In the first line of Table 1 the residual noise for the uncorrected forest MWIR sequence is given. It is clear that there is
trlotion. since the edges have a much higher residual noise than the surfaces.

Cor¡ecúon method surfaces overall

r2
_ to@)) (3)

Uncorrected
Full correction
Unconstrained ellipsoid -

Constrained ellipsoid
Circular

34.4

1.2
7.6
7.6
7.3

5.5

5.5
5.5

5.ó

5.5
5.6

5.6
5.6
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I a hle l. The average residual noise (RMS) in the MWIR forest sequence for the different sections of the image after correcting
i 'r motlon induced by the rotation of the polarisation filter.



Correction method
orrected

Full correction
Unconstrained ellipsoid
Constrained ellipsoid
Circular
Sub image correction

32.9
21.4
21.6

2t.5
21.2
t4.2

Full Motion
Full EiliDSe

Const. Elliþse
Gircle

surfaces

14.8

8.8
9.0
9.1

8.8
8.2

Thble 2' The average residual noise (RMS) in the vLS forest sequence for the different secrions :f ,1..T1q, afrer conecüngfor motion induced by the rotation or the poíarisation filter. For thå sub image correction the image is divided into 9 sub images.

ûrst attempted to estimate the translation without any restrictions. The rFigure l. The Fourier spectrum of this estimated transration ,ho*, u l-g" .o.pcomponenr may be caused by the polarised pixels, since the int.nJrf variationHowever, if we consrrain the transraiion estimåtion to eilipsoid, eiiipr"lä, with thedirection, or a circre, the residuar noise is similar to the full correction, see the numbnoise of the edges of the MwIR sequence has the ,um" ,nagnítuã.-ï- ir,. 
"ag.,motion estimation is working.

The most simple motion model is the circular motion. with this motion estimation and correction the residual noise is oneof the lowest and in the remaining of this papeç we will be using tt i. *ãüon moder for correction and estimation for the M*IRcamera.

For the vIS sequence' the residual noise for the full and restricted motion.models are given in Table 2 and Figure 2(a). ïhe
i:'ffft Ïj::,1î,tL";oi;:,:i1ffJ:*ntiallv higher than the ."si¿uur noise or the suiraces. rhis means tnult tr,",àî ,tirr

This residual noise can be caused by a curvatu leading to more complex motion than onrytranslations' The image is divided into 9 sub image s supposition. A fulr motion estimation andcorrection is performed on these sub images. The
sub images are joined' rhis procedure teaãs to a signin.unt decrease or rhe residuaiiiSi."r'"iirïlii.'i?¿åî?î3#I; ll!edges and the surfaces is still significant' so a more complex motion model should be used to get further improvement.
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Figure 2' Estimated Fanslation of the images in the vIS forest sequence, relative to the first image for the whole image (a) ndthe chaotic rranslarions for the image diridä;;o 9 sub images (b).



J,l. Performance evaluation

\ e lassifier for mine detection assigns every pixel to one of the two classes: mines or background. Based on this classification,
l,,ur situations occur:

correct classification of a mine (i.e. a detection),

correct classification of background,

wrong classification of a mine (i.e. a false alarm)

wrong cìassification of background (i.e. a missed detection).

The detection rate per frame is defined as the number of detected mines divided by the total number of mines. A mine
rs detected if one of the pixels is classified as a mine. For a complete evaluation of the classifiers based on the polarisation
piìrameters, the deteclion rate as function of the false alarm rate will be presented in the form of an ROC curve.6 The definition
ol the false alarm rate is not straight forward: there are no identifiable background objects. Three possible definitions exists:

L fraction ofthe detected background pixels,

2. number of clustered background objects,

3. fraction of detected_background grid cells (an area containing pixels) of a grid laid out over the image, for example
SCOOP processing.T

The first definition does not take into account the spatial distribution of the pixels of the grid. The second definition is
unbounded and does not take into account the size of the objects. The third definition takes into account both the distribution
rnd the object size, for a well chosen grid cell size. This third definition will be used. Every grid cell with at least one detection
in its pixels is counted as a detected grid cell.

This third type of false alarm calculation, follows possible operational scenarios more closely than the other two. Whenever
there is a single detection it is most likely that the mine clearance personnel will take a larger area into consideration than this
srngle detection. Thus an a¡ea around this detection will be prodded and rherefore the fraction ofdetected backgroundpixels is
not a good measure for the workload of the mine clearance personnel. The same holds for the second definition: the size of a
tletection influences the amounr of work, but it is not weighed in this definition.

The remaining of the image, that does not contain mines is divided into rectangles with a foot print of roughly 2}by 20 cm2 .-fhe 
false aìarm rate is defined as the fraction of these background rectangles with at least one detection.

{.3. Classifiers
'fhe mines in the MWIR sequences have a higher apparent temperature than their surrounding background. The intensity cue
is a 

.measure 
for the temperature and can therefore be used in a classifier: mines can be discriminated from background based

on the intensity.

The mines in the VIS sequence have a different shade of grey than their background. That's the reason why they are visible*.'flrc. 
intensity of the background can be higher or lower than the intensity of the mines, so a single threshold will not suffice and

tlouble thresholds are necessary in the VIS sequence.

he polarisation features are evaluated. The threshold of every
the false alarm rate and the detection rate (i.e. a point of the
that are on the upper halfofthe convex hull through all points.
ine can be reached by combining two classifiers as defined by

For the classifiers based on polarisation features, the linear polarisation (LP) amplitud e Lp : /æfÚt and the degree
t rl linear polarisation (DoLP) DoLP : LP I QP + I) are used. Another classifier could be based on the angle of the polarisation
lound, but such a classifier is not yet considered by this paper.

I he mines can also visible due to different texture, but this feature rs not used here.

I

t.

l

245



(a) Intensity (b) Linear polarisation

(c) Polarisation angle (d) Residual noise (logarithm)

tr'igure 3. Images of VIS camera with test mines on a clean sand background after motion correction. Note that the angle ìmagc
is not calibrated.

Combining intensity cues and polarisation cues may enhance the discriminating features of the mines in relation to rheir
background. A simple form of combination is the linear combination; I (I - 2a) + aLp, with o as a factor in the range berwecn
0 and l. For a range of scaling factors the detection results are calculated and the best results are included in r¡e ROC. This
implies that when one moves from one point of the ROC to the other, not only the threshold varies but also the scaling factor o.
For the VIS camera, the absolute value of the difference between the pixel intensity and its mean is used as its intensity cue.

5. RESULTS
5.1. Sand test lane results
Ïle visual images of the sand test lane after motion correction are shown in Figure 3. This scene is rather easy, since all mlncs
are clearty visible in 3(a). The image of the linear potarisa 

"f 
th" ;i;;;. rná'ungt, æ show¡

in Figure 3(c) gives an indication oi the orientation of the is not perfect since tlhere are srill
visible edges present in the residual noise image Figure 3(d). p*"a tå the size of the mines rhar
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l'igure 4. ROC curves for both the VIS and the MWIR sequences of the sand test lane, for the intensity (I), the linear polarisation
t l.P) and the degree of linear polarisation (DoLP) and the linear combination of LP and I.

thcir influence on the detection performance is expected to be limited. Besides these edges, there is also a correlation with the
rntcnsity image visible, which needs to be studied.

The detection results on the images in this scene are given in Figure 4(a); only the I, LP and DoLP are shown. A mine is
tlctccted when one of its pixels has a detection. The detection results are perfect for the classifiers based on the intensity cue
'rnd the degree of linearpolarisation, since 1007o detection rate is achieved without any false alarms. On the intensity cue a
'|ruble threshold is used centered around the mean pixel value. The classifier based on the linear polarisation cannot detect
l(x)o/o of the mines without a false alarm. This is due to some spots in the background with a high Lp, see Figure 3(b).

The images of the infrared camera are shown in Figure 5. Due to the low thermal contrast, the quality of the images is not
"ptirnal and they contain more noise than the images of the VIS camera. The edge of the test lane which is visible in these
ttttrtqes is ignored to make the scene similar to the VIS scene. In the linear polarisation (Figure 5(b)) and the angle image
tlrrgure 5(c)), the mines are less visible than in the VIS scene. The residual noise (Figure Sia¡¡, froweve¡ does nor conrain
ctlucs. so the motion correction is performing better on this sequence. This is more relevant for this scene, since due to the more
lrrrtrled resolution (256 by 256 pixels), motion has a larger impact.

The detection.results of the MWIR forest sequence are given in Fi quality,
lhc detection performance is lower than for the VIS ,"qu.n... The in lassifier
hrsed on the linear polarisation. The linear combination of the intensi an each.rnsle classifier.

. For this sequence, it is evident that an t** camera is not necessary and may even perform worse than the VIS camera.
'\r)netneless, the fusion of the intensity cue and the linearpolarisation clearly improves the detection performance of the infrared-.ìmcra: rhe circles in Figure 7(b).

0.9

0.8

c)
(E

c
.9
oo
o)ô

0.7
'1
I 0.6
g

5 0.s

E 0.4
0)

0.3

0.2

0.'l

0
Q.',t 0.2 0.3 0.4 0.5 0.6 0.7 0.8

False alarm rate [-]

0.9



(a) Intensity (b) Linear polarisation

(c) Polarisation angle (d) Residual noise

Figure 5. Images of MWIR sand sequence after motion correction.

(d) Residual noise (logarithm)
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(a) Intensity (b) Linear polarisation

(c) Polarisation angle (d) Residual noise (logarithm)

Figure 6. Images of VIS forest sequence after motion correction.

S.2. Forest area

fhis area represents a more difficult scenario than the sand lane. The scene contains fallen leaves and branches of trees. Most
')l the test mines here have been laid here over a year ago and have not been disturbed since. The images were taken under
rclative good weather conditions: the last hai-l shower was almost 5 hours ago and the sky was clear throughout the morning.

In Figure 6, the polarisation features for the VIS camera are shown. In the image representing the residual noise there are
Itrll edges visible, indicating that the motion estimation and correction is not perfect.

In Figure 7(a), the detection results based on the intensity èue and the polarisation features are shown for the MÌùIIR
rcQuencê. For this sequence, classifiers based on polarisation features perform better than the classifier based on the intensity
)rt¡ þis¡ detection rates.

-lhe 
optimal combination of the double threshold in the intensity and the linear polarisation gives the best detection results

r''r the VIS. The double threshold is the absolute difference between the intensity and the average intensity. As before, the
¡rttmal weighing factors ¿ and threshold differ for each point of the ROC.
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Figure 7' Roc curves for the forest sequence, for the intensity (I), the linear polarisation (Lp) and the degree of linearpolarisation (DoLP) and the linear combinãtion I and Lp.

In Figure 8, the estimated intensity, the linear polarisation and the polarisation angle are shown for the MWIR cameraacquired at the forest area. The residual noise does not show edges, so the motion correction seems to work correctly for rhisMWIR sequence.

In Figure 7(b)' Roc curves shown. It is clear that for lower false alarm rates, the intensity cuccan make a good discriminatiol eund, however for high detection rates the linear polarisation has atower ratse atarm rate than the c g.
The optimal linear combination of the intensity cue and the linear polarisation performs better than each individual classificr.The weigh factor a is optimal chosen for each thresbold.

Tbe detection performance of the vIS cameÍa on this sequence is lower than the detection performance of the MWIRcamera' This may be caused by the more discriminating intensity cue of the MWIR, due to differences in thermal properties
Del.ween the mlnes and their background.

6. CONCLUSIONS

o increase the detection

performance of an VIS

filter induces motion in

The advantage of this setup with rotating polari
pixels is available. Furthermore the noise õn tne i
detection rates it is shown that the polarisation featu
cue alone. The optimal combination or fusion of th

neous background the VIS camera performs much better than

cameta is lower than the performance of the MWIR camera.

intensity cue of the MV/IR camera performs berter ùan úc
tion gives even an better result.
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(a) Intensity

(c) Polarisation angle

Figure 8. Images of MV/IR forest

(b) Linear polarisation

(d) Residual noise (logarithm)

sequence after motion correction.
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7. FUTURE WORK

ise using a camera from a newer generation withnce The difference in polarisation features ofthe
als

Furtherprocessing 'å:l"1"JJiË"r,"J"îï'l:,:'"i"î."iiJ:åJfr::i"#i:i#iJJ"lifllîïïåîîî
of objects' can lead to a false atarÀ. ny clustering pixels iito objects the false utu.^ .ut" *iy" 6.decreased.

More scenes will have to be evaluated to make a better comparison between the normal cameras and the cameras equippedwith polarisation filters. The influence of different weather anðlighting conditions on the detection performance must also bestudied.

In this paper' the optim d on the same data set. For an operadonal
system' these parameters h from a training set. The consequences onthe detection performance 

e determined.
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