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Abstract
Template matching is a widely used pattern recognition method, especially in industrial
inspection. However, the computational costs of traditional template matching increase
dramatically with both template-and scene imagesize. This makes traditional template
matching less useful for many (e.g. real-time) applications. In this paper, we present a
method to speed-up template matching. First, candidate match locations are determined
using a cascaded blockwise computation of integral image based binary test patterns.
Then, traditional template matching is applied at the candidate match locations to de-
termine the best overall match. The results show that the proposed method is fast and
robust.
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1. Introduction

Matching a template sub-image into a given image is one of the most common techniques
used in signal and image processing [1], and widely used in many fields related to com-
puter vision and image processing, such as image retrieval [2], image recognition [3], image
registration [4], object detection [5] and stereo matching [6].

Traditional template-matching consists in sliding the template over the search area and,
at each position, calculating a correlation (ordistortion) measure estimating the degree of
(dis-) similarity between the template and the image. Then, the maximum correlation
(or minimum distortion) position is taken to represent the instance of the template into
the image under examination, with a threshold on the (dis-)similarity measure allowing
for rejection of poor matches. The typical distortion measures used in template matching
algorithms are the sum of absolute differences (SAD) and the sum of squared differences
(SSD), while normalized cross-correlation (NCC) is by far the most widely used correlation
measure.

The NCC value ρ representing the similarity of a template image T (i, j) of size m× n at
the location (x, y) in a scene image I(x, y) of size M × N is defined as

ρ(x, y) =

m−1
∑

i=0

n−1
∑

j=0

(I(x + i, y + j) − µI) · (T (i, j) − µT )

√

m−1
∑

i=0

n−1
∑

j=0

(I(x + i, y + j) − µI)2 · (T (i, j) − µT )2

(1)
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for all (x, y) ∈ M × N , with

µI = 1
m·n

m−1
∑

i=0

n−1
∑

j=0

I(x + i, y + j),

µT = 1
m·n

m−1
∑

i=0

n−1
∑

j=0

T (i, j)

(2)

Due to the complexity of the matching function and the large number of locations to check,
traditional template matching is computationally expensive. To speed-up the basic ap-
proach, two categories of approaches have been proposed: (i) efficient representation of
both the template and the image so that matching can be done quickly, and (ii) fast search
(reduced precision) techniques to reduce the number of matching operations between the
target and the image. A well-known example of the first approach is the use of the fast
Fourier transform (FFT) to simultaneously calculate the correlation between the template
and every part of the input image as the product of their Fourier transforms [7]. A typi-
cal example of the second approach is the use of multi-resolution schemes [8, 9] to locate
a coarse-resolution template into a coarse-resolution representation of the image and then
refining the search at higher resolution levels only at locations where the low-resolution sim-
ilarity is high. However, these methods still have limited practical value, due algorithmic
complexity, strict conditions for application, and sensitivity to local variations in luminance,
scale, rotation and distortion.

Here we propose a new template matching scheme that combines computational efficiency
with low sensitivity to local image variations, using blockwise computed binary test patterns
based on integral images to determine candidate match locations over the image support
[10]. Integral images have previously been applied to speed-up template matching, e.g.
to accelerate the computation of the NCC [11, 12], and to efficiently compute polynomial
approximations [13] or characteristic features [14, 15] of image patches. Also, it has been
demonstrated that template matching can be performed fast and robust by computing and
matching image features in a blockwise fashion from integral images [16]. The contribution
of the proposed approach is that it enables fast and robust assessment of candidate match
locations through a cascaded blockwise computation of weak integral image based binary
test patterns (classification ability of an individual binary test pattern is weak). This ap-
proach speeds up conventional template matching by quickly discarding background image
regions that are unlikely to contain the template. The use of integral images allows fast
computation of the individual weak block binary test patterns, while their cascaded compu-
tation allows early termination of the computational process if the initial estimates suggest
that the location corresponds to a poor match.

The rest of this paper is organized as follows. First we introduce the concept of integral
images. Next we describe our new fast template matching scheme. Then, we present the
results of some computational experiments that demonstrate the efficiency and robustness
of our new method. Finally, we end with some conclusions.

2. Integral images

This section describes the concept of integral images that was introduced by Viola and
Jones [10] in computer vision and which is based on prior work in computer graphics [17].
Integral images (also known as summed-area tables) allow fast computation of rectangular
image features since they enable the summation of image values over any rectangle image
region in constant time. In the next section we will show that integral images can also serve
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to speed up template matching for rectangular shaped templates. Let an i(x, y) be the
original image value at location x, y. The integral image I(x, y) is an intermediate image
representation with a value at image location x, y that is equal to the sum of the pixel values
above and to the left of x, y including the value at the location x, y itself:

I(x, y) =
x

∑

x′=0

y
∑

y′=0

(x′, y′) (3)

The integral image can be computed in a single pass over the original image, using the
following pair of recursive formulas [10]:

S(x, y) = S(x, y − 1) + i(x, y),
I(x, y) = I(x − 1, y) + S(x, y)

(4)

where S(x, y) represents the cumulative column sum, with S(x,−1) = 0 and I(−1, y) = 0
Since each pixel involves only two additions, the computation of an integral image of M×N

pixels requires only 2MN additions. A visualization of an integral image is shown in
Fig.1(b). Once the integral image has been computed, the sum of values over any rectangular
region of the image i can be computed from only four references to the integral image array
(see Fig.2):

I(x, y) =

xb
∑

x=xa

yb
∑

y=ya

i(x, y) = I(xb, yb) + I(xa − 1, ya − 1) − I(xa − 1, yb) − I(xb, ya − 1) (5)

Integral images have been widely used to speed up the computation of region-based statis-
tical measures, such as area sums [18], covariance [19, 20], and co-occurrence [21] and have
successfully been applied to texture mapping [17], the detection of features [22], faces [10],
humans [23], and objects [24], stereo correspondence [25], and adaptive thresholding [26].

(a) (b)

Fig. 1: (a) Original image with (b) its integral image representation.
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Fig. 2: Using integral images it takes only three additions and four memory accesses to calculate the sum
of intensities over a rectangular image region of any size (S = A-B-C+D).

3. Fast template matching

The fast template matching method proposed here involves two phases. In the first phase,
a set of candidate target locations (locations that match the template image to a certain
degree) is determined by cascading a set of blockwise computed weak image binary test
patterns. Since these weak image blockbinary test patterns are based on local averages
over rectangular image regions, they can efficiently be computed using integral images. In
the second phase, conventional template matching is applied to the set of candidate target
locations. Restricting conventional template matching to a small set of image locations
significantly reduces the overall computational effort. In this section we will introduce the
use of cascaded weak image block binary test patterns to select candidate target locations,
and we will show how we can speed-up their computation using integral images.

Let T represent a template (small grayscale image) of size m × n that is to be matched
with a larger grayscale image I of size M×N (m < M, n < N). To identify candidate match
locations we will use strong binary test patterns that are constructed in a cascaded fashion
from a set of weak binary test patterns. The weak binary test patterns are computed as
follows (see also Fig.3). First, the template image T is partitioned into k × l (k and l both
positive integers) rectangular blocks of equal size. Next, both the mean of each template
block and the mean of the entire template image are calculated. The sign of the difference
between the mean of a block and the overall template mean is adopted a weak binary test
pattern. Thus, the weak binary test pattern cT

i of the ith template block is given by

cT
i =

{

1, if µi > µ

−1, if µi ≤ µ
(6)

where, i ∈ {l, k × l}, µi is the mean value of the ith template block, and µ represents the
mean image value over the entire template. A strong binary test pattern is then obtained
by computing consecutive weak binary test patterns in a cascaded fashion (Fig. 3).

The first phase of the template matching method proposed here involves sliding the tem-
plate over the image to determine (candidate target) locations where the template pattern
reflects the local image structure to a certain degree. Thereto, at each position of the tem-
plate (i.e. at each location in the image) set of weak image block binary test patterns ci
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is computed over the current image window in the same order in which the weak binary
test patterns cT

i were computed for the template image (i.e. by partitioning the MT × NT

local image window into k × l rectangular blocks). To reduce the overall computational
costs of the matching process, classification is performed in a cascaded fashion: each local
weak image block binary test pattern is first compared to the corresponding weak template
block binary test pattern cT

i , before computing the next one (see Fig. 3). If ci = cT
i then

the next local weak image block binary test pattern is computed, else the computation of
local weak image block binary test patterns is terminated and the position of the current
image window is shifted one step further. If all weak local image block binary test patterns
and template block binary test patterns are the same, then the current window passes the
overall (strong) classification and its position is added to a list of candidate target positions.
In practice, the requirement of identity between the complete set of template and image
weak block binary test patterns is too strict since there will typically be rotation, scale or
distortion differences between the template and the image content. The result would be
that no scan location would pass all binary test patterns and no candidate matches would
be found. To include some tolerance for small image variations in the matching process we
introduce a limit parameter LNE representing the maximal number (the limit) of instances
in which the corresponding weak image- and template binary test patterns are allowed to
be different (Not Equal), i.e. the maximal number of weak binary test pattern rejections
that is allowed before final overall rejection occurs. Thus, the current position of the sliding
template window is added to the list of candidate matches if it is rejected by at most LNE

weak binary test patterns, or equivalently, if it passes at least k× l−LNE weak binary test
patterns. LNE value range is [0, k × l], when LNE equals k × l, the current scanned posi-
tion will pass all the tests which reduces the proposed method to the traditional template
matching.

In the second phase of the template matching method proposed here the overall best
match is determined by applying conventional template matching to the set of candidate
matches identified in the first phase.

In many practical situations like industrial and medical environments imagesareoften cap-
tured under stable illumination conditions. As a result, the difference between the mean
grayscale value of the template and the mean of the corresponding target area in the scene
will be small. This allows a further reduction of the computational effort: first compare
the mean of the template image with the mean of current image window, and skip further
inspection if this difference exceedsa prespecified intensity threshold T; else, test the current
location further by computing the cascade of weak block binary test patterns.

The implementation of the template matching process proposed in this study involves the
following steps:

1. Compute integral images for both the scene and template images.

2. Compute the set of weak image block binary test patterns cT
i , i ∈ {1, k × l} for the

template image.

3. Slide an inspection window (with the size of the template image) to the next position
in the scene.

4. If the difference between the mean value of the local window and the mean value of
the template exceeds a given threshold T go to step 3, else continue.
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5. Calculate the weak image block binary test patterns ci, i ∈ {1, k× l} over the window
support and compare them to the corresponding weak template block binary test
patterns, while the number of block rejections is less than or equal to a given limit
LNE .

6. If the total number of block rejections does not exceed LNE assign a candidate status
to the current image window, else reject the current window position as a candidate
target location.

7. Continue at step 3 until all image pixels have been processed.

8. Determine the overall best match by applying conventional template matching to the
set of candidate target locations.

Fig. 3: The computation of a strong template binary test pattern as a cascade of weak block binary test
patterns.

Fig. 4: Cascaded binary test pattern structure for LNE = 2.

4. Experiments

In this section we investigate the sensitivity of the proposed template matching process
to variations in the limit parameter LNE representing the maximal allowed number of
block rejections, and we investigate the efficiency of the new method by comparing its
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performance relative to both a standard template matching technique and a state-of-the-
art FFT-based method. The proposed method was implemented in C++ and not optimized.
All computations were performed on a Pentium Dual-CoreE5800 3.2 Ghz computer with 2
GB RAM.

In all experiments, the template window was partitioned in 4×4 rectangular blocks. Note
that very large block sizes would result in a large number of candidate matches, thereby
increasing the computational effort in the second stage. For example, if the template window
is partitioned in rectangular blocks of size 1×2, then there are only four possible patterns: [1,
1], [1, -1], [-1, 1], [-1, -1]. We did an experiment on the well-known Lena test image (512×512
pixels) to compute the fractionof candidate match locations for those four patterns. We set
the window size to 64× 32 pixels and block size to 32× 32 pixels. Thefraction of candidate
target locations for the four different patterns is respectively 0, 0.440481, 0.559505, and
1.39509 × 10−5 So, if the input template image has the pattern [1, -1] or [-1, 1], then only
about 44% or 56% pixels areleft toevaluate in the second stage.In contrast, small block
sizes make the classification process more sensitive to noise, resulting in the rejection of
many good candidate matches. An extreme example is the case when the block size is 1
and LNE = 0. In that case, all scanned positions must pass k × l tests. If a single pixel is
corrupted by noise, the current scanned position will be rejected.

5. Sensitivity to the maximum allowed number of template rejections

LNE

To investigate the selectivity of the strong template binary test patterns for different
values of the parameter LNE (the maximum number of allowed template block rejections)
we computed the number of candidate target matches for a large number of different scenes
and template images. We used 63 images varying in size from 2000 × 3000 to 3000 × 4000
pixels representing different natural scenes (e.g., landscapes, buildings etc.). From each
image we cropped 100 patches of size 128×128 pixels centered on randomly selected corners
(obtained with the Harris corner detector [27]), and we used these patches as templates
in the computation of candidate matches. Centering the windows on corners avoids the
selection of featureless regions, which would result in spurious false matches. The block size
used in the computation of the weak binary test patterns was 4 × 4 (i.e. k, l = 4), and the
intensity threshold was fixed at T = 1. Table 1 lists the results quantified as the fraction
of the total number of image pixels that was classified as a candidate target location, for
different values of the maximum allowed number of block rejections LNE . Performance is
quantified as the fraction of image pixels that are identified as candidate target locations.
The results shown are the mean, standard deviation (SD), minimum, median, and maximum
of these ratios over 6300 trials (i.e. for 63 different images and 100 different template regions
each). These results show that the mean fraction of candidate target locations increases
only slowly with the parameter , from 0.1% for LNE = 0 (no block rejections allowed, the
strongest binary test pattern) to about 6% for LNE = 7 (7 rejections allowed on a total
of 4 × 4 = 16 weak block binary test patterns). Hence, even when about half (7 out of
16) of the weak binary test patterns are rejected, the overall strong binary test patterns
still filters out about 94% of non-target locations on average (i.e., only about 6% of the
image pixels need to be processed in the second stage), thus yielding a significant overall
reduction of the computational effort.The standard deviation of the fraction of candidate
target locations also increases only slowly, indicating that the binary test patterns perform
well in most cases.
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Table 1: Performance of the weak block classification process.

LNE Mean SD Minimum Median Maximum

0 0.00101 0.00426 1.09E-07 1.15E-04 0.12162
1 0.0031 0.00857 4.16E-06 7.41E-04 0.17543
2 0.0069 0.013 1.93E-05 0.00288 0.23924
3 0.01271 0.01794 6.43E-05 0.00755 0.20386
4 0.02118 0.02303 2.08E-04 0.01517 0.19451
5 0.03356 0.03133 5.73E-04 0.02616 0.26578
6 0.04801 0.03905 6.59E-04 0.03998 0.30008
7 0.06402 0.04833 0.00142 0.05444 0.38331

6. Efficiency

To give an impression of computational efficiency of the proposed method, we compare
its performance both with traditional template matching and with an FFT based tem-
plate matching method (http://docs.opencv.org), implemented by the OpenCV function
matchTemplate which has been optimized using Intel’s SSE (Streaming SIMD Extensions:
http://software.intel.com) instructions. Figure 5 shows a template image (Fig.5a) and the
image from which it was cropped (Fig.5b).

(a) (b)

Fig. 5: (a) A template image and (b) the scene from which is was taken.

This template was matched both to the scene from which it was taken (Fig.6a) and to
9 other images created by cropping windows with different orientations and positions from
the original scene (Fig.6b-j).

Table 2 lists the results of both template matching procedures for the 10 images shown
in Figure 6.
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Table 2: Performance of the proposed method relative to traditional and FFT based template matching.

Position (x,y) Time (ms) Speed-up relative to

Traditional/ Proposed Proposed
Image Actual FFT Method Traditional FFT Method Traditional FFT

a (223, 191) (223, 191) (223, 191) 1274.51 24.40 1.35 945.66 18.11
b (204, 190) (202, 203) (201, 205) 1275.16 23.40 1.38 924.12 16.96
c (147, 193) (149, 182) (147, 182) 1275.35 23.40 1.46 873.4 16.02
d (84, 199) (12, 270) (97, 161) 1293.91 23.51 1.20 1074.54 19.53
e (202, 241) (203, 224) (207, 221) 1293.09 23.50 1.44 895.29 16.27
f (216, 244) (211, 264) (202, 259) 1287.68 23.42 1.51 854.75 15.55
g (151, 243) (153, 235) (151, 234) 1292.35 23.46 1.59 810.47 14.71
h (154, 297) (150, 316) (145, 317) 1281.57 23.36 1.57 815.91 14.87
i (228, 293) (227, 294) (226, 293) 1278.37 23.60 1.59 801.51 14.8
j (110, 320) (4, 288) (143, 265) 1293.53 23.65 0.94 1368.84 25.03

9



Tirui Wu and Alexander Toet

Fig. 6: Match results of the proposed method (red) compared to conventional (green) and FFT based (blue)
template matching for the template from Fig.5a and for different orientations and sections of the original
scene (Fig.5b). Note that conventional and FFT based template matching yield exactly the same template
positions (i.e. the green and blue windows coincide).
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The coordinates represent the position of the top-left corner of the template. Listed
are the actual position coordinates, and the results of the three template matching meth-
ods investigated (traditional matching, FFT based matching, and the proposed method).
Coordinates in bold indicate incorrect matches.These results show that restricting tradi-
tional template matching to a set of candidate target locations determined from integral
image based weak block binary test patterns that are computed in a cascaded fashion can
reduce computation time up to three orders of magnitude. Also, the proposed method
yields a speed-up of at least one order of magnitude relative to the FFT based method. In
some cases (Fig.6d and 6j) both traditional and FFT based template matching fail to find
reasonable matches (when the scene image is rotated there is no longer an element wise
correspondence to the template image that yields a global maximum of the NCC and local
maxima at other locations will be taken as matches), while the new approach yieldsthe
correct target position because it rejects these locations as false matches already in the first
candidate target classification stage.

7. Conclusions

In this paper we proposed a new approach to speed up template matching. Integral images
are used to efficiently compute local (image and template) binary test patterns in a cascaded
and patchwise fashion, which allows early termination of the computational process if the
initial estimates suggest that the local image region corresponds to a poor match. The
present results show that the proposed method can provide up to three orders of magnitude
speedup over the traditional computation of normalized cross correlation, and up to an
order of magnitude improvement over a state-of-the-art FFT based method. Furthermore,
it is relatively robust for local image distortions. A limitation of the proposed method is
the fact that the parameter LNE cannot be determined adaptively or based on the content
of the input template image. We plan to address this issueina future study.
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