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In this article we study real 2-dimensional surfaces in the Grassmannian of 2-planes in a
4-dimensional vector space. These surfaces occur naturally as the fibers of jet bundles of
partial differential equations.
On the Grassmannian there is an invariant conformal quadratic form and we will use the
structure induced by this quadratic form to study the surfaces. We give a topological
classification of compact hyperbolic surfaces similar to the classification by Gluck and
Warner [Duke Math. J. 50 (1) (1983)] of compact elliptic surfaces. In contrast with elliptic
surfaces there are several topological possibilities for hyperbolic surfaces. We make a
calculation of the differential invariants under the action of the group of conformal
isometries. Finally, we analyze a class of surfaces called geometrically flat and show that
within this class there exist many examples of non-trivial compact surfaces.
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1. Introduction

In this article we study hyperbolic surfaces in the Grassmannian of 2-planes in a 4-dimensional vector space. This type of
surface occurs naturally in the study of partial differential equations. See Section 3 for the relation between these surfaces
and partial differential equations.

On the tangent space of the Grassmannian there is an invariant conformal quadratic form. The elliptic and hyperbolic
surfaces correspond to the surfaces on which this conformal quadratic form restricts to a non-degenerate definite or indefi-
nite conformal quadratic form, respectively. The elliptic surfaces have already been described by McKay [1,2] using complex
numbers.

For the compact hyperbolic surfaces we obtain a topological classification (Theorem 11), similar to the classification for
compact elliptic surfaces described by Gluck and Warner [3]. A compact hyperbolic surface is either a torus or a Klein
bottle. We also study a special class of hyperbolic surfaces called the geometrically flat surfaces. We show that, even though
the condition for a surface to be geometrically flat is quite rigid, there exist several different classes of geometrically flat
compact surfaces. We conclude the study by giving a calculation of the local invariants of hyperbolic surfaces under the
action of the general linear transformations of the vector space. Because the conformal isometry group is finite-dimensional,
we can give in the generic case a complete description of the invariants at all orders.

2. Grassmannians

Let V be an n-dimensional vector space. The Grassmannian Grk(V ) [4,5] is defined as the set of all k-dimensional linear
subspaces of V . The k-dimensional linear subspaces of V are also called k-planes in V . The group G = GL(V ) acts transitively
on V and this induces a transitive action on Grk(V ). The stabilizer group of a k-plane L is the group H = {g ∈ GL(V ) |
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g(L) = L}. The Grassmannian is a homogeneous space G/H of dimension k(n − k). There is a unique differentiable structure
on G/H = Grk(V ) such that G → G/H is a principal fiber bundle [6, Theorem 1.11.4].

We denote the manifold of oriented k-planes by G̃rk(V ). Locally Grk(V ) and G̃rk(V ) are diffeomorphic. The space of
oriented k-planes is a 2-fold cover of the space of unoriented k-planes.

Given an element L ∈ Grk(V ) we can introduce local coordinates for Grk(V ) in the following way. Select a complementary
subspace M such that L ⊕ M = V . Let Gr0

k (V , M) be the open subset of Grk(V ) of k-planes that are transversal to M .

Lemma 1. The space Lin(L, M) is diffeomorphic to Gr0
k (V , M) through the map A ∈ Lin(L, M) �→ {x + Ax | x ∈ L} ∈ Grk(V ).

The diffeomorphisms described in the previous lemma for different k-planes L, M provide coordinate charts for Grk(V ).
The coordinate transformations between these charts are rational maps.

Let L0 be a point in Grk(V ). We define ΣL0 = {L ∈ Grk(V ) | L ∩ L0 �= {0}}. If we choose a transversal (n − k)-plane M
and use the local coordinates from Lemma 1, then ΣL0 ∩ Gr0

k (V , M) = {A ∈ Lin(L0, M) | ker A �= 0}. If n = 2k, then ΣL0

is determined by the k × k-matrices with determinant zero. This is a hypersurface in the Grassmannian with a conical
singularity at the zero matrix.

In the case of 2-planes in V = R
4 there is another view of the Grassmannian. In the remainder of the paper we will

assume V has dimension 4. Every 2-plane in V can be represented by 2 linearly independent vectors X, Y . Such a pair
defines a non-zero element X ∧ Y of Λ2(V ). Since Λ4(V ) ∼= R the map

λ : Λ2(V ) → Λ4(V ) : η �→ η ∧ η

can be viewed as a homogeneous polynomial of degree 2. The elements X ∧ Y that represent a 2-plane all satisfy λ(X ∧ Y ) =
X ∧ Y ∧ X ∧ Y = 0. Conversely, if an element η ∈ Λ2(V ) \ {0} satisfies λ(η) = 0, then it can be written as η = X ∧ Y for two
linearly independent vectors X, Y ∈ V .

Lemma 2. The Grassmannian of 2-planes in a 4-dimensional vector space V is isomorphic to N = {η ∈ Λ2(V ) | η �= 0, λ(η) =
0}/R

∗ ⊂ P(Λ2(V )).

The zero set of λ defines a smooth quadratic hypersurface in P(Λ2(V )). The description of the Grassmannian as a smooth
quadratic is due to Plücker [7]. The oriented Grassmannian is isomorphic to the quadric defined by λ in Λ2(V )/R

+ .

2.1. Conformal quadratic form

We recall the following well-known lemma [4, Lecture 16].

Lemma 3. Let L be a k-plane in Grk(R
n). Then T L Grk(R

n) is canonically isomorphic to Lin(L,R
n/L).

In the case that n = 4 and k = 2, we can identify Lin(L, V /L), after a choice of basis in L and V /L, with the space of
2 × 2-matrices. The determinant of a 2 × 2-matrix defines a quadratic form of signature (2,2). This gives a quadratic form
on the tangent space of Gr2(V ) that depends on the choice of basis. Modulo a scalar factor this quadratic form is well-
defined and hence we have a conformal quadratic form ξ on the tangent space of Gr2(V ) which is invariant with respect to
the action of the group GL(V ). For other introductions to this conformal quadratic form see [8, pp. 19–23] or [1, pp. 19–20].

The kernel of the action of GL(V ) on Gr2(V ) is equal to the scalar multiples of the identity transformation. This implies
PGL(V ) acts effectively on Gr2(V ). The action of both GL(V ) and PGL(V ) on Gr2(V ) is by conformal transformations. This
can be seen for example from the expression of this action in local coordinates, see formula (4) below. The following lemma
(proved in [9, Lemma 2.1.5]) completely characterizes the conformal isometries of the Grassmannian.

Lemma 4. Let V be a real 4-dimensional vector space. The conformal isometry group of Gr2(V ) is equal to PGL(V ). The conformal
isometry group of G̃r2(V ) is equal to the group PGL+(V ) of orientation preserving projective linear transformations.

Any conformal quadratic form ξ on a vector space W defines an isotropic cone C = {w ∈ W ⊗ C | ξ(w) = 0}. If W is
2-dimensional and the conformal quadratic form is non-degenerate, then the isotropic cone consists of two distinct complex
1-dimensional linear subspaces which are called the characteristic lines of the conformal quadratic form. If the conformal
quadratic form is definite, then the intersection of the isotropic cone with W consists of the origin. If the form is indefinite,
then the intersection of the isotropic cone with W consists of two 1-dimensional lines in W . We call these lines the
characteristic lines as well.

2.2. Plücker coordinates

We have described the Grassmannian Gr2(V ) as the space of elements η in Λ2(V )/R
∗ that satisfy η ∧ η = 0. In this

section we will use the eigenspaces of the Hodge ∗ operator to show that the Grassmannian Gr2(V ) is diffeomorphic to the
direct product of two spheres.
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Let e1, e2, e3, e4 form a basis for V . With respect to the volume form Ω = e1 ∧ e2 ∧ e3 ∧ e4 we have the Hodge star
operator ∗ : Λ2(V ) → Λ2(V ). We define

α1 = (1/2)(e1 ∧ e2 + e3 ∧ e4), β1 = (1/2)(e1 ∧ e2 − e3 ∧ e4),

α2 = (1/2)(e1 ∧ e3 − e2 ∧ e4), β2 = (1/2)(e1 ∧ e3 + e2 ∧ e4),

α3 = (1/2)(e1 ∧ e4 + e2 ∧ e3), β3 = (1/2)(e1 ∧ e4 − e2 ∧ e3).

The forms αi , β j satisfy

αi ∧ β j = 0, αi ∧ α j = δi jΩ, βi ∧ β j = −δi jΩ.

The eigenspaces of the Hodge operator are E+ = 〈α j〉, E− = 〈β j〉 corresponding to the eigenvalues 1 and −1 of ∗, respec-
tively. We can decompose any η ∈ Λ2(V ) in terms of these eigenspaces. Write η = Xiαi + Y jβ j . The coefficients Xi , Y j can
be used to parameterize the Grassmannian and are called Plücker coordinates. The name Plücker coordinates is misleading
because the coefficients do not define real coordinates for Gr2(V ). A pair (X, Y ) only defines an element of the Grassman-
nian if the Plücker form λ is zero and two elements that are a scalar multiple of each other define the same element in the
Grassmannian. The conformal quadratic form λ acts on η as

λ(η) = (X1)2 + (X2)2 + (X3)2 − (Y 1)2 − (Y 2)2 − (Y 3)2.

Lemma 5. Let S+ and S− be two copies of the 2-sphere S2 ⊂ R
3 . Then the map

S+ × S− → Λ2(V )/R
+ : (X, Y ) �→ Xiα j + Y jβ j

defines a diffeomorphism from S+ × S− to the oriented Grassmannian. The unoriented Grassmannian is diffeomorphic to S+ ×
S−/(−I,−I).

Proof. This result is from [3]. Since (X, Y ) ∈ S+ × S− satisfies |X |2 = |Y |2 = 1, the image of this map is contained in the
kernel of the Plücker form λ.

2.3. Conformal group

In this section we analyze the action of the group of conformal transformations on the 2-planes in the tangent space of
the Grassmannian.

The group CO(2,2) of conformal transformations of R
4 with a conformal quadratic form of signature (2,2) is isomorphic

to (GL(2,R) × GL(2,R))/R
∗ ∼= SL(2) × SL(2) × H , H = R

∗ , see [8]. If we represent R
4 by 2 × 2-matrices and the conformal

quadratic form by the determinant, then the action of the conformal group is given by

(α̃, δ̃) ∈ CO(2,2) : X �→ δ̃Xα̃−1. (1)

Let e1, . . . , e4 be the standard basis for V = R
4 and take e1, e2 and e3, e4 as a basis for L0 = Re1 + Re2 and M =

Re3 + Re4, respectively. With these bases we can identify Lin(L0, M) ∼= Gr0
2(V , M) with the space of 2 × 2 matrices. The

action of g ∈ GL(V ) on the Grassmannian in these local coordinates is given by

g =
(

α̃ β̃

γ̃ δ̃

)
: A �→ (γ̃ + δ̃A)(α̃ + β̃ A)−1. (2)

Here α̃, β̃ , γ̃ and δ̃ are 2 × 2-matrices. The action (2) might not be well-defined for all g since we are working in local
coordinates for Gr0

2(V , M), but it is well-defined for elements g near the identity and matrices A near the zero matrix.
The tangent space at a point L in the Grassmannian is given in these local coordinates by the space of 2 × 2-matrices as

well and the conformal quadratic form ξ on T Gr2(R
4) is given by the determinant

ξL : T L Gr2(R
4) → R :

(
A B
C D

)
�→ AD − BC .

The point L0 in the Grassmannian corresponds to the matrix A = 0. The stabilizer group H of L0 is equal to the set of
matrices(

α̃ β̃

0 δ̃

)
, (3)

with α̃, δ̃ invertible 2 × 2-matrices and b̃ an arbitrary 2 × 2-matrix.
We want to know how the stabilizer H acts on the tangent space of the Grassmannian. Suppose that t �→ t X is a curve

through the point L0 that represents a tangent vector in the Grassmannian. The group H acts on this curve as

t �→ δ̃t X(α̃ + β̃t X)−1 = tδ̃Xα̃−1 + O(t2).
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So the action of H on the 2-planes in the tangent space is given by(
α̃ β̃

0 δ̃

)
· X = δ̃Xα̃−1. (4)

This is precisely the action (1) of the conformal group mentioned above.
A 2-dimensional linear subspace of the tangent space T Gr2(V ) will be called a tangent 2-plane or just a tangent plane.

Definition 6. A tangent 2-plane in T Gr2(V ) is called elliptic if the conformal quadratic form ξ restricts to a definite non-
degenerate quadratic form. A tangent 2-plane in T Gr2(V ) is called hyperbolic if the conformal quadratic form restricts to a
non-degenerate quadratic form of signature (1,1).

The action of the conformal group on the 2-planes in the tangent space of Gr2(V ) at a point has exactly 5 orbits of
which 2 are open. The two open orbits correspond to the elliptic and hyperbolic 2-planes. Representative elements for the
5 orbits are given in [10, Section 7.1, Case 2, p. 272].

Theorem 7. (See [9, Theorem 2.1.7].) The general linear group acts transitively on the Grassmannian of 2-planes. At each point in the
Grassmannian the stabilizer subgroup of that point acts transitively on the elliptic tangent planes and also transitively on the hyperbolic
tangent planes.

2.4. Product structures

An (almost) product structure is the analogue of an (almost) complex structure.

Definition 8 (Product structure). Let V be a 2n-dimensional real vector space. A product structure (complex structure) on V
is an endomorphism K : V → V such that K 2 = I (K 2 = −I) and the eigenvalues ±1 (±i) of K both occur with geometric
multiplicity n.

The condition that K 2 = I implies that the eigenspaces V± of K for the eigenvalues ±1 span V . Hence the algebraic
multiplicity will always equal the geometric multiplicity.

Given a product structure K we define V± as the eigenspace of K for eigenvalue ±1. Then from the definition it follows
that V = V+ ⊕ V− . Conversely, if we have a direct sum V = V+ ⊕ V− , then we can define a product structure on V by
K |V± = ±I. Note that for a complex structure J on V , the complexified vector space is the direct sum V ⊗ C = V+ ⊕ V− of
the eigenspaces of J corresponding to ±i. A product structure on an even-dimensional vector space does not determine an
orientation. This is in contrast with a complex structure that does determine an orientation.

3. Partial differential equations

One application of surfaces in the Grassmannian is the occurrence of these surfaces in the geometric treatment of partial
differential equations.

Consider a first order system of partial differential equations in two unknown functions u, v and two variables x, y. The
system is determined if it is given by two equations

F (x, y, u, v, ux, u y, vx, v y) = 0, G(x, y, u, v, ux, u y, vx, v y) = 0, (5)

such that the matrix(
Fux Fu y F vx F v y

Gux Gu y G vx G v y

)
has rank 2 at all points F = G = 0. Let B equal R

2 × R
2 with coordinates x, y, u, v . The first order system (5) defines for

each point b = (x, y, u, v) in B a codimension 2 surface in Gr2(Tb B). This defines a codimension 2 submanifold of Gr2(T B)

called the equation manifold of the system (5). The tangent space to the graph of pair of functions u(x, y), v(x, y) at the
point (x, y) is a 2-dimensional linear subspace of V = T(x,y,u,v)B and hence an element of Gr2(Tb B). A pair of functions
u(x, y), v(x, y) is a solution to the system of partial differential equations (5) if and only if the tangent spaces to the graph
of this pair are all contained in the equation manifold of the system. The surfaces in Gr2(Tb B) for b ∈ B defined by the
system are elliptic or hyperbolic in the sense to be described in Section 4 below, if the first order system is elliptic or
hyperbolic in the classical sense, see [9, Remark 4.6.2]. We should note that any hyperbolic surface can be realized locally
as one of the fibers of a system of partial differential equations.

The point transformations of the systems mentioned above with a fixed point at b ∈ B act on V by linear transfor-
mations. Hence these transformations induce actions on the Grassmannian by conformal transformations. The invariants
of hyperbolic surfaces and the topological type of compact hyperbolic surfaces (both explained in the sections below) are
therefore invariants of these particular systems of partial differential equations under point transformations.
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Also for other types of system of partial differential equations, such as second order scalar equations in the plane [9],
these surfaces occur. For second order scalar equations the invariants of hyperbolic surfaces are invariants for the contact
transformations.

4. Hyperbolic surfaces in the Grassmannian

Let S be a surface in the Grassmannian. The conformal quadratic form on the tangent space of the Grassmannian restricts
to a conformal quadratic form on the tangent space of S . For generic tangent spaces the form is non-degenerate and is either
definite (elliptic tangent planes) or indefinite (hyperbolic tangent planes). If the conformal quadratic form is definite this
defines an almost complex structure on the surface and if the form is indefinite this defines an almost product structure on
the surface. The surfaces with an almost complex structure or almost product structure are always integrable and have no
local invariants. So studying the local geometry of these surfaces with the additional conformal structure itself is not very
interesting.

However, the surfaces are embedded in the Grassmannian and it is very interesting to study the surfaces in the Grass-
mannian under the conformal isometry group of the Grassmannian. The reason for this is that, as explained in the previous
section, the point and contact transformations of systems of partial differential equations often induce actions on Grass-
mannians by conformal transformations. Here we write down the theory of surfaces to which the conformal quadratic
form restricts to an indefinite quadratic form (the hyperbolic case). Part of the elliptic case was already done by McKay [1,
Chapter 4].

Let S be a surface in Gr2(V ). At each point s ∈ S the tangent space Ts S has dimension 2 and the conformal quadratic
form restricts to a conformal quadratic form on Ts S . We call the point s elliptic or hyperbolic if the tangent space of S at s
is an elliptic or hyperbolic tangent plane, respectively. A surface for which all points are elliptic or hyperbolic is called an
elliptic surface [1,11] or hyperbolic surface, respectively.1

For a hyperbolic surface the conformal quadratic form restricts on the tangent space of the surface to a non-degenerate
conformal quadratic form of signature (1,1). The kernel of the quadratic form is given by two lines in the tangent space.
The vectors in the two lines are called the characteristic vectors. Since these characteristic vectors depend smoothly on the
point of the surface, the characteristic vectors locally define a pair of transversal rank 1 distributions. The integral curves of
these distributions are called the characteristic curves.

4.1. Standard hyperbolic tori

Every product structure on a 4-dimensional vector space V determines a hyperbolic surface. Let K be a product structure
on V . Then we define the standard hyperbolic torus Gr2(V , K ) associated to K as the set of all 2-planes that are K -invariant
and satisfy the non-degeneracy condition that K restricted to the 2-plane is not equal to ±I . The elements of Gr2(V , K )

are called hyperbolic lines. This definition can be compared to the definition of the complex lines for a complex structure in
[1, p. 14]. The standard hyperbolic torus defined by a product structure is topologically indeed a torus. If we let V± ⊂ V be
the eigenspaces of the product structure K , then Gr1(V+) × Gr1(V−) → Gr2(V , K ) : (l1, l2) �→ l1 + l2 is an isomorphism.

4.2. Intersection curves

In this section we will analyze the intersection of a hyperbolic surface S with ΣL0 (see Section 2) for L0 a point on the
hyperbolic surface. The manifold ΣL0 has dimension 3 and has a singularity at L0. We will prove that locally the intersection
of S and ΣL0 looks like two curves intersecting transversally at L0.

First we introduce local coordinates around the point L0 in the Grassmannian. Let L0 be the plane in Gr2(R
4) spanned

by the two vectors (1,0,0,0)T and (0,1,0,0)T and let M = R(0,0,1,0)T + R(0,0,0,1)T. We use the local coordinates for
the Grassmannian in Section 2.3. In these local coordinates we have

L0 =
(

0 0
0 0

)
, ΣL0 ∩ Gr0

2(V , M) =
{(

a b
c d

)∣∣ad − bc = 0

}
.

The surface S is then given as a 2-dimensional surface in the space of 2 × 2-matrices and the point L0 corresponds
to the zero matrix. Since the general linear group acts transitively on the hyperbolic tangent planes, we can arrange by a
coordinate transformation that the tangent space to S is spanned at the point L0 by the two tangent vectors

X1 =
(

1 0
0 0

)
, X2 =

(
0 0
0 1

)
.

In these coordinates we can parameterize the surface S using two coordinates a,b as

Γ : U ⊂ R
2 → S : (a,b) �→

(
a φ(a,b)

ψ(a,b) b

)
,

with φ and ψ functions that vanish up to first order in a,b.

1 The reader should not confuse the term hyperbolic surface with the surfaces of constant negative curvature.
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The manifold ΣL0 is given by the 2-planes that have non-trivial intersection with L0. These planes are precisely the
planes for which the corresponding 2 × 2-matrices in local coordinates have zero determinant. Then S ∩ ΣL0 is given by
the condition ab − φ(a,b)ψ(a,b) = 0. But the product φ(a,b)ψ(a,b) is at least of order 4 in a and b, hence by the Morse
lemma this set looks locally like the zero set of ab which is a cross at the origin. We call the two curves the intersection
curves of the surface S through the point L0.

Example 9 (Standard hyperbolic torus). The standard product structure K on R
4 is given by the direct product R

2 × R
2. Let

S = Gr2(R
4, K ) be the surface of hyperbolic lines in R

4 for this product structure. The surface can be parameterized as

(θ,φ) �→ R(cos θ,0, sin θ,0)T + R(0, cos φ,0, sin φ)T ∈ Gr2(R
4).

In the local coordinates introduced previously we have

S ∩ Gr0
2(V , M) =

{(
a 0
0 d

) ∣∣a,d ∈ R

}
.

The intersection of S and ΣL0 is easy to calculate and is given by

S ∩ ΣL0 ∩ Gr0
2(V , M) =

{(
a 0
0 0

) ∣∣a ∈ R

}
∪

{(
0 0
0 d

) ∣∣d ∈ R

}
.

For every point L on the surface the characteristic curves through L are equal to the intersection curves through L defined
by ΣL ∩ S .

We have proved that for a general hyperbolic surface S and point L0 on this surface the intersection ΣL0 ∩ S looks
locally like two curves intersecting transversally at L0. We can compare this pair of curves with the characteristic curves
through the same point L0. In general the characteristic curves and the intersection curves through a point L0 are different,
although at the point L0 they have at least contact of order 2 [9, p. 65]. It can also happen that the characteristic curves
through L0 and the curves determined by ΣL0 ∩ S are identical (see Example 9 above and Section 4.4 on geometrically flat
surfaces).

Example 10. We consider the surface defined in local coordinates for the Grassmannian by the matrices

Γ (a,b) =
(

a a2

a2 b

)
.

The intersection curves through the origin follow from the equation det(Γ (a,b) − Γ (0,0)) = ab − a4 = a(b − a3) = 0. Here
we can explicitly factorize the equation and this gives the intersection curves a = 0 and b = a3. The characteristic lines at a
point (a,b) are spanned by(

1 2a
2a 4a2

)
and

(
0 0
0 1

)
.

Integrating the characteristic lines defined by the first matrix yields the characteristic curves (a(t),b(t)) = (a0 + t,b0 +
(4/3)((a0 + t)3 − (a0)

3)). Integration of the other matrix gives (a(t),b(t)) = (a0,b0 + t). We immediately see that the inter-
section curves a = constant overlap with the characteristic curves, but the other intersection curves do not overlap with the
characteristic curves.

4.3. Compact hyperbolic surfaces

Gluck and Warner [3] proved that every connected compact elliptic surface in the oriented Grassmannian can be de-
formed through elliptic surfaces to a Riemann sphere given by the complex lines for a complex structure on V . For the
hyperbolic surfaces the situation is more complicated. A connected compact hyperbolic surface can be topologically a torus
or Klein bottle and these different types of surfaces can never be deformed into each other.

Theorem 11. Let S be a connected compact hyperbolic surface in Gr2(V ) or G̃r2(V ). Then S is either a torus or a Klein bottle.

Proof. The condition that a surface in the Grassmannian is hyperbolic implies that at each point of the surface there are
two characteristic lines in the tangent space. Locally, we can always choose a basis of the tangent space to S consisting of
two non-zero vector fields tangent to these characteristic lines. We can locally make the choice of such a basis unique by
choosing a metric on the surface, an order for the two characteristic lines (so we label one of the characteristics as the first
and the other as the second characteristic line) and a positive direction for each of the characteristic lines.

We can also choose a global metric for the surface (for example the metric induced from the diffeomorphism of the
Grassmannian to S+ × S−), but it is not always possible to make a global choice of order of the characteristics and directions.
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We can always pass to a cover of the surface on which the basis of vector fields is globally defined. We need at most a 8 : 1
cover for this. First a 2 : 1 cover for the ordering of the characteristic lines and then two times a 2 : 1 cover for the direction
of each of the characteristic lines.

Next consider the case of a compact hyperbolic surface. The covering surface is also compact and it is orientable. The
covering surface has a trivial tangent space and this implies the surface has Euler characteristic zero; topologically the
surface is a torus. Since the covering surface has Euler characteristic zero, the original surface is a compact surface with
Euler characteristic zero and must be either a torus or a Klein bottle. The original surface is a torus if it is orientable and a
Klein bottle if it is non-orientable.

There exist explicit examples of compact surfaces in both the oriented and unoriented Grassmannian that are diffeomor-
phic to a Klein bottle, see the examples below. The standard hyperbolic torus defined by a product structure is a compact
hyperbolic surface that is homeomorphic to a torus.

Gluck and Warner proved not only that every compact elliptic surface is a 2-sphere, but even that every compact el-
liptic surface can be deformed to the standard elliptic surface. Again for compact hyperbolic surfaces the situation is more
complicated. The oriented and unoriented Grassmannian are both connected, but the oriented Grassmannian (which is the
product of two spheres) is simply connected and hence the fundamental group is trivial. The unoriented Grassmannian has
fundamental group π1(Gr2(V )) � Z/2Z. There exist compact hyperbolic surfaces homeomorphic to a torus in the unoriented
Grassmannian for which one of the generators of the fundamental group of the torus defines a non-trivial element in the
fundamental group of the unoriented Grassmannian, but also compact hyperbolic surfaces for which the generators are all
trivial in the fundamental group of the unoriented Grassmannian. Examples of both types are given in Example 14. These
different surfaces can not be deformed into each other.

The author is not aware of any other topological obstructions against deformations, besides the topology of the surface
and the mapping on fundamental groups. The examples in this section show these invariants are not enough to give a
complete classification of the compact hyperbolic surfaces up to isotopy.

Example 12. We consider the oriented Grassmannian G̃r2(V ) as the product of two spheres S+ × S− . A family of immersed
surfaces in the Grassmannian is given by

Φ : (s, t) �→
( cos(s)

0
sin(s)

)
×

( cos(t)
sin(αs) sin(t)
cos(αs) sin(t)

)
.

The tangent space at a point of the surface is spanned by the two vectors Φs = ∂Φ/∂s and Φt = ∂Φ/∂t . Solving the
characteristic equation ξ(aΦs +bΦt) = 0, where ξ is the conformal quadratic from on the tangent space of the Grassmannian,
yields b = ±a

√
1 − α2 + α2 cos2(s). For |α| < 1 the surface has two distinct real characteristics at each point and hence the

surface is hyperbolic.
For α = 0 we have an embedded torus. The standard torus T = R/(2πZ) × R/(2πZ) is embedded as the product of two

great circles; the explicit parameterization is given by

T → S+ × S− : (s, t) �→ ((
cos(s),0, sin(s)

)T
,
(
cos(t),0, sin(t)

)T)
.

For α = 1/2 the surface is a globally defined and compact surface K ; topologically the surface is a Klein bottle. A 2 : 1 cover
of the torus T̃ = R/(4πZ) × R/(2πZ) to the Klein bottle K ⊂ S+ × S− is

T̃ → S+ × S− : (s, t) �→
(( cos(s)

0
sin(s)

)
,

( cos(t)
sin(s/2) sin(t)
cos(s/2) sin(t)

))
.

Example 13. Let γ : R/2πZ → S+ ⊂ R
3 be an embedding of the circle into the 2-sphere with the properties γ (s + π) =

−γ (s) for all s and |γ ′(s)| > 1 for all s. Such embeddings are easy to construct by taking deformations of great
circles and then reparameterizing by arc length. We define T = R/(2πZ) × R/(2πZ) and Φ : T → G̃r2(V ) : (s, t) �→
(γ (s), (cos s cos t, sin s cos t, sin t)T). The conformal quadratic form on the tangent space takes the form

ξ(aΦs + bΦt) = a2(∣∣γ ′(s)
∣∣2 − cos2(t)

) − b2.

This is an indefinite non-degenerate quadratic form in a,b at all points. Hence the surface defined by Φ is a hyperbolic
surface. The image of the torus T is a torus in the oriented Grassmannian. The projection of G̃r2(V ) to Gr2(V ) induces a
2 : 1 cover of the torus over a Klein bottle in the unoriented Grassmannian.

Example 14 (Compact surfaces and the fundamental group). Let T be the torus R/(2πZ) × R/(2πZ) and let z be a constant
with 0 < z < 1. We define two compact hyperbolic surfaces in Gr2(V ) = (S+ × S−)/(−I,−I) by
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Φ1 : T → Gr2(V ) : (s, t) �→
((√

1 − z2 cos(s)√
1 − z2 sin(s)

z

)
,

( cos(t)
sin(t)

0

))
,

Φ2 : T → Gr2(V ) : (s, t) �→
(( cos(s/2)

sin(s/2)

0

)
,

( cos(t + s/2)

sin(t + s/2)

0

))
.

Both maps Φ1,Φ2 are embeddings of the torus T into the unoriented Grassmannian.
Let γ be the curve in T defined by s �→ (s,0). Then γ defines a non-trivial element [γ ] in the fundamental group of T .

The embedding Φ j induces a homomorphism Φ
j∗ from the fundamental group π1(T ) to π1(Gr2(V )). The image (Φ1)∗([γ ])

is trivial in π1(Gr2(V )), the image (Φ2)∗([γ ]) is non-trivial in π1(Gr2(V )).

4.4. Geometrically flat surfaces

We define a hyperbolic surface to be geometrically flat if the characteristic curves and the intersection curves are identical.
From Example 9 it is clear that the standard hyperbolic tori are geometrically flat. The converse is not true. The space of
all standard hyperbolic tori in a Grassmannian is finite-dimensional. But the surfaces in Example 16 and Example 20 show
that geometrically flat surfaces can depend on an arbitrary function and hence the space of geometrically flat surfaces is not
finite-dimensional. So not all these surfaces can be standard hyperbolic tori and this proves the class of all geometrically
flat surfaces is much larger then the class of all standard hyperbolic tori.

To analyze the structure of geometrically flat surfaces we start with an elementary lemma.

Lemma 15. Let V = R
4 and let L1, L2, L3 be 2-dimensional linear subspaces such that dim L1 ∩ L2 = dim L1 ∩ L3 = dim L2 ∩ L3 = 1.

Then the L j are all contained in a 3-dimensional linear subspace L = L1 + L2 + L3 or the three subspaces have a 1-dimensional linear
subspace l = L1 ∩ L2 ∩ L3 in common, or both.

Proof. Assume that L1 ∩ L2 ∩ L3 = {0}, so the subspaces have no line in common. Pick vectors e1, e2, e3 in V such that
L1 ∩ L2 = Re1, L1 ∩ L3 = Re2 and L2 ∩ L3 = Re3. We cannot have Re1 = Re2 since this would imply that Re1 ⊂ L1 ∩ L2 ∩ L3.
Hence L1 = Re1 + Re2. Since {0} = L1 ∩ L2 ∩ L3 = L1 ∩ Re3 we see that e3 is not in the span of e1, e2. Hence the vectors
e1, e2, e3 are linearly independent. From the construction of e1, e2, e3 it is clear that L1 + L2 + L3 = Re1 + Re2 + Re3 and
that dim(L1 + L2 + L3) = 3.

Let S be a geometrically flat surface in Gr2(V ). Let L1, L2, L3 be three different points on the same characteristic curve γ .
Since the surface is geometrically flat, one of the intersection curves through the point L1 must be identical to the char-
acteristic curve γ . Therefore both L2 and L3 must have non-zero intersection with L1 and for the same reason L2 and L3
must have non-zero intersection. Recall that the points Lk are elements of the Grassmannian and hence 2-dimensional linear
subspaces of V . Because the points L1, L2 and L3 are different points, the intersections must be 1-dimensional and we can
apply Lemma 15. This leads to the conclusion that locally there are three types of characteristic curves γ on a geometrically
flat surface.

(1) All points L on γ have a line l1 in common and are contained in a three-dimensional subspace l3.
(2) All points L on γ have a line l1 in common. The points L are not contained in a subspace of dimension three.
(3) All points L on γ are contained in a three-dimensional subspace l3. The points on γ do not have a line in common.

We say a characteristic curve is of type (2′) if the characteristic curve is either of type (1) or of type (2). We say a
characteristic curve is of type (3′) if the characteristic curve is either of type (1) or of type (3). For a hyperbolic surface the
type of the characteristic curves does not need to be constant. An example of such a surface is given in Example 16.

Let Γ : (a,b) �→ Γ (a,b) ∈ Gr2(V ) be a hyperbolic surface such that the characteristic curves are given by the equations
a = constant and b = constant. Whenever we have a hyperbolic surface parameterized in this way, we will call the curves
defined by b = constant the horizontal characteristic curves and the curves a = constant the vertical characteristic curves. For a
surface with (locally) constant type there are nine possibilities: the horizontal characteristic curves can have type (1), (2)

or (3) and the vertical characteristic curves as well. If we allow to switch the characteristic curves, then there are only six
types. We will say that a geometrically flat surface is of type (i, j) if the horizontal characteristic lines are of type (i) and
the vertical characteristics are of type ( j).

Example 16 (Changing type). Let Px0,x1 (x) be a smooth bump function that is zero outside the region x0 < x < x1 and non-
zero inside this region. We then define φ1(a) = P0,1(a), φ2(a) = P2,3(a), ψ1(b) = P0,1(b), ψ2(b) = P2,3(b). Let S be the
surface given in local coordinates by the embedding

(a,b) �→ Γ (a,b) =
(

a φ1(a)ψ1(b)

φ (a)ψ (b) b

)
.

2 2
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Fig. 1. Geometrically flat surface with changing type of curves.

The embedding Γ defines a hyperbolic surface and at each point (a,b) the matrices ∂Γ/∂a and ∂Γ/∂b are singular. This
means that the characteristic curves are given by the lines a = constant and b = constant. To show that the intersection
curves coincide with the characteristic curves consider an arbitrary point (a,b). The point Γ (ã, b̃) is contained in ΣΓ (a,b) if
and only if det(Γ (a,b) − Γ (ã, b̃)) = 0. Consider the points (ã,b). For these points we have

det
(
Γ (a,b) − Γ (ã,b)

) = (
φ1(a) − φ1(ã)

)(
φ2(a) − φ2(ã)

)
ψ1(b)ψ2(b).

Since ψ1(b)ψ2(b) is identically zero this shows that all points Γ (ã,b) are in ΣΓ (a,b) . This proves that the characteristic
curves b = constant coincide with the intersection curves. A similar analysis shows that also the lines a = constant coincide
the with intersection curves.

The hyperbolic surface in this example has changing type of characteristics. In Fig. 1 the different regions on the surface
are separated by black lines and the types are indicated. For example in the region 1 � a � 2, 1 � b � 2 the surface has
type (2,3). The points on the horizontal characteristic curve b = constant are 2-planes that all have the line spanned by
the vector (0,1,0,b)T in common. The points on the vertical characteristic curve a = constant are all 2-planes in the 3-
dimensional subspace spanned by the vectors (1,0,a,0)T, (0,1,0,0)T and (0,0,0,1)T. This single example shows that all
possible combinations of type (i, j) exist for hyperbolic surfaces.

Example 17 (Geometrically flat surface of type (2′,2′)). Let γ and δ be two curves in Gr1(R
4) and define Γ (s, t) = γ (s) + δ(t).

Assume that γ (0) �= δ(0) and the tangent map of Γ at (0,0) is injective. Then Γ (locally near L0 = Γ (0,0)) defines a
surface S in Gr2(R

4). If the tangent plane T L0 S to the surface at L0 is a hyperbolic tangent plane, then S is a hyperbolic
surface near L0.

This surface has the property that every point Γ (s, t0) on the curve φt0 : s �→ Γ (s, t0) contains the line δ(t0). Hence the
intersection curves through the points L on this curve are all tangent to the curve φt0 . Since the intersection curves are
always tangent to the characteristic curves this proofs that φt0 is a characteristic curve for the surface. In a similar way it
follows that the curves ψs0 : t �→ Γ (s0, t) are characteristic curves and intersection curves for the points on ψs0 .

This surface is geometrically flat and the type is (2′,2′) because the points on the characteristic line φt0 have the 1-
dimensional linear subspace δ(t0) in common and the points on the characteristic line ψs0 have the 1-dimensional linear
subspace γ (s0) in common.

Type (2′,3′). Let S be a geometrically flat hyperbolic surface in Gr2(V ) of type (2′,3′) given by (a,b) �→ Γ (a,b). For every
point Γ (a,b) ∈ S the points on the horizontal characteristic curve (which is of type (2′)) through Γ (a,b) have a line l1(b) in
common. The points on the vertical characteristic curve through Γ (a,b) are all contained in a 3-dimensional subspace l3(a).
The lines l1(b) and the 3-dimensional spaces l3(a) satisfy the relation l1(b) ⊂ Γ (a,b) ⊂ l3(a). This relation implies that⋃

b

l1(b) ⊂
⋂

a

l3(a).

We use the notation
∑

b l1(b) to denote the span of the elements in
⋃

b l1(b). Then it is clear that
∑

bl1(b) is a linear
subspace of

⋂
a l3(a).

The lines l1(b) and the 3-dimensional subspaces l3(a) must both vary as we vary a and b. For example if l1(b) is constant
near L0 = Γ (a0,b0), then near L0 all points on the surface have a single line l1 = l1(b0) in common. But then near L0 the
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intersection ΣΓ (a0,b0) ∩ S is equal to S and this is not possible. This implies that there is a unique 2-dimensional linear
subspace L such that∑

b

l1(b) = L =
⋂

a

l3(a). (6)

If we assume the surface is connected, then the special point L is not a point on the surface.

Example 18 (Compact surfaces of type (2′,3′)). In this example we will make a construction of a large class of compact
hyperbolic surfaces of class (2′,3′). Recall that for any surface of type (2′,3′) there is a unique 2-plane L that satisfies
Eq. (6). We define

F L = {
(l1, l2, l3) ∈ Gr1(V ) × Gr2(V ) × Gr3(V ) | l1 ⊂ L, l1 ⊂ l2 ⊂ l3, L ⊂ l3

}
. (7)

The space F L is a smooth manifold of dimension 3.
We will analyze the two projections

π2 : F L → Gr2(V ) : (l1, l2, l3) �→ l2, (8)

π1,3 : F L → Gr1(L) × Gr1(V /L) : (l1, l2, l3) �→ (l1, l3/L). (9)

The projection π1,3 : F L → Gr1(L) × Gr1(V /L) is surjective. The fiber above a point (l1, l3/L) is diffeomorphic to Gr1(l3/l1).
This shows π1,3 is a P

1 bundle over Gr1(L) × Gr1(V /L).
For every point (l1, l2, l3) ∈ F L the intersection of l2 and L is non-empty. This implies that the image of π2 is contained

in ΣL and it is not difficult to see that π2 : F L → ΣL is surjective. At the points l2 �= L in the image of π2 we have
π−1

2 (l2) = {(l2 ∩ L, l2, l2 + L)}. So π2 is injective over the complement of L in Gr2(V ). The rank of Tπ2 over this complement
is 3. For the special point L we have

π−1
2 (L) = {

(l1, L, l3) ∈ F L | l1 ∈ Gr1(L), L ⊂ l3 ∈ Gr3(V )
}
.

This shows that Tπ2 has rank 1 at the points in F L that project to L. The map

π−1
2 (L) → Gr1(L) × Gr1(V /L) : (l1, L, l3) �→ (l1, l3/L)

is an isomorphism. This shows that the inverse image π−1
2 (L) defines a special section of the bundle π1,3 : F L �→ Gr1(L) ×

Gr1(V /L).
Let F ′

L = {(l1, l2, l3) ∈ F L | l2 �= L} and let π ′
2 and π ′

1,3 be the restrictions of π2 and π1,3, respectively, to the bundle F ′
L . The

fiber of π ′
1,3 above a point (l1, l3/L) is isomorphic to Gr1(l3/l1) \ (L/l1) ∼= P

1 \ {0}. This gives π ′
1,3 : F ′

L → Gr1(L) × Gr1(V /L)

the structure of an affine line bundle.
For any (local) section σ of the bundle π ′

1,3 we can consider the composition π ′
2 ◦ σ : Gr1(L) × Gr1(V /L) → Gr2(V ).

The map is embedding since π ′
2 : F ′

L → Gr2(V ) has rank 3 and is injective. Global sections of this bundle exist. Take for
example a transversal 2-plane M such that V = L ⊕ M . A global section of π ′

1,3 is given by (l1, l3) �→ (l1, l1 + M ∩ l3, l3). The
hyperbolic surface defined by the composition of this section with π ′

2 is the standard hyperbolic torus Gr2(V , K ) for the
product structure K defined by V = L ⊕ M . After a choice of global section the line bundle F ′

L becomes a rank one vector
bundle over Gr1(L) × Gr1(V /L). The sections of this bundle can locally be parameterized by exactly one function of two
variables. The global sections define compact geometrically flat surfaces of type (2′,3′).

Type (1,1). We will prove that any connected geometrically flat surface S in Gr2(V ) of type (1,1) is locally given by the
hyperbolic lines for a unique product structure on V . Note that a surface of type (1,1) is both a surface of type (2′,3′) and
of type (3′,2′). For a surface of type (2′,3′) there is a unique 2-plane L+ that satisfies (6). Since the surface is of type (3′,2′)
as well, there is also a unique 2-plane L− with a relation similar to (6). It is not difficult to prove that S must be equal
to a subset of the standard hyperbolic torus Gr2(V , K ) defined by the product structure K that defines the decomposition
V = L+ ⊕ L− .

4.5. Normal form calculations

In this section we calculate a normal form for the hyperbolic surfaces. The group acting on the surface is the group of
conformal isometries of Gr2(V ). With the action of this group we will bring the Taylor expansion of a parameterization
of the surface into normal form. For generic surfaces the normal form construction leads to a complete description of the
invariants of the surface. There is also a geometric interpretation of this normal form calculation in terms of moving frames.
This geometric picture is presented in [9, §2.3.4] (hyperbolic surfaces) and [1, §4.3, 6.7] (elliptic surfaces) and can be used
to make a connection to the local invariants of partial differential equations.

Zero and first order. We want to bring a hyperbolic surface S in Gr2(V ) into a normal form using the group GL(V ). We
could also use the projective group PGL(V ) since the scalar multiplications do not act on Gr2(V ). Since the group acts
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transitively on the points in Gr2(V ) and on the hyperbolic tangent spaces at that point, we can always choose a basis e1,
e2, e3, e4 for V such that the point L ∈ S is given by Re1 + Re2 and the tangent space to the surface at L is given by the
linear maps in Lin(L, V /L) that are diagonal matrices with respect to the bases e1, e2 for L and e3 + L, e4 + L for V /L.

In the local coordinates introduced in Section 2.3 the surface can be parameterized as

(p,q) �→ A =
(

p q(p, s)
r(p, s) s

)
. (10)

The special point L corresponds to the zero matrix. We will bring the surface in normal form by constructing a normal
form for the Taylor expansions of q(p, s) and r(p, s). The normalization at order zero was the choice of special point L. This
normalization corresponds to q(0,0) = 0 and r(0,0) = 0. The normalization at order one was the choice of tangent space to
S at L. This corresponds to q = O(p, s)2, r = O(p, s)2.

The group GL(V ) can be parameterized by the 4 × 4 matrices
( α̃ β̃

γ̃ δ̃

)
, with α̃, β̃, γ̃ , δ̃ all 2 × 2-matrices. The subgroup H0

that leaves invariant L is given by the matrices with γ̃ = 0. We compute the action of H0 on the tangent space T L S . Let

g =
(

α̃ β̃

0 δ̃

)
.

Then g acts on A as g · A = δ̃A(α̃ + β̃ A)−1. On the tangent space to the Grassmannian this induces the action X �→ δ̃Xα̃−1.
This conformal action is transitive on the hyperbolic planes and we can always arrange that the tangent space to the surface
at L consists of diagonal matrices.

The structure group that leaves invariant L and T L S is the group H1 of matrices(
α β̃

0 δ

)
∈ GL(V ), (11)

with either α, δ both diagonal or α, δ both anti-diagonal. This group has dimension 8 (or dimension 7 if we are working
with the projective group) and 2 connected components.

Second order. The space of second order contacts to a hyperbolic surface for which the first order part is in normal form,
has dimension 6. The action of the group H1 induces an action on this space by affine transformations. If we use the local
coordinates (10), then the first order normalizations correspond to

q = q11 p2/2 + q12 ps + q22s2/2 + O(p, s)3,

r = r11 p2/2 + r12 ps + r22s2/2 + O(p, s)3.

The action of H1 on A is given by

A �→ δA(α + β̃ A)−1 = δAα−1 − δAα−1β̃ Aα−1 + O(p, s)3.

We will calculate the action of the connected component of the group H1. The action of the other component can be
calculated in a similar fashion. We write

α =
(

α1 0
0 α2

)
, β̃ =

(
β11 β12
β21 β22

)
, δ =

(
δ1 0
0 δ2

)
.

Working out this action using p, s as coordinates and only keeping terms of order 2 and lower yields

A �→ Ã =
(

δ1α
−1
1 p − δ1α

−2
1 p2β11 δ1α

−1
2 q − δ1α

−1
2 α−1

1 β12 ps

δ2α
−1
1 r − δ2α

−1
1 α−1

2 β21 ps δ2α
−1
2 s − δ2α

−2
2 β22s2

)
+ O(p, s)3.

We use p̃ = δ1α
−1
1 p − δ1α

−2
1 β11 p2 and s̃ = δ2α

−1
2 s − δ2α

−2
2 β22s2 as new local coordinates. Since p̃, s̃ are diagonal in p, s up

to first order, this preserves the normal form. We can express q̃ and r̃ in the new coordinates p̃, s̃; the final result is

q̃11 = (α1)
2α−1

2 δ−1
1 q11, q̃12 = α1δ

−1
2 q12 − δ−1

2 β12, q̃22 = δ1δ
−2
2 α2q22,

r̃11 = δ2δ
−2
1 α1r11, r̃12 = α2δ

−1
1 r12 − δ−1

1 β21, r̃22 = α−1
1 (α2)

2δ−1
2 r22. (12)

The action is indeed by affine transformations. Note that the group coefficients β11, β22 do not appear in these expres-
sions, so this part of the group does not act on the second order contact. Using the group parameters β12, β21 we can
always arrange that q̃12 = r̃12 = 0. This normalization reduces the identity component of the structure group to the group of
matrices

g =
(

α β

0 δ

)
,

with α, δ ∈ D∗ and β ∈ D . Here D is the algebra of diagonal 2 × 2-matrices.
In [1, Section 4.4] a normal form calculation is done for elliptic surfaces in the Grassmannian. McKay finds similar nor-

malizations, but formulates the structure groups in terms of complex numbers. In [9] the hyperbolic surfaces are analyzed



P.T. Eendebak / Differential Geometry and its Applications 26 (2008) 600–612 611
with an equivalent to the complex number, the algebra of split-complex numbers [12]. The algebra of split-complex numbers
are isomorphic to the algebra of diagonal 2 × 2-matrices.

On the remaining four coefficients the generic orbits have dimension three. There is one invariant given by

I = q11r22

r11q22
. (13)

The invariant is a rational function in the coefficients of the second order jets of a hyperbolic surface. If r11q22 = 0 but
q11r22 �= 0, then we say the invariant takes the value ∞. If both q11r22 = 0 and r11q22 = 0, then this invariant is not well-
defined (by making small perturbations the invariant can have any possible value).

Remark 19. We will analyze the action of the other component of H1 on the second order coefficients. Let

g =
⎛⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎠ ∈ H1.

The action on a surface in local coordinates is

A =
(

p q(p, s)
r(p, s) s

)
�→

(
0 1
1 0

)(
p q(p, s)

r(p, s) s

)(
0 1
1 0

)−1

=
(

s r(p, s)
q(p, s) p

)
.

If we write p̃ = s, s̃ = p, q̃ = r, r̃ = q and assume that q, r are normalized and of the form q = q11 p2/2 + q12 ps + q22s2/2,
r = r11 p2/2 + r12 ps + q22r2/2, then

q̃11 = r22, q̃12 = r12, q̃22 = r11,

r̃11 = q22, r̃12 = q12, r̃22 = q11.

The invariant I is unchanged by this transformation, i.e.,

I = q̃11r̃22

r̃11q̃22
= q11r22

r11q22
.

So I is really invariant under the full group H1.

Third and higher order. We will conclude the normal form calculations by showing that for generic structures (all terms
q11, r22, r11,q22 unequal to zero, or equivalently the invariant I is well-defined, non-zero and finite) the projective group
acts effectively. If we are at a generic point, then we can normalize the second order coefficients to q12 = r12 = 0, q11 =
r11 = q22 = 1 and r22 = I . The structure group reduces to the group H3 consisting of matrices

g = φ

(
I β

0 I

)
∈ GL(V )

with φ ∈ R
∗ and β = diag(β11, β22) ∈ D . The scalar factor φ is not important since the scalar multiples of the identity are in

the kernel of the action.
The action on the third order part is relatively easy to calculate because the structure group has reduced to such a small

group. The action of g on the matrix A is

g : A �→ Ã = A(I + b A)−1 = A − Aβ A + Aβ Aβ A + O
(|A|)4

. (14)

At the special point L we have A = 0 and the first order part of A is diagonal. Therefore we can write A = A1 + A2 + A3 +
O(p, s)4 with A1 = ( p 0

0 s

) ∈ D and the second and third order parts A2 and A3 anti-diagonal and homogeneous of degree 2

and 3 in the parameters p, s, respectively. In a similar way we can expand Ã into Ã1 + Ã2 + Ã3 + O(p̃, s̃)4, with Ã1 = ( p̃ 0
0 s̃

)
.

After some calculations we find that p̃ = p − β11 p2 + O(p)2 and s̃ = s − β22s2 + O(s)2. The coefficients in the second
order part are unchanged, so

Ã2 =
(

0 q̃2
r̃2 0

)
=

(
0 q11 p̃2/2 + q22 s̃2/2

r11 p̃2/2 + r22 s̃2/2 0

)
. (15)

Calculating the third order part we find that

Ã3 =
(

0 q111 p̃3/3 + q112 p̃2 s̃ + q122 p̃s̃2 + q222 s̃3/3
r111 p̃3/3 + r112 p̃2 s̃ + r122 p̃s̃2 + r222 s̃3/3 0

)
+

(
0 q11β11 p̃3 + q22β22 s̃3

r β p̃3 + r β s̃3 0

)
+

(
0 p̃β11q̃2 + q̃2β22 s̃

s̃β r̃ + r̃ β p̃ 0

)
.

11 11 22 22 22 2 2 11
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For the action of the projective group on the third order coefficients to be effective, it is necessary and sufficient that at
least one out of the four coefficients q11, r11, q22 and r22 is non-zero. For a generic point this action is effective. Hence by
normalizing two suitable third order coefficients, the structure group reduces to the scalar multiplications. The remaining
six third order coefficients are invariants for the surface.

For higher order contact at each order n there are precisely 2(n + 1) more derivatives of q and r. Since the structure
group already reduced to the scalar multiplications at order 3 (for generic structures), we find at each order precisely
2(n + 1) additional invariants.

Example 20 (Invariants for geometrically flat surfaces).

• In local coordinates for the Grassmannian define a geometrically flat surface of type (2′,2′), by the matrices(
p q(s)

r(p) s

)
,

with r(p) = r11 p2/2 + O(p3), q(s) = q22s2/2 + O(s3). The points on the characteristic line p = p0 all have the
line l1(p0) = R(1,0, p0, r(p0))

T in common. The points on the characteristic line s = s0 all have the line l1(s0) =
R(0,1,q(s0), s0)

T in common. If the surface is generic enough, i.e., r11q22 �= 0, the invariant I is well-defined and equal
to zero.

• In local coordinates define the surface S by the matrices of the form(
a 0

φ(a,b) b

)
.

This is a geometrically flat surface of type (2′,3′). All points on the characteristic line b = constant have the line l1 =
(0,1,0,1)T in common. The points in the lines a = constant are all contained in the 3-dimensional subspace spanned
by the vectors (1,0,a,0)T, (0,1,0,0)T, (0,0,0,1)T. The special point L defined in Eq. (6) is equal to R(0,1,0,0)T +
R(0,0,0,1)T. The coefficients r11, r12 and r22 are zero and hence I is not well-defined since both the numerator and
the denominator are zero.

• In local coordinates define the geometrically flat surface of type (3′,3′) by(
p q(p)

r(s) s

)
,

with r(s) = r22s2/2 + O(s)3, q(p) = q11 p2/2 + O(p3). If the surface is generic enough, i.e., r22q11 �= 0, the invariant I is
well-defined and has value ∞.
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