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ABSTRACT 

A methodology is presented to infer the refractive-index structure function parameter and the structure parameters for 
temperature and humidity from numerical simulations of the turbulent atmospheric convective boundary layer (CBL). 
The method employs spatial and temporal averaging of multiple realizations of the CBL flow field reproduced by a 
large-eddy simulation (LES) of the atmosphere. The ܥଶ values yielded by LES-based approach agree fairly well with ܥଶ 
values predicted by the Monin-Obukhov similarity theory. In this respect, the ܥଶ retrieval from the LES data is 
promising for evaluating the vertical profile of ܥଶ throughout the entire CBL. Under the considered CBL conditions and 
for the selected optical wavelength of 0.55 μm the value of ܥଶ was found to be dominated by the ܥଶ் contribution in the 
first few hundred meters above the surface, whereas the ்ܥ contribution became significant aloft. 
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1. INTRODUCTION  
Advanced optical imaging sensors and optical communication systems combine high resolution and high sensitivity. 
While this potentially allows for long-range applications, the performance of these systems is often hampered by the 
intervening of the Earth’s atmosphere. Apart from transmission losses due to absorption and scattering of radiation by 
atmospheric constituents, the signal is degraded by atmospheric turbulence generated by wind (shear) and/or by 
convective processes due to temperature and/or humidity inhomogeneities. Turbulence effects cause intensity 
fluctuations and directional variations of the propagating radiation, which result in scintillation, blurring, and image 
dancing at the receiver. These effects decrease the spatial resolution of the image1 or the quality of the communication 
link2. On the other hand, scintillation effects may be used to our advantage, e.g., in the detection of point targets, as the 
peak levels signals may exceed the mean signal level by a factor 3 or more3. 

Optical turbulence is caused by small-scale and rapid variations of the atmospheric refractive index which, in turn, are 
induced by variations of pressure, temperature and humidity along the path of observation. The effects of atmospheric 
turbulence are generally considered5 in terms of the second-order refractive index structure function given by (߲݊)ଶതതതതതതത(r, (ݐ = ሾ݊(x, (ݐ 	− 	݊(x + r,  ,     (1)	ሿଶതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(ݐ

where the overbar on represents ensemble averaging (which in practical terms is typically substituted by the spatial 
averaging), ݊ is the refractive index, ܚ the separation vector, ܠ the position vector, and ݐ is time. Within the framework 
of Kolmogorov’s hypotheses6 for the inertial-subrange turbulence, the structure function takes the form (߲݊)ଶതതതതതതത =  ,      (2)	ଶ/ଷݎ	ଶܥ

where ݎ is the separation vector magnitude (separation distance) and ܥଶ is the refractive index structure-function 
parameter (also called the structure parameter). Analogously to eq.(2), the structure parameters for temperature and 
humidity ܥଶ் and ܥଶ can be defined in terms of structure functions of the turbulent fluctuations of potential temperature ߠ 
and humidity ݍ, (߲θ)ଶതതതതതതത and (߲ݍ)ଶതതതതതതത, respectively. 

                                                 
* fedorovich@ou.edu; phone 1 405 325-1197; fax 1 405 325-7689; som.ou.edu 

Laser Communication and Propagation through the Atmosphere and Oceans II, edited 
by Alexander M. J. van Eijk, Christopher C. Davis, Stephen M. Hammel,Proc. of SPIE Vol. 

8874, 887408 ·© 2013 SPIE CCC code: 0277-786X/13/$18 · doi: 10.1117/12.2023990

Proc. of SPIE Vol. 8874  887408-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/15/2014 Terms of Use: http://spiedl.org/terms



 

 

By neglecting pressure effects on the fluctuations of the refractive index4 and by assuming that the fluctuations of the 
refractive index can be described by a linear combination of the fluctuations in temperature and humidity4,7, i.e., as ߲݊ = 	ߠ߲ܣ +  (3)      ,	ݍ߲ܤ	

eq.(2) can be rewritten as8 ܥଶ = 	ቀడడ்ቁଶ ଶ்ܥ 	+	ቀడడቁଶ ଶܥ 	+ 	2	 ቀడడ் 	డడቁ ்ܥ = ଶ்ܥଶܣ ଶܥଶܤ	+	 +  ,   (4)	்ܥܤܣ2

where ்ܥ is the joint temperature-humidity structure-function parameter, defined through (߲ݍ߲ߠ)തതതതതതതതതିݎଶ/ଷ. 

The refractive index structure-function parameter ܥଶ can be used to quantify turbulence effects on the radiation 
propagation such as scintillation, blur, and beam wander. As an example, the standard deviation ߪூ of the fluctuations in 
signal intensity ܫ, within the Rytov approximation, is given by9 ߪூଶ = 〈	ሾூ	ି	〈ூ〉	ሿమ〉〈ூ〉మ = exp 	൫4ߪఞଶ൯ − 1	 ≈  ఞଶ ,     (5)ߪ4	

where the angle brackets denote temporal averaging and the variance ߪఞଶ of the electromagnetic propagation constant, for 
plane waves and a point receiver, is given by9 ߪఞଶ(ܴ) = 	0.56	݇/ 	 ܴ)	(ߦ)ଶܥ − ோߦ݀	ହ/(ߦ  ,    (6) 

where ݇ is the wavenumber (݇	 =  is the distance along the ߦ the wavelength), ܴ is the path length and ߣ with ,ߣ/ߨ2	
path. Equation (6) shows that turbulence near the receiver does not contribute significantly to the scintillation, which 
emphasizes the need to evaluate the spatial variance of ܥଶ along the propagation path and not to be restricted to a value 
obtained at the location of the receiver. 

Over the years, a multitude of models have attempted to describe the vertical variation of the structure-function 
parameters. One of the earliest approaches was based on similarity theory. It modeled the daytime falloff of ܥଶ with 
height as a -4/3 power law, using the near-surface value of ܥଶ as a gauge10,11. On the basis of experimental data, 
Hufnagel12 and Valley13 introduced an altitude falloff dependent on the average wind speed between 5 and 20 km 
altitude, although most users of the Hufnagel-Valley model apply it with standard values for wind speed and ܥଶ at the 
surface. An explicit dependence of the structure-function parameters on meteorological variables in the near-surface 
portion of the atmosphere, the so-called atmospheric surface layer, was established using the Monin-Obukhov similarity 
theory14, which resulted in4,15-17 ܥఝଶ = 	ଶ/ଷିݖ	∗߮ ఝ݂ ቀ௭ቁ , ்ܥ = ்݂	ଶ/ଷିݖ	∗ߠ∗ݍ  ቀ௭ቁ	,    (7) 

where ߮ can be ܶ, ݍ, or ݊, ߮∗ denotes the corresponding surface-layer turbulence scale, ఝ݂ the corresponding stability 
function, and ܮ the Obukhov length (scale). The turbulence scales and Obukhov length are calculated from bulk 
meteorological parameters, such as the wind speed, temperature, and humidity, which can be relatively easy obtained in-
situ. 

While the explicit form of the stability functions ఝ݂ has been the subject of extensive debate, the Monin-Obukhov 
similarity theory (MOST) formalism outlined above provides reasonable estimates of the vertical profiles of the 
structure-function parameters in the atmospheric surface layer. Because the calculation is based on data from in-situ 
meteorological measurements, it is less straightforward to obtain the full 3-D inhomogeneous field ܥଶ(ݔ, ,ݕ  and (ݖ
horizontal homogeneity of the surface layer (in statistical sense) is generally assumed. This shortcoming can be partly 
overcome by employing bi-static experimental techniques (e.g., scintillometry) that characterize turbulence along a path. 
However, these instruments yield path-averaged quantities18 that are not easily decomposed in the full 3-D field of  ܥଶ(ݔ, ,ݕ  A solution may be offered by the advent of numerical weather prediction (NWP) models. Traditionally .(ݖ
applied on numerical grids with a horizontal spacing of the order of tens of kilometers, recent advances in regional NWP 
allow for spacing down to the order of a few kilometers. Particularly, the community Weather Research and Forecasting 
(WRF) model19 was shown to reasonably accurately represent the atmospheric near-surface flow under convective 
conditions20, which opens an avenue to drive the MOST calculations, eq. (7), by gridded WRF model data and thereby 
obtain ܥଶ(ݔ, ,ݕ ,ݔ)ଶܥ with the corresponding horizontal resolution. This approach is not limited to evaluating (ݖ ,ݕ  on (ݖ
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the basis of the actual meteorological conditions, but can also be applied to predict sensor image quality or the strength 
of optical links under forecasted meteorological conditions. 

A more detailed description of turbulence can be achieved with the high-resolution computational fluid dynamics (CFD) 
technique generally known as large eddy simulation (LES)21,22. LES considers the turbulent flow as a superposition of 
larger and smaller flow motions. The LES numerical approach resolves the larger, energy containing motions explicitly, 
while the effects of smaller, the so-called subgrid motions, are modeled. LES codes resolve fields of fundamental 
meteorological parameters (wind velocity, temperature, humidity) in the atmospheric boundary-layer flows down to 
spatial scales of the order of meters. These parameters can be entered in the calculation of the refractive index, which 
thus allows evaluating its spatial variability, in terms of ܥଶ, on a scale of meters. 

This paper reports application of the LES technique to direct evaluation of structure functions of potential temperature, 
specific humidity, and refractive index in the turbulent atmospheric convective boundary layer (CBL). The LES 
estimates of structure-function parameters for the lower portion of the CBL will be compared to the structure parameters 
obtained with the traditional approach4 based on MOST. Most of results from this comparative study have already been 
reported in literature23 but are presented here to bridge the gap between the boundary-layer meteorology and the optical 
communication and propagation communities. 

 

2. EXPERIMENTAL DESIGN 
The simulations reported here were performed using the LES code of the School of Meteorology (SoM) of the University 
of Oklahoma (OU), henceforward denoted as OU-LES. The OU-LES code has been shown to confidently reproduce 
CBL flow structure in terms of mean-flow parameters and turbulence statistics up to the third order24,25. The considered 
OU-LES setup employed a numerical grid with spatially uniform spacing of 10 m in a numerical domain with 
dimensions (ܺ, ܻ, ܼ) = (2.56 km, 2.56 km, 3.00 km). The horizontal dimensions of domain were proven, through 
numerical experiments, adequate for the reproduction of turbulence statistics in a moderately sheared CBL within the 
desired target scale ranges (up to several hundreds of meters). 

The simulations focused on the CBL case that was observed at the Lamont (Oklahoma) site of the Atmospheric 
Radiation Measurement (ARM) Program on 31 May 2009. This ARM site is heavily equipped with diverse 
meteorological instrumentation, including an eddy correlation flux measurement system26 that provided the surface 
sensible and latent heat fluxes (30-minute averages) to drive the OU-LES. Geostrophic wind profiles (representing in the 
LES the large-scale pressure-gradient forcing) were retrieved from the Rapid Update Cycle (RUC) model27 on an hourly 
basis. To account for other features of atmospheric variability on scales larger than the scale of the LES domain, the LES 
solutions at each time step were nudged20 towards the profiles of horizontal velocity components, potential temperature, 
and specific humidity available from the RUC model. The nudging time constant was set to 3600 s, which is larger than 
the typical CBL overturn time scale, but smaller than the time scale of boundary layer diurnal variation. Thus, the 
nudging is not expected to noticeably affect turbulent fluctuations within the scale ranges of interest (time scales up to 
few minutes and length scales up to several hundreds of meters). 

The refractive index ݊ for visible wavelengths is calculated from4,28 ݊ = 1 + 10ି 	ቄ	݉ଵ(ߣ) ் 	+	 ሾ݉ଶ(ߣ) − ݉ଵ(ߣ)ሿ .ଶଵଽ	்	(ଵା.ଵ)	ቅ ,    (8) 

where ߣ [μm] is the wavelength,  [hPa] is atmospheric pressure, ܶ [K] is absolute temperature, and ݍ [kg/kg] is specific 
humidity. Parameters ݉ଵ and ݉ଶ are given by ݉ଵ(ߣ) = 	23.7134	 +	 ଼ଷଽ.ଷଽଵଷ	ି	ఒషమ 	+	 ସହ.ସଷଷ଼.ଽ	ି	ఒషమ ,     (9) ݉ଶ(ߣ) 	= 	64.8731	 + ଶିߣ0.58058	 	− ସିߣ0.0071150	 	+   .   (10)ିߣ0.0008851	

Squared differences of ݊ for the evaluation of ܥଶ by eq. (2) were calculated in space as functions of separation distances 
in ݕ ,ݔ, and ݖ. The separations were integer multiples of the spatially uniform LES grid spacing Δ (=10 m). 

For the ݔ-horizontal direction, differences ݊(ݐ, ,ݖ ,ݕ (ݔ 	− ,ݐ)݊	 ,ݖ ,ݕ ݔ + ݔ ) withݔ = Δ were calculated at all individual 
points (ݔ, ݔ If .ݐ	 and ݖ in a horizontal plane for a given (ݕ +   corresponded to a location outside the LES-domain, theݔ
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