
Implementing a Cognitive Model in Soar and ACT-R:
A Comparison

Tijmen Joppe Muller
tijmen.muller@tno.nl

Department of Training and
Instruction

TNO Defence, Security and
Safety

P.O. Box 23, 3769 ZG
Soesterberg, The Netherlands

Annerieke Heuvelink
annerieke.heuvelink@tno.nl

Department of Training and
Instruction

TNO Defence, Security and
Safety

P.O. Box 23, 3769 ZG
Soesterberg, The Netherlands

Fiemke Both
f.both@few.vu.nl

Department of Artificial
Intelligence

Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081 HV
Amsterdam, The Netherlands

ABSTRACT
This paper presents an implementation of a cognitive model
of a complex real-world task in the cognitive architecture
Soar. During the implementation process there were lessons
learned on various aspects, such as the retrieval of work-
ing memory elements with relative values, alternative ap-
proaches to reasoning, and reasoning control. Additionally,
the implementation is compared to an earlier implementa-
tion of the model in the ACT-R architecture and both im-
plementations are discussed in terms of cognitive theories.

1. INTRODUCTION
People performing tasks in uncertain and dynamic envi-

ronments require much training in order to gain the neces-
sary expertise. However, the nature of these tasks makes it
hard to set up real world training. An appropriate alterna-
tive for training decision making in complex environments
is scenario-based simulation training [17]. To create a useful
training, a simulation needs to represent the aspects of the
real world that are vital for achieving the learning objectives.
One of these aspects is human interaction; therefore, simu-
lated entities that respond naturally and validly are needed.
These entities, known as agents, can be used to simulate
team members, opponents or bystanders. There is growing
conviction and evidence that cognitive agents can be devel-
oped by capturing human cognitive processes in a cognitive
model and implementing it in a cognitive architecture [19,
20, 8].

An architecture poses constraints on the implementation
of a model and therefore influences design choices. This
paper reports the experiences of implementing the same for-
mal cognitive model in two different cognitive architectures.
First, the implementation of the model in the cognitive ar-
chitecture Soar [13] is presented. This agent performs a
real-world task in a complex environment. Implementing
the cognitive model provides insights into the use of Soar
for agent applications and it may be used to validate the

Jung, Michel, Ricci & Petta (eds.): AT2AI-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

model’s behavior in future research. Next, the Soar imple-
mentation is compared to an earlier implementation of the
same model in the cognitive architecture ACT-R [2]. This
allows for the second goal of this paper: the comparison of
Soar and ACT-R.

The next section presents the cognitive task and the for-
mal model. Section 3 presents the ACT-R architecture and
the implementation, BOA. Section 4 elaborates on the im-
plementation in Soar, which resulted in the agent named
Boar. The paper concludes with a comparison of both im-
plementations on various aspects and their connection to the
cognitive theories.

2. COGNITIVE TASK AND MODEL
The real-world task that has been modeled is the tacti-

cal picture compilation task (TPCT) from the naval warfare
domain. In this task, a navy operator sees a large number
of radar contacts on his display. Each contact indicates a
detected vessel in the vicinity of the own ship. The iden-
tities and classifications of these vessels are unknown. The
operator can obtain information on these tracks by monitor-
ing the radar screen, such as speed, course, distance to own
ship and adherence to shipping lanes. The task of the oper-
ator is to use this information to determine both the iden-
tity (e.g. hostile, friendly) and the classification (e.g. frigate,
fishing boat) of each contact.

A complete cognitive model of the TPCT is constructed
using the principles described in this section. The model
is based on an extended Belief, Desire and Intention (BDI)
framework [7]. BDI facilitates the translation of domain
knowledge into a model since domain experts tend to talk
about their knowledge in terms similar to beliefs, desires
and intentions. The domain knowledge needed to model the
TPCT has been elicited from naval experts [6].

In order to develop cognitive agents for training purposes,
cognitive behavior that can vary in level of rationality needs
to be modeled: agents that can perform a task on differ-
ent levels of expertise are needed. To make this possible,
a belief framework was developed [9]. Three arguments are
added to beliefs: a timestamp, the source of the belief and
a certainty level. BDI models usually throw away beliefs as
soon as a new belief is created that causes an inconsistency.
However, to enable reasoning over time, every belief is kept
and labeled with the time of creation. The source and cer-

tainty labels make it possible to reason about information
from multiple sources and with uncertainty, and reasoning
can be done in both a rational and a biased way. A be-
lief belief(P(A, V), T, S, C) has a predicate P with attribute A

and value V, a timestamp T, source S and certainty C. Be-
low is an example belief – there was an Identification of
contact1 as friendly with certainty 0.7, done by reasoning
rule determine-id on timestamp 12:

belief(Identification(contact1, friendly),

12, determine-id, 0.7)

A cognitive model typically consists of declarative knowl-
edge, denoting facts, as well as procedural knowledge, denot-
ing reasoning rules. Besides modeling how to reason, it is
also necessary to model the control on when to reason about
what. The next subsection presents the format of the declar-
ative and procedural knowledge and subsection 2.2 explains
the control structure of the model.

2.1 Reasoning over Beliefs
The goal in the tactical picture compilation task is to cor-

rectly classify and identify all contacts. In order to fulfill
this goal, the agent needs information about the contacts’
behavior. There are two ways to gather such information.
The first is from the external world, e.g. the agent can watch
the screen that displays information from sensors such as the
radar system. Additionally, the agent can decide to perform
actions that lead to more knowledge about the situation,
such as activating its radar or sending a helicopter to inves-
tigate a contact. The second method to gain information
is through the internal process of reasoning about beliefs to
deduce new beliefs. In the reasoning process, often multiple
beliefs form the evidence for the formation of a new belief.
Any uncertainty in the source beliefs will be transferred to
the new belief.

An example of this type of deduction is reasoning about
formations. If a number of vessels have the same course and
are close to one another (source beliefs), they might move in
formation (new belief). Moving in formation is an indication
that these vessels are frigates. Figure 1 contains an example
rule that is part of reasoning about formations. The position
of the contact that the agent is currently reasoning about
is compared to the position of every other contact that is
detected by the radar system. A new belief is created for
every pair that indicates how certain the agent is that they
are within a distance that can indicate a formation.

The function Position-Difference calculates the distance
between two positions, Certainty-Handling-Positions-

Difference calculates the certainty of the distance given the
position certainties, Possible-Distances returns all possi-
ble distances given the calculated distance and certainty, and
Reason-Belief-Parameter adds the timestamp and stores
the belief in long-term memory. In this example, the latest
beliefs about the positions are used. In other rules, beliefs
are used that ever had a specific value, or those beliefs the
agent is most certain about.

2.2 Control of Reasoning
Control is an important aspect of a cognitive agent; it

determines when the agent does what. In the TPCT there
is one main goal, which is considered the navy operator’s
desire in the BDI model: to identify all contacts correctly.

Determine-Within-Formation-Distance-

Contact(X)
for all Y

if (
belief(PositionContact(X, P1), T1, S, C1)
belief(PositionContact(Y, P2), R1, S, C2)
Position-Difference(P1, P2, D)
Certainty-Handling-Positions-Difference

(C1, C2, D, C3)
Possible-Distances(D,C3, [R])
M = maximum-distance-relevant-for-formation
C4 = (number-of-[R ≤ M])/(number-of-[R])

) then (
Reason-Belief-Parameter

(WithinFormationDistanceContact(X, Y),
DetermineWithinFormationDistanceContact, C4)

)

Figure 1: Rule for determining if two contacts are

within formation distance

The three subtasks that the agent can perform in order to
fulfill this desire are:

1. processing information about contacts on the screen;

2. changing the activity of the radar system; and

3. sending the helicopter on observation missions to gain
more information about a specific contact.

The subtasks above are the intentions of the BDI model
that the agent can commit to. A valid manner in cognition
to determine when which intention becomes a commitment
is to have events in the world trigger an intention. For ex-
ample, when a contact suddenly changes its behavior, the
attention of the agent should be drawn to this contact, re-
gardless of the current intention. However, this type of con-
trol requires a parallel processing of all events in the world
and a parallel checking of relevancy for all subtasks, which
is hard to implement. This is why currently a simpler, linear
control system is modeled. The agent alternately commits
to one of the three intentions to simulate parallel processing.
Within the subtasks, the control is also kept simple, e.g. in
the first subtask all contacts on the screen are monitored
consecutively.

The rule in Fig. 2 illustrates a part of the simple con-
trol structure. It determines when the agent starts commit-
ting to a new intention. The input parameter I is the cur-
rent intention, the rule Start-New-Intention-Selection

determines which intention is selected next depending on
beliefs about contacts, and the rule Select-Next-Contact-

To-Monitor selects the next contact from the list.

3. BOA
In order to execute the model that was presented in the

previous section, a cognitive agent needs to be implemented;
cognitive architectures are a suitable platform for this pur-
pose. Such an architecture specifies a fixed set of processes,
memories and control structures [15] that define the under-
lying theory about human cognition. The architecture limits
implemented cognitive models by this set and consequently

Determine-New-Intention(I)
if (

I = Monitor-Contacts
belief(NumberOfContactsMonitored(X), T1, S, C)
X = maximum-number-of-contacts-to-monitor

) Then (
Start-New-Intention-Selection(I)

) Else if (
I = Monitor-Contacts
Number-of-Contacts(X)
X < maximum-number-of-contacts-to-monitor

) Then (
Select-Next-Contact-To-Monitor()
Reason-Belief-Parameter

(NumberOfContactsMonitored(X + 1),
DetermineNewIntention, 1)

)

Figure 2: Rule for determining a new intention

imposes its cognitive theory on these models: it should make
correct models easier and incorrect models harder to build.
Moreover, the actual behavior of the agent is influenced by
the architecture [12].

The presented model has already been implemented in
the cognitive architecture ACT-R [4] – this implementation
was named BOA. Since this research has been done earlier,
several new developments in ACT-R are not taken into ac-
count [1]. However, the insights reported here are neverthe-
less of interest from an agent-application perspective: sev-
eral of the issues mentioned in this paper have been changed
in the latest version of ACT-R. These developments in ACT-
R seem to support our experiences that the architecture was
too restrictive on some aspects.

3.1 ACT-R
The theory of ACT-R incorporates two types of mem-

ory modules: declarative memory and procedural memory.
Declarative memory is the part of human memory that can
store items; procedural memory is the long-term memory of
skills and procedures. ACT-R consists of a central process-
ing system, where production rules, representing procedu-
ral memory, are stored and executed. The central process-
ing system can communicate with several modules through
buffers. One of those modules is the declarative memory
module where memory items are stored. These memory
items, called chunks, are of a specific chunk-type, which can
be defined by the modeler. In a chunk-type definition, the
modeler defines a number of slots that chunks of this type
can assign values to. Chunks from the declarative memory
module can be placed in the retrieval buffer if they match a
retrieval request made by a production rule. A retrieval re-
quest must contain the requested chunk-type, and may con-
tain one or more slot-value pairs that the chunk must match.
The matching chunk is then placed in the retrieval buffer, so
it can be read by a production rule. All buffers in ACT-R,
including the retrieval buffer, can only store one chunk at a
time, even when more chunks match the conditions of the
request. If more chunks are available, an activation function
defining the accessibility of chunks is used to select a single
candidate.

3.2 Implementation Issues
The implementation of the cognitive model in ACT-R re-

sulted in three main observations. The first focuses on the
limit of one chunk in the retrieval buffer. The model pre-
scribes access to multiple beliefs in the working memory at
the same time in order to reason over them. For example,
different positions in time are compared in order to deter-
mine a contact’s speed. The ACT-R implementation sup-
ported this by using the goal buffer for temporary storage
and LISP functions to retrieve beliefs.

The second observation was the fact that retrieving a be-
lief with specific features (for example, the belief created
last, i.e. with the highest value for the time slot) is not guar-
enteed by using ACT-R’s activation function. For example,
the agent often uses the latest position of a contact, so he
needs the latest belief with predicate position-contact for
a specific contact. It may however be that an older chunk
has been retrieved more often than the latest chunk, result-
ing in a higher activation score and subsequently the older
chunk being retrieved. As a solution, LISP functions were
created as substitute to the activation function.

The third issue is about the many calculations the cogni-
tive model requires: these can only be modeled in a low-level
manner, making it inefficient to implement them in the ar-
chitecture. For example, calculating the speed of a contact
from its positions over time would require many production
rules, while it would not represent the actual cognitive pro-
cesses of a warfare officer. Here too LISP functions were used
for these type of calculations. As a result of this problem
and the previous problem, about half of the programming
code consists of ACT-R production rules and the other half
of supporting LISP functions.

3.3 Control
Control in the context of BDI agents aims at specifying

the commitment of the agent at a certain time. The inten-
tions to which the agent can commit and the type of control
in the cognitive model were described in section 2.2. The
BOA agent implements a simple, linear control system. The
agent commits alternately to each intention and within the
intention of processing screen information, the contacts are
monitored sequentially. This is illustrated by the rule in
Fig. 3.

(p select-next-contact-goal1

=goal>

ISA commitment1

goal monitor-contacts

state next-contact

contact =contact1

==>

!bind! =contact2 (determine-next-contact)

!eval! (determine-rate-other-desires)

!bind! =eop (= (mod *counter* *rate-other*) 0)

=goal>

plan read-basal-info

state start-step

contact =contact2

eop-marker =eop

)

Figure 3: ACT-R code for intention selection

The rule requires the agent to be committed (commitment1)
to monitoring contacts and be ready to select a new contact
to monitor. This new contact is determined by the user-
defined LISP function determine-next-contact, which loops
through the list of contacts. The *rate-other* variable de-
fines the number of contacts after which the agent switches
to another intention: if this number is reached, the end-of-
process marker (eop) is set to true. The agent will then con-
sider committing to sending the helicopter, followed by con-
sidering to commit to changing the radar. After these con-
siderations and, possibly, reasoning and actions, the agent
continues monitoring contacts. Reacting to events in the
environment is limited to altering the order of the list of
contacts in the ‘monitor contacts’ intention: if a contact has
been identified by the helicopter, that contact is moved to
the top of the list to force the agent to monitor it next.

4. BOAR
This section presents the Boar agent, which is the imple-

mentation of the model from section 2 in Soar. The next
subsection will explain this architecture in more detail and
subsection 4.2 describes several implementation issues.

4.1 Soar
Soar, like ACT-R, is a well-known cognitive architecture.

Soar defines the world as a large problem space with states
and goals. It considers behavior as movement in the problem
state by performing actions, either internal (mental activity)
or external (observable in the environment). In Soar, this
is done by operators; in a single cycle, more operators can
be proposed, one of these is selected and eventually applied,
changing the state of the environment. Goal-directed be-
havior states that the agent will choose those operators that
lead to a goal state. [14]

The memory structure of Soar is somewhat similar to that
of ACT-R. It specifies two types of memory: the long-term
memory, consisting of procedural, semantic and episodic
knowledge, and the working memory, corresponding to ACT-
R’s declarative memory module. The working memory con-
sists entirely of working memory elements (WMEs), which
are attribute-value pairs. The attributes of a WME need
not be defined beforehand, as is the case with the slots of
a chunk. Additionally, the number of WMEs that can be
accessed at one moment is not limited – there is no such
thing as a retrieval buffer in Soar.

In long-term memory, the procedural knowledge is primar-
ily responsible for the behavior of an implemented model and
is defined in terms of productions. When conditions apply,
a production either proposes the execution of an operator
or it executes some reasoning independent from an opera-
tor – both may result in changes to the working memory.
The difference lies within the persistence of the changes: a
WME that was created by an operator will stay in work-
ing memory until an explicit change is made. A production
without operator reference, also called elaboration, creates
WMEs that only exist as long as the conditional part of the
elaboration matches. The first is said to have operator sup-
port or o-support, while the latter has instantiation support
or i-support.

Soar’s productions fire in parallel: all productions that
have one or more matches for their conditional part in the
current state will execute. Consequently, many operators
may be proposed at a single moment. Which operator is

selected is resolved by means of preferences, which can be
added to an operator.

The fact that Soar allows more production rules to fire
simultaneously is in contrast to ACT-R’s procedure: here,
only one production rule can fire at a single moment. If
more chunks are available for retrieval by this production,
the activation function determines beforehand which chunk
is picked.

If a task is too complex to solve by simply adding some
beliefs to the working memory, it can be decomposed in
subtasks. An example is reasoning about the usage of the
helicopter. In order to decide which contact the helicopter
is sent to, all contacts are scored. The rule for proposing the
operator that scores a single contact is shown in Fig. 4. If
this operator is chosen, there is no immediate score available
to be added as belief: it needs to be calculated. As a result,
there is an impasse and a new substate is created which
has the goal to calculate this score. Various operators are
available to calculate a part of the score; after each operator
calculated its part, the score is available and the attribute
heli-score will have a value. Consequently, the operator
shown in Fig. 4 will be retracted, having achieved its goal.

Propose to score a contact
sp {consider-heli*propose*score-contact

(state <s> ^name consider-heli
^contacts.contact <contact>
^top-state.constants <const>)

(<constants ^max-distance <max>)
No score, no visual id

and in range of self
(<contact> -^heli-score

-^visual-id-belief
^distance-to-self <= <max>)

-->
(<s> ^operator <op> + =)
(<op> ^name score-contact

^current-contact <contact>)
}

Figure 4: Soar code for proposing to score a contact

4.2 Implementation

4.2.1 Retrieving Beliefs
In section 2 we argued that the model needs to be able to

reason over time. For example, in Fig. 5 the latest position
of the own ship (self) is retrieved, i.e. the belief with the
maximum value for the time attribute. This is an example
where a belief with a relative value is needed for a certain
attribute and the absolute value is of no importance. How-
ever, it is not easy to match such a belief if no absolute value
is available. We tackled this problem by ordering the beliefs
with greater-than and smaller-than relations. In order to
retrieve the last-but-one belief a new production needs to
be added, another for the last-but-two, and so on.

4.2.2 Reasoning Efficiency
Two alternatives arise when generating new knowledge

by means of reasoning (i.e. internal action). As explained in
subsection 4.1, there are two ways of adding new elements
to the working memory: either with o-support or with i-
support. The advantages of using i-supported WMEs are:

Calculate distance of contact to self.
sp {boar*elaborate*contacts*distance-to-self

(state <s> ^name boar
^beliefs <beliefs>
^contacts.contact <contact>)

Retrieve latest position of self
(<beliefs> ^belief (^predicate position-contact

^attribute self
^time <time>
^value <self-pos>))

-(<beliefs> ^belief (^predicate position-contact
^attribute self
^time > <time>))

Retrieve position of contact
(<contact> ^position-belief.value <pos>)

-->
(<contact> ^distance-to-self (float (exec

calcPositionDifference
<self-pos> |;| <pos>)))

}

Figure 5: Soar code for retrieving the distance be-

tween contact and own ship

1. they are created automatically if the conditions or the
creating production apply in the current state;

2. they are removed if this not the case anymore and thus
are not valid in the current state; and

3. they are updated automatically if new information is
available.

The advantage of o-supported WMEs is that they are only
created when the operators are proposed explicitly, so only
at these times some reasoning is done.

If the beliefs that are used for reasoning stay the same for
some time, it is more efficient to use elaborations and thus
create i-supported WMEs, because if operators are used for
this reasoning, they may perform the same reasoning steps
multiple times. If beliefs change continuously, the use of
elaborations may become computationally expensive, be-
cause they perform the reasoning at every change, even if
the results are not used. In this case using operators and
o-supported WMEs is more efficient. There is no clear pro-
cedure for choosing i-support or o-support: one should think
about the trade-offs for every situation in order to pick the
most efficient option.

To draw the differences between creating i-supported and
o-supported WMEs more clearly, an implemented example
of both types is given. First consider the production in
Fig. 5. It continuously creates an i-supported WME with
the distance of contact <contact> to the own ship. Ev-
ery time a new position is observed, either from the own
ship (<self-pos>) or the contact (<pos>), the conditional
part of the production for the old WME does not match the
current state anymore and the WME is discarded. At the
same time, the newly observed information is used to cre-
ate a new WME for the contact with the distance-to-self
attribute, and thus the knowledge has been automatically
updated. For this reasoning step the i-supported option has
been chosen, since the distance is needed continuously for
other reasoning. Using an operator would mean that this
operator needs to calculate this distance every time the in-
formation is needed.

Now consider the production in Fig. 4. This production
sets in the creation of knowledge with o-support: it proposes
an operator that, when applied, will assign a certain score
to a contact. This score is used for considering to send a
helicopter to the contact for identification. This scoring is
only done incidentally, which makes the use of an operator
a better choice. An elaboration would update this score
continuously, even while it is not needed most of the time.

identify all contacts

H
H

HH

�
�

��

monitor contacts send heli change radar

P
P

P
PP

```````̀

contact1 contact2 . . .

Figure 6: Overview of intentions

4.2.3 Control
The Soar architecture does not provide the means to easily

keep a list of contacts, which makes it hard to implement
a sequential control for committing to the three intentions
described in subsection 2.2. Alternatively, it easily allows
the creation of subgoals, as explained in subsection 4.1. By
defining the monitoring of every contact as a subgoal of the
‘monitoring contacts’ intention, the structure of goals and
subgoals becomes as shown in Fig. 6.

The commitment to one of the three intentions is de-
cided as follows: if an event triggers the intention to send
a helicopter or change radar activity, the agent commits
to this intention. Otherwise it will first monitor all con-
tacts, then consider sending the helicopter and finally con-
sider changing radar activity. The linearity of this cycle
is forced by explicitly remembering the control status in
WMEs. Figure 7 shows the commitment to monitoring con-
tacts: when a new cycle starts, the time is saved in the
start-process-passive attribute. Then every contact not
checked after this time (-^checked > <starttime>) is mon-
itored and gets tagged with a new time, until all contacts
have been checked this way. After completing the helicopter
and radar intentions, a new cycle is started. The order of
checking contacts is random and may be different each cycle.

sp {boar*propose*process-passive-information
(state <s> ^name boar

^start-process-passive <starttime>
^contacts.contact <contact>)

(<contact> -^checked > <starttime>
^id <contact-id>)

-->
(<s> ^operator <op> + =)
(<op> ^name process-passive-information

^current-contact <contact>)
}

Figure 7: Soar code for proposing to monitor a con-

tact

An example of an event triggering the ‘send heli’ intention



is shown in Fig. 8. It simply states that if the helicopter
is airborne and does not have a mission, for example just
after identifying a specific contact, the agent should commit
to reasoning about what it should do. This commitment
can break into the aforementioned cycle at any time the
conditions apply.

# A heli is considered when it has
# no mission and is airborne.
sp {boar*propose*consider-heli*airborne

(state <s> ^name boar
^helis.heli <heli>)

(<heli> ^id <heli-id>
# Heli has no mission and is airborne
^mission free
^status airborne)

-->
(<s> ^operator <op> + =)
(<op> ^name consider-heli

^heli <heli>)
}

Figure 8: Soar code for the event-driven selection of

the ‘send heli’ intention

4.2.4 External Functions
The simulation environment for performing the tactical

picture compilation task is created in Game Maker [18]. It
simulates a radar screen with information about the contacts
in the surroundings. The simulation environment reacts on
certain actions, e.g. clicking on a contact will provide de-
tailed information about it.

For letting Soar communicate with this Game Maker en-
vironment an interface is needed, which is implemented in
Java. The actions of the agent are written to a text file by
the Java interface, read by Game Maker and consequently
performed in the environment. An example of an agent ac-
tion is the request for detailed information, which simulates
a mouse click by a human. Any input from the environ-
ment, such as a new contact or the position of the own ship,
is written to a text file by Game Maker, read by the Java
interface and presented as input for the agent. This form of
communication slows the execution of the agent down, since
it continuously waits for reactions from the environment.

To perform complex calculations, user-defined functions
in Java are needed, similar to one of the issues when imple-
menting the formal model in ACT-R (see subsection 3.2).
These functions are called from inside the agent, but can
only be used in the actions of a production. Consequently, if
a calculation needs to be performed as part of the condition
of a production, it has to be executed by another produc-
tion and the result needs to be made available through the
working memory.

5. CONCLUSION AND DISCUSSION
This paper presents an agent built in the cognitive ar-

chitecture Soar, capable of performing a complex real-world
task. The implementation is based on a formal model of the
task and has previously been implemented in ACT-R. The
remainder of this paper will present the lessons learnt on
several aspects of agent practice and links them to cognitive
theories.

Two implementations of a single cognitive model give only

one point of view: a different model may have different de-
mands, especially when a different framework is used. Ad-
ditionally, the implementations have not been validated –
further work in this direction may consist of experiments
with subject-matter experts comparing the performance of
BOA, Boar and humans performing the tactical picture com-
pilation task.

Nevertheless, this paper shows that one should consider
the functionalities requested by the model and the possibil-
ities an architecture offers to implement those demands.

Working Memory Access.
Most of the cognitive theories about human working mem-

ory agree on a storage capacity of multiple but limited amount
of items [16, 3, 11, 5]. This assumption was used in design-
ing the cognitive model: several rules in the cognitive model
need multiple beliefs at the same time for reasoning (an ex-
ample of such a rule is in Fig. 1).

The ACT-R theory used for implementing BOA proved
to be too restrictive: access to only one chunk at a time is
allowed. In order to access more beliefs, a work-around was
used in the ACT-R implementation. On the other hand,
Soar does not limit the number of accessible working mem-
ory elements, so this did not pose any problems implement-
ing Boar. Different approaches to the working memory the-
ory result in different types of behavior: if only a limited
number of elements is accessible, reasoning will be restricted
to these elements, which can cause a different way of acting
than when all elements are available.

Retrieving Beliefs.
In order to reason over time the retrieval of specific beliefs

with a relative value is needed, such as the ‘last’ or ‘one-
but-last’ belief of some kind – a capability humans apply
unconsciously. Unfortunately, this type of retrieval operator
is not yet available in either architecture.

In ACT-R the working memory items are retrieved by
means of an activation function. However, this function does
not guarantee the retrieval of a memory item based on such
a relative value. The solution was to create LISP functions
for retrieving beliefs. Soar allows ordering the beliefs in
the conditional statement of a production rule, making it
possible to retrieve beliefs with a relative value. However,
operators need to be created for each relative value, making
the translation from model to Boar somewhat inefficient.

Control.
A linear control was modeled in favour of event-driven

parallel control. This choice was made in order to simplify
the process of committing to an intention, even though hu-
man decision-making will be more reactive to cues from the
environment. ACT-R’s sequential execution of production
rules fits this simplified model, but as a result the BOA agent
reacts slowly on important changes in the environment, be-
cause the agent’s behavior cannot be interrupted by these
external events [10]. In Soar the sequential execution of
plans is forced by letting production rules fire in an explicit
order (as shown earlier in Fig. 4), but this architecture more
easily allows event-driven control.

Calculations.
The tactical picture compilation task contains many sit-



uations in which the human expert makes estimations, for
example on how close a ship is to the the own ship or whether
ships are moving in formation. Currently there is no method
available to model the process of these estimations. Instead,
the estimations are replaced by exact calculations and made
into an ‘estimation’ by adding the notion of uncertainty to
the resulting belief. Modeling these calculations as cognitive
tasks in an architecture would require an infeasible amount
of productions, without actually copying human behavior.
Therefore, the execution of complex calculations is done ex-
ternally by LISP functions or Java methods.

Speed.
Humans are able to use multiple beliefs that were gathered

over time for reasoning. This is represented in the belief
framework by adding a time tag to every belief and storing
all beliefs in memory. As a result, the agent can access
multiple beliefs over time for reasoning. For example, it
can access several beliefs about the position of a contact to
reason about the contact’s speed and movement behavior.

Unfortunately, this creates a practical problem: there is
an exponentially growing amount of beliefs, which means
no system will eventually be able to cope with the result-
ing CPU-expensive searches for the necessary beliefs during
real-time simulation. It is necessary to deal with this more
efficiently. Even though certain facts in the past need to be
remembered by the agent, it is not necessary to remember
every specific detail, which is the case in this implementa-
tion. Humans do not remember every detail exactly, but
compress their memories by conceptualizing or clustering
them. Future agents that incorporate the belief framework
used in this research will need some form of compression or
smart discarding of beliefs to copy this behavior. We are
currently developing a method to cluster and abstract be-
liefs over time, sources and certainties, in order to form a
more realistic model of episodic memory.

Clearly, this problem has its effect on the implementa-
tions. The ACT-R agent becomes slow over time, even
though some functionality to remove unimportant beliefs
had been implemented. This slowness makes the observed
behavior of the agent not very human-like, especially in re-
acting to changes in the environment [10]. On the other
hand, Boar has been used in a demonstration of about twenty
minutes, in which the agent showed no reduction in speed.
To draw general conclusions about the performance of both
architectures, further research is needed.

6. ACKNOWLEDGEMENTS
This research has been supported by the research program

“Cognitive Modelling” (V524), funded by the Netherlands
Defence Organisation.

7. REFERENCES
[1] J. R. Anderson. How Can the Human Mind Occur in

the Physical Universe? Oxford University Press, 2007.

[2] J. R. Anderson and C. Lebiere. The Atomic
Components of Thought. Lawrence Erlbaum
Associates, 1998.

[3] A. D. Baddeley and G. J. Hitch. Working memory.
Recent Advances in Learning and Motivation,
8:647–667, 1974.

[4] F. Both and A. Heuvelink. From a formal cognitive
task model to an implemented ACT-R model. In
Proceedings of the 8th International Conference on
Cognitive Modeling, 2007.

[5] N. Cowan. Working memory capacity. Psychology
Press, New York, NY, 2005.

[6] B. J. v. Dam and H. F. R. Arciszewski. Studie
commandovoering do-2: Beeldvorming. Technical
Report FEL-02-A242, TNO-FEL, 2002.

[7] M. P. Georgeff and A. L. Lansky. Reactive reasoning
and planning. In Proceedings of the 6th National
Conference on Artificial Intelligence, pages 677–682,
Menlo Park, California, 1987.

[8] K. A. Gluck and R. W. Pew, editors. Modeling Human
Behavior With Integrated Cognitive Architectures:
Comparison, Evaluation, and Validation. Lawrence
Erlbaum Associates Inc, 2005.

[9] A. Heuvelink. Modeling cognition as querying a
database of labeled beliefs. In Proceedings of the 7th
International Conference on Cognitive Modeling, 2006.

[10] A. Heuvelink and F. Both. BOA: A cognitive tactical
picture compilation agent. In Proceedings of the 2007
IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, IAT 2007, Silicon Valley,
California, Nov. 2007. IEEE Computer Society Press.

[11] C. Hulme, S. Roodenrys, G. Brown, and R. Mercer.
The role of long-term memory mechanisms in memory
span. British Journal of Psychology, 86:527–536, 1995.

[12] R. M. Jones, C. Lebiere, and J. A. Crossman.
Comparing modeling idioms in ACT-R and Soar. In
Proceedings of the 8th International Conference on
Cognitive Modeling, 2007.

[13] J. E. Laird, A. Newell, and P. S. Rosenbloom. SOAR:
an architecture for general intelligence. Artificial
Intelligence, 33(1):1–64, 1987.

[14] J. F. Lehman, J. Laird, and P. Rosenbloom. A gentle
introduction to Soar, an architecture for human
cognition: 2006 update, 2006.

[15] R. L. Lewis. Cognitive theory, Soar, Oct. 1999.

[16] G. A. Miller. The magical number seven, plus or
minus two: Some limtis on our capacity for processing
information. Psycological Review, 63:81–97, 1956.

[17] R. L. Oser. A structured approach for scenario-based
training. In Proceedings of the 43rd Annual Meeting of
HFES, volume 43, pages 1138–1142, Oct. 1999.

[18] M. Overmars. Game maker:
http://www.yoyogames.com/gamemaker/.

[19] R. W. Pew and A. S. Mavor, editors. Modeling Human
and Organizational Behavior. National Acadamy
Press, 1998.

[20] F. E. Ritter, N. R. Shadbolt, D. Elliman, R. M.
Young, F. Gobet, and G. D. Baxter. Techniques for
modeling human and organizational behaviour in
synthetic environments: A supplementary review.
Technical report, Human Systems Information
Analysis Center, June 2003.


