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Chapter 1
Introduction

Vision is one of the five human senses. It was already studied a few hundred
years BC by two major ancient Greek schools. The first school (Euclid, Ptolemy
and their followers) explained vision with the ‘emission theory’, which states that
vision occurs when rays emanate from the eyes and are intercepted by visual
objects. The second school (Aristotle, Galen and their followers) advocated the
‘intromission theory’, which interprets vision as coming from something, a rep-
resentation of the object, entering the eyes. Although they had no experimental
foundation to support their theory, they were not very far from what we currently
know about how our eyes work.

Ibn Al-Haytham (965 - 1039), the ‘father of optics’, was the first one to recon-
cile both schools of thought in his influential Book of Optics [28]. He argued that
vision is due to light from objects entering the eyes. Furthermore, he pioneered
the area of the psychology of visual perception, being the first scientist to argue
that vision occurs in the ‘brain’, rather than the eyes. He pointed out that vision
and perception are subjective.

Nowadays we have detailed knowledge about the Human Visual System (HVS)
[41], although many aspects are still not completely understood. Light entering
the eye’s pupil is imaged by the lens onto the light sensitive cells (rods and cones)
of the retina. Visual information from different parts of the retina is systematically
ordered in the primary visual cortex and from there send to different places in
our brain. There are two main pathways from the primary visual cortex: 1) the
‘Where Pathway’, which is associated with motion, representing object locations,
and control of our eyes and arms and 2) the ‘What Pathway’, which is associated
with shape recognition, object representations and storage in long-term memory
[22].

1



2 Introduction

Figure 1.1: Principle of a camera obscura.

Al-Haytham was also the first to build a camera obscura (see Figure 1.1),
i.e. a black box with a hole in one side which projects the incoming light (via
a mirror) to another side of the box. In early days this projection was made on
paper facilitating an artist to copy the image.

As one can see, the step from human vision to imaging and to image process-
ing is not that big. In principle the following analogy can be made: our eyes play
the role of a camera with the retina as imaging sensor and the virtual cortex as
processing device. If our eyes would not be connected to our brain, we would not
be able to remember the things we see and therefore we will not be able to recog-
nize things, reason and make decisions based on the perceived visual information.
This completes the sense-think-act loop. The same applies to imaging and image
processing: imaging without image processing (including recording) seems to be
of no use.

Although human vision is a very interesting topic, it is beyond the scope of
this thesis. Here, the focus will lie on a specific area of image processing in which
we aim to improve the resolution, the Signal-to-Noise Ratio (SNR), as well as
the contrast between foreground (such as moving objects) and background. This
enables the observer to extract more information from the image, such as small,
low contrast details. The observer might detect or recognize something in the
processed image which he was not able to do in the raw data. Specifically, this
thesis focuses on improving the detection and recognition of moving objects in
under-sampled image sequences.
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Figure 1.2: Two LR frames (64×64 pixels) taken at different time instances
showing artifacts caused by under-sampling.

1.1 Problem description

The resolution of an optical system determines the finest detail that can be re-
solved and is proportional to fλ/D, where f is the focal length of the lens, λ
the wavelength of the incoming light and D the diameter of the lens aperture.
An optical system with a larger aperture or a smaller focal length is therefore
capable of capturing finer details. However, the perception of the imaged scene
is also determined by the sampling density of the sensor. To be able to recon-
struct a bandlimited signal, the sampling frequency must be at least two times
the highest frequency of the signal. When the sampling frequency is smaller, the
Nyquist-Shannon sampling requirement is not met [56]: the signal is said to be
under-sampled.

Spatial under-sampling hampers reconstruction of the scene after optical imag-
ing. One experiences strong staircase effects around edges, thin lines will appear
interrupted, small details will be missed or severely corrupted, and repetitive pat-
terns may appear at a different spatial frequency. Some of these artifacts are
visible in Figure 1.2.

Tackling under-sampling by decreasing the pixel pitch of the detector has
the disadvantage that it reduces the SNR. Here we assume that the percentage
of photosensitive area (fill-factor) of the detector stays the same. Using a lens
with a larger focal length will capture details larger on the image plane, but has
some disadvantages as well: they are expensive, tend to be large and provide less
overview due to a smaller viewing angle. However, computerized postprocessing
is a way to overcome the artifacts caused by under-sampling. Multi-frame Super-
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Resolution (SR) reconstruction is the postprocessing method used in this thesis
to reconstruct the scene from an under-sampled image sequence. It aims at recon-
structing an image of the underlying scene, free of sampling artifacts and noise,
by using a model of the camera (optics and sensor) characteristics and some prior
knowledge that applies to virtually all scenes.

In many applications, the most interesting events are related to changes oc-
curring in the scene: e.g. moving persons or moving objects. Especially on these
occurrences an observer wishes to see a lot of detail. This makes resolution im-
provement useful for changing/moving objects in the scene. The main goal of this
thesis is therefore to improve the resolution, SNR and contrast of moving objects
in under-sampled image sequences by means of multi-frame SR reconstruction1.
These improvements will help to increase the detection, and recognition rate of
moving objects.

1.2 Optical imaging

In comparison to the pinhole imaging of a camera obscura, modern cameras make
use of lenses (optics). This permits the collection of more light/radiation while
keeping the scene in focus. Nowadays, there exist a wide range of different opti-
cal imaging devices: high-resolution megapixel cameras for digital photography,
infrared cameras for night-vision, microscopes for biological research, etc.

Application of SR reconstruction is especially effective for imaging devices
which have a coarse sampling grid and therefore tend to under-sample the data.
Infrared cameras belong to this class due to the relatively large wavelength of
infrared light in comparison to visible light. Although infrared data is used a lot
in this thesis, the proposed algorithms are not limited to this type of data.

1.2.1 Camera model

If the world is observed by an electro-optical camera system, the recorded data
f [k, l] depends on the various steps depicted in Figure 1.3.

3D to 2D projection: Let us assume that we observe a 3D scene with 3D
objects. The optics of the camera system projects the 3D scene onto a 2D image
plane.

Blurring: The optical Point-Spread-Function (PSF), together with the sensor
PSF, will cause a blurring of the scene at the 2D plane. In this thesis, the
optical blur is modeled by a Gaussian function with standard deviation σpsf . It is
considered independent of the depth of the scene, i.e. space-invariant. The sensor
blur is modeled by a uniform rectangular function representing the fill-factor of

1In the remainder of this thesis ‘SR reconstruction’ refers to ‘multi-frame SR reconstruction’.
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Figure 1.3: Process of digital image formation: 3D to 2D projection, optical
blur, sensor blur, sampling and additive noise.

each sensor element. A convolution of both functions yields the total blurring
function.

Sampling: The sensor characteristics of a camera system are determined by
the pixel pitch as well as the fill-factor of the sensor elements. The sampling as
depicted in Figure 1.3 relates to the pixel pitch. Likely, the recorded data by an
infrared camera is under-sampled, which means that the sampling frequency is
below two times the highest frequency of the continuous 2D scene f2D(~x).

Noise: The noise in the recorded data is modeled by additive, independent
and identically distributed Gaussian noise samples with standard deviation σn.
Although state-of-the-art photon detectors (such as cameras) obey Poisson statis-
tics [10] above the low light-level regime, where the readout noise dominates, we
believe that independent additive Gaussian noise is a sufficiently accurate noise
model. Other types of noise, such as fixed pattern noise and bad pixels, are not
modeled explicitly in this thesis.

1.2.2 Optics

For optical systems that are circularly-symmetric, aberration-free and diffraction-
limited, the PSF for incoherent illumination is given by the Airy disk. The mini-
mum resolvable distance between two point sources is, according to the Rayleigh
criterion, when the center of the Airy disk of the first point source coincides with
the first minimum of the Airy disk of the second point source (see Figure 1.4). In
an equation the minimum resolvable distance, ∆l, can be defined as [1]:

∆l = 1.22
fλ

D
, (1.1)

with λ the wavelength of the incoming light, D the diameter of the lens aper-
ture and f the focal length of the lens. The minimum resolvable distance can
hence be decreased by decreasing the focal length and/or increasing the aperture
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of the lens, which boils down to optics with a small F-number (F = f/D). How-
ever, the resolution of a camera system is not solely determined by its optics, but
also by its sensor. Often the resolution is limited by the latter one.

Resolved UnresolvedRayleigh

Criterion

Figure 1.4: The Rayleigh criterion: the center of the Airy disk of the first point
source coincides with the first minimum of the Airy disk of the second point source.

1.2.3 Sensor

Let us assume that the sensor is a Focal Plane Array (FPA), which is a 2D array
of non-overlapping photosensitive elements. The spatial characteristics of a FPA
are determined by the pixel pitch and the fill-factor of each sensor element. The
fill-factor indicates the percentage of photosensitive area and the pixel pitch is
the center-to-center distance of adjacent sensor elements.

Undersampling occurs if the sampling frequency (1/pixel pitch) is below the
bandwidth of the image, often two times the highest frequency of the continuous
2D scene. The Nyquist-Shannon sampling theorem is not met and the imaged
scene will be corrupted by aliasing. Some artifacts that occur by under-sampling
in images are visualized in Figure 1.2 and are called aliasing artifacts [44]. Alias-
ing refers to the effect that causes different continuous signals to become indis-
tinguishable after sampling.

Apart from the visible effects of under-sampling in images, the effects of alias-
ing can also be shown in the frequency domain (see Figure 1.5). Here, the camera’s
transfer function is modeled by the Modulation Transfer Function (MTF). We set
the lens blur (σpsf = 0.3) and the sensor blur (fill-factor = 81%) to realistic values
that cause aliasing. Both factors are incorporated in the MTF. The scene spec-
trum is modeled with a quadratic decay, which is characteristic in natural images
[54]. The non-aliased spectrum (before sampling) results after applying the MTF
to the original spectrum.

However, if the scene is under-sampled, adjacent copies of the spectrum over-
lap. It looks like the spectral information above half the sampling frequency (fs/2)
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Figure 1.5: The aliased spectrum (no marks) of a signal which is band-limited
and under-sampled. The non-aliased spectrum (denoted with triangles) results
after applying the MTF to the original spectrum. To obtain the aliased spectrum,
the spectral energy above = fs/2 needs to be folded (denoted with the arrow) and
added to the non-aliased spectrum.

is folded back and added to the part below fs/2, because the central period of
the periodic spectrum after sampling is limited to frequencies between −fs/2 and
fs/2.

Increasing the number of sensor elements on a FPA by reducing the pixel
pitch, while keeping the fill-factor constant, will reduce under-sampling, but has
a negative effect on the SNR. Smaller sensor elements can capture less photons
in an equal time interval and increasing the acquisition time, to compensate for
this effect, will increase motion blur.

1.3 Multi-frame super-resolution reconstruction

Applying a multi-frame SR reconstruction method to an under-sampled image
sequence increases the spatial sampling rate such that the aliased spectra are
‘unfolded’ and the spectrum, including the high frequencies, is recovered. SR
reconstruction uses temporal information to improve the spatial resolution of the
image sequence. Deblurring and an improvement in SNR can be obtained as well
[55]. A spatial resolution improvement is only possible if uncorrelated subpixel
motion between the imaged scene and the camera is present in the acquired im-
age sequence. If a camera would be completely fixed and records a static scene,
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no resolution improvement can be obtained for arbitrary image sequences since
deblurring schemes cannot recover the information that was corrupted by alias-
ing. In this setup the camera acquires exactly the same information at each time
instance, so there is no information gain of the scene over time. Therefore, un-
correlated subpixel motion between the scene and the camera is an important
element to improve the spatial resolution of a recorded image sequence.

If a scene without moving objects is recorded with a moving camera (e.g.
a camera on a moving platform), SR reconstruction can be applied to the whole
scene. A typical algorithm/method for multi-frame SR reconstruction from a low-
resolution (LR) image sequence involves three subtasks: registration, fusion and
deblurring (see figure 1.6). Some SR reconstruction algorithms combine subtasks:
e.g. Hardie’s method [26] combines fusion and deblurring in a single step. First,
the LR images are registered against a common reference with subpixel precision.
During fusion an image at a higher resolution is constructed from the scattered
input samples. Deblurring can be employed to (partially) correct for the optical
and sensor blurring.

Registration Fusion Deblurring

50 LR images (64 x 64 pixels) SR result (256 x 256 pixels)

Figure 1.6: A typical three-step solution for super-resolution reconstruction of a
low-resolution image sequence: registration, fusion and deblurring. Here, Hardie’s
method is applied to 50 LR images with zoomfactor 4. Note the significant im-
provement in resolution and reduction of aliasing artifacts.
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1.3.1 Image registration

Image registration is the task of finding a geometric transformation between differ-
ent views of the same scene. To be able to perform SR reconstruction, a subpixel
precise registration is needed of the recorded image sequence. The effective reso-
lution enhancement of a SR reconstruction algorithm is limited by 1) the camera
characteristics and 2) the registration precision. The latter depends mainly on the
characteristics of the captured data, such as the amount of gradient energy and
the amount / type of noise [48]. If we know what the limitations are concerning
image registration, we have an indication for an effective zoomfactor, which is the
ratio of the sampling distance of the LR grid and the high-resolution (HR) grid.
Note that the choice of an effective zoomfactor also depends on the amount of
under-sampling and the number of available LR frames.

Registration of a recorded LR image sequence can be done in many differ-
ent ways. However, two main approaches can be distinguished: feature-based
methods and area-based methods. The main difference between both approaches
is that the former one uses only a sparse set of feature points to fit the motion
model, while the latter one uses all pixel information. For SR reconstruction often
the area-based approach is used, because a better precision can be achieved.

In this thesis the most basic motion model is used: translation. Such a basic
model suffices when a scene is captured from a (large) distance by a slowly moving
camera. Small rotations perpendicular to the optical axis can also be modeled by
translation. Rotations along the optical axis, however, cannot be described by a
translation of the entire scene.

1.3.2 Super-resolution fusion

After image registration all LR samples are merged on a HR grid. This process
is called super-resolution fusion [70]. Although many SR reconstruction methods
[26], [43], [55], [72] combine fusion and deblurring, a decoupling of these subtasks
reduces computational complexity [18], [21] and allows flexibility. However, this
decoupling can only be done under the assumptions of rigid motion, common
space-invariant blur and the same noise characteristics across all LR frames.

Almost 25 years ago, a first attempt of SR reconstruction was done by Tsai
and Huang [59] by solving a set of equations that led to the Fourier coefficients of
the sampled scene without aliasing. They assumed a set of uncorrupted shifted
LR images. To allow other motion models than pure translation, most recent SR
reconstruction methods are spatial-based. The first spatial-based SR reconstruc-
tion method was reported by Gross [23] in 1986.

Nowadays there is a tendency towards robust fusion techniques to cope with
registration and intensity outliers [21], [72] or to deal with very few LR samples
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[49]. In the latter work this is done by fusion of a spatiotonal adaptive neighbor-
hood.

Other SR fusion techniques that are known from literature are interpolation-
based. In [37] a Delaunay triangulation is used to perform an interpolation on a
HR grid. However, a drawback of such interpolation based fusion techniques is
the high computational complexity.

1.3.3 Image deblurring

The last step of a SR reconstruction method is image deblurring, also called
deconvolution. The purpose of this step is to sharpen the HR fused image by
undoing the blur caused by the lens and sensor. Let us assume that an image f
is degraded with space invariant blur h and additive Gaussian noise n [36]:

g(~x) = (f ∗ h)(~x) + n(~x), (1.2)

with ∗ the convolution operator. Then deconvolution is the task of recovering
image f from the degraded image g. One of the first solutions to this problem was
given by Wiener [65], who minimized the Mean Squared Error (MSE) between
the restored image f̂ and the target image f .

However, (least-squares) deconvolution is an ill-posed problem which needs
regularization to find a stable solution. A few regularization norms that penalize
high-frequency oscillation in the restored image f̂ are Tikhonov-Miller’s quadratic
norm [57], Rudin’s Total Variation (TV) norm [52] and Farsiu’s Bilateral Total
Variation (BTV) norm [21].

An alternative to the deconvolution methods described above is to combine
the deblurring step with the image fusion step. An example of a SR reconstruction
method that combines those steps is Iterated Back Projection (IBP) [31], which
applies least-squares deconvolution to multiple LR images to construct a HR
image. Hardie et al. [25] proposed a Maximum A Posteriori (MAP) SR approach
using Tikhonov-Miller regularization.

In this thesis we will not focus on deconvolution, but it will be used by several
of the algorithms described. For example in Chapter 2 we show the effect of
regularization on the perceived resolution of an image.

1.4 Moving objects in images

For many applications, such as surveillance, changes in the scene are of key inter-
est. In this thesis we focus on moving objects, because they are responsible for
changes in the observed scene. The way an object is represented on the image
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plane is determined by the camera model discussed in section 1.2.1. In this thesis
we assume objects to be rigid and that their shape and intensity is preserved.
These assumptions permit us to process scenes in which the shape and intensity
only change slowly over time.

The size of an object on the 2D image plane is determined by 1) the real-
world object size, 2) the object’s distance to the camera and 3) the focal length
of the lens. To capture an object larger on the image plane, one can decrease the
distance to the object and/or use a lens with a larger magnification (larger focal
length).

If we talk about the size of an object in this thesis, we mean the number of
pixels that the object covers in the image plane. By this definition the object size
is also dependent on the sampling distance of the sensor. With a smaller sampling
distance, the object will cover more pixels. Note that an object that is captured
small on the image plane, may not be small in the real-world: a Boeing 747 is
huge, but looks really small if it is observed from a large distance.

When moving objects are present in the scene or when a scene contains large
depth-variations, the relative motion of the imaging sensor with respect to the
scene becomes space-variant, i.e. it differs as a function of position in the image.
Each moving object will have its own relative motion with respect to the camera.
To be able to perform SR reconstruction on a moving object, the relative motion
of the moving object with respect to the background has to be estimated by means
of registration.

1.4.1 Large objects

If a moving object is large on the image plane (the total number of pixels depict-
ing the object is large compared to the amount of object boundary pixels), SR
reconstruction of a moving object can be applied in the same way as the rest of the
scene after detection and segmentation of the moving object. This is described in
Chapter 4 of this thesis. However, at the boundary of the moving object an error
will be made because the pixels in that region contain both information of the
scene’s background and the moving object; such boundary pixels are called mixed
pixels. For large moving objects these errors at the boundary are noticeable, but
not of great importance for subsequent detection and recognition tasks.

1.4.2 Small objects

If small moving objects, i.e. objects of which the majority of pixels depicting the
object are mixed pixels, are present in the scene, a standard approach for SR
reconstruction will fail to reconstruct these objects. In this case, the mixed pixels
will have to be processed differently to separate the mixed foreground (object)
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and background information. A technique for solving this problem is presented
in this thesis. The basic idea is that for each LR pixel in the recorded sequence
the contributions of the background and foreground are estimated by describing
the object boundary with a subpixel precise polygon.

1.4.3 Point objects

A point object is the smallest possible object and it occurs after blurring by the
camera as a blurred point in the image plane. Depending on the blurring and
sampling the point object’s energy is likely to be spread among more than one
pixel. Although it makes no sense to perform SR reconstruction on point objects,
their detection can be improved by applying SR reconstruction on the background
of the same scene. This is described in this thesis as well.

1.5 Research questions

In section 1.1 it was already stated that the main goal of this thesis is to improve
the resolution, SNR and contrast of moving objects in under-sampled image se-
quences by means of SR reconstruction and that these improvements may help to
increase the recognition rate of moving objects.

To reach this main goal, several research questions were formed before and
during my PhD project. In this section all these research questions are described
and most of them are answered in this thesis.

One of the first questions that arises when one is developing an algorithm
to improve images is “How am I going to measure the performance of my algo-
rithm?”. Ideally we would like to have an quantitative and objective measure.
Such a measure makes it easy to compare different algorithms. But what is a
good quantitative and objective measure? And is it task specific or generic? Fur-
thermore it is interesting to know if it is possible to predict the performance of
SR reconstruction algorithms on real-world data by testing the performance on
controllable simulated data. In Chapter 2, Performance evaluation of SR
reconstruction methods on real-world data, we address these issues.

When we have found an answer to our first research question, we can focus
again on our goal concerning moving objects. First we zoom in on the smallest
possible objects: the point objects, also called point targets. We already stated
that it makes no sense to perform SR reconstruction on point targets, so why
addressing them in this thesis?

A major topic concerning point targets is their detection. Typically, point
targets need to be detected in an early stage. However, if an image sequence is
under-sampled and contains a lot of structure in the background, it is difficult
to detect a point target. So an interesting research question is: “How can SR
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reconstruction improve the detection of point targets?”. This question is answered
in Chapter 3, SR reconstruction for moving point target detection.

When moving objects are large, a ‘standard’ pixel-based SR reconstruction
method can be applied to the pixels comprising the moving object. But “How do
we apply simultaneously SR reconstruction to the object and the background?”,
“What is the minimum object size for this kind of approach?” and “How do
we process the boundary region between object and background?” are typical
questions that we would like to see answered. Also we would like to know how
the performance of SR reconstruction on a moving object compares with the
performance on the background. Answers to these questions can be found in
Chapter 4, SR reconstruction on large moving objects and background.

Performing SR reconstruction on small moving objects is a hard and challeng-
ing problem, because the majority of pixels contained by the object are mixed
(boundary) pixels. We have to find a way to separate the foreground and back-
ground information in each observed mixed pixel. “How can this be done?” is the
main research question here. Furthermore, we have to find a way to register the
moving object with high precision to be able to perform SR reconstruction in the
first place. All in all there are a lot of challenges concerning SR reconstruction of
small moving objects and they are tackled in Chapter 5, SR reconstruction
of small moving objects in simulated data, and Chapter 6, SR recon-
struction of small moving objects in real-world data.





Chapter 2
Performance evaluation of SR
reconstruction methods on
real-world data

Abstract

The performance of a Super-Resolution (SR) reconstruction method on real-world data
is not easy to measure, especially as a Ground-Truth (GT) is often not available. In
this chapter a quantitative performance measure is used, based on Triangle Orientation
Discrimination (TOD). The TOD measure, simulating a real observer task, is capable
of determining the performance of a specific SR reconstruction method under varying
conditions of the input data. It is shown that the performance of a SR reconstruction
method on real-world data can be predicted accurately by measuring its performance
on simulated data. This prediction of the performance on real-world data enables the
optimization of the complete chain of a vision system; from camera setup and SR recon-
struction up to image detection/recognition/identification. Furthermore, different SR
reconstruction methods are compared to show that the TOD method is a useful tool to
select a specific SR reconstruction method according to the imaging conditions (camera’s
fill-factor, optical Point-Spread-Function (PSF), Signal-to-Noise Ratio (SNR)).

1This chapter has been published in A.W.M. van Eekeren, K. Schutte, O.R. Oudegeest and
L.J. van Vliet, Performance evaluation of super-resolution reconstruction methods on real-world
data, EURASIP Journal on Advances in Signal Processing, 2007, Article ID 43953. [14]
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2.1 Introduction

During the last decade numerous Super-Resolution (SR) reconstruction meth-
ods have been reported in the literature. Reviews can be found in [45, 20]. SR
reconstruction is the process of combining a set of under-sampled (aliased) low-
resolution (LR) images to construct a high-resolution (HR) image or image se-
quence. A typical solution for SR reconstruction of an image sequence involves
two sub-tasks: registration and fusion. Occasionally an additional deblurring step
is performed afterwards. First, the LR images are registered against a common
reference with sub-pixel accuracy. During the fusion an image at a higher reso-
lution is constructed from the scattered input samples. Nonlinear deblurring is
needed to extend the frequency spectrum beyond the cut-off limit of the imaging
sensor.

Although SR reconstruction has received significant attention over the past
few years, not much work has been done in the field of performance (limits) of
SR. Relevant work is reported in [4, 39]. Both study the problem of SR from an
algebraic point of view. Robinson [51] recently analyzed the performance limits
from statistical first principles using Cramér-Rao inequalities. This analysis has
the advantage that the performance bottlenecks can be related to the sub-task
level of an SR reconstruction method.

This chapter discusses the performance of an SR reconstruction method under
different conditions, such as number of input frames and Signal-to-Noise Ratio
(SNR), for a specific vision task, using the characteristics of modern InfraRed
(IR) imagers. This vision task is the discrimination of small objects/details in an
image and is measured quantitatively using Triangle Orientation Discrimination
(TOD) [7, 6]. TOD is a task-based evaluation method, which measures the ability
to discriminate the orientation of an equilateral triangle under a specific condition.

The performance of an SR reconstruction method on real-world data is es-
pecially interesting to measure, as it shows the capability of the algorithm in
practice. In this chapter it is shown that with the TOD method a quantitative
performance measure of an algorithm on real-world data can be obtained. More-
over, it is shown that the results of this measure can be predicted accurately by
measuring the TOD performance on simulated data. This enables the optimiza-
tion and selection of the algorithm in advance given a real-world camera.

The chapter is organized as follows. In Section 2.2, the registration of the
real-world and simulated data is discussed. In Section 2.3, the different SR recon-
struction methods are discussed. In Section 2.4, the TOD method is explained
and the setup of the measurements is given. The results are presented in Section
2.5 and finally conclusions will be provided in Section 2.6.
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2.2 Registration

The scenes (real-world and simulated) in our experiments are static and captured
with a moving camera. Therefore, the scene movement between two frames can
be described with a single shift. All LR frames of an image sequence are registered
to a reference frame, which is typically the first frame of the image sequence. The
registration of the LR frames is performed with an iterative gradient-based shift
estimator [48]. A gradient-based shift estimator [40] finds the displacement t~x
between two shifted signals as the least squares solution of (2.1)

MSE =
1
N

∑

R

(
s2(~x)− s1(~x)− t~x

∂s1

∂~x

)2

(2.1)

with s2 a shifted version of s1, ~x the sample positions and N the number of
samples in supported region R.

The solution of (2.1) is biased, which is corrected in an iterative way. In the
first iteration s2 is shifted with the estimated sub-pixel displacement, which is
accumulated in the next iteration with the estimated displacement between s′2
(shifted s2) and s1. This schema is iterated until convergence, finally resulting in
a very precise (σdisp ≈ 0.01 pixel for noise free data) unbiased registration, which
approaches the Cramér-Rao bound [34].

In our experiments the set of registered LR frames is processed by each of the
SR fusion/deblurring methods described in the following section. It is important
to note that all methods use the same set of registered LR frames. This implies
that differences in overall performance are not due to differences in registration.

2.3 Super-resolution fusion/deblurring methods

This section briefly describes the different SR reconstruction methods used in the
performance evaluation. The first three methods perform only fusion, whereas
the last three methods also incorporate deblurring.

2.3.1 Elad’s Shift & Add method

After registration of all LR frames, Elad’s [18] reconstruction method assigns each
LR sample to the nearest HR grid point. When this is done for all LR samples,
the mean is taken of all LR samples on each HR grid point. Note that the Shift
& Add method is only a fusion method and does not incorporate deblurring.
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2.3.2 Lertrattanapanich’s triangulation-based method

In [37] Lertrattanapanich proposes a triangle-based surface interpolation method
for irregular sampling. First, a Delaunay triangulation of all registered LR samples
is performed, followed by an approximation of each triangle surface with a bicubic
polynomial function. The pixel value z(x, y) at a new HR grid location (x, y) is
expressed as in (2.2):

z(x, y) = c1 + c2x + c3y + c4x
2 + c5y

2 + c6x
3 + c7x

2y + c8xy2 + c9y
3. (2.2)

Note that the monomial xy is omitted to maintain the geometric isotropy.
The nine parameters ci can be solved with three vertices (LR samples) and their
corresponding estimated gradients along x and y direction. Lertrattanapanich’s
triangulation-based method performs fusion only.

2.3.3 Kaltenbacher’s least-squares method without regular-
ization

This method [33] is based on the idea of estimating the “underlying” unaliased
frequency spectrum from multiple, aliased spectra. For sake of clarity, the 1-D
case will be explained below. With the shift property, the Fourier transform Fi

of a shifted frame i before sampling is

Fi(ω) = F (ω)ejδiω, (2.3)

where δi is the shift of frame i and F (ω) is the Fourier transform of the original
image. After sampling by the camera the transform in (2.3) converts to:

F̃i(n) =
1
S

∞∑
m=−∞

Fi

(
2π

NS
n−mωs

)
. (2.4)

Here, F̃i(n) is the discrete Fourier transform of LR input frame i = 1, ..., P . S
is the sampling period and ωs = 2π/S the sampling frequency, N is the amount
of samples per LR frame and n = 1, .., N is the sample index (here S = 1 and
ωs = 2π).

If the sampling frequency is increased by a factor K (zoom-factor) such that
Kωs > 2ωc (cutoff frequency), the limits in the summation of (2.4) can be changed
to b−K/2c + 1 and bK/2c. When all shifts δi are known and K is chosen, for
each sample n a set of equations can be written:

Gn = ΦnFn, (2.5)
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where Gn is a column vector with the nth Fourier component of each LR
frame,

Gn(i) = F̃i(n), (2.6)

and Φn is the (P ×K) transformation matrix defined by:

Φn(i, k) = ej2πδi(
n
N +(bK/2c−k)). (2.7)

Fn is the column vector with the K target Fourier components dependent on
n. This method needs at least 2K LR input frames. When more than 2K frames
are used a least-squares solution of the target Fourier components is obtained by
the Moore-Penrose inverse of Φn

Fn = (ΦT
nΦn)−1ΦT

nGn (2.8)

2.3.4 Hardie’s method using a regularized inverse observa-
tion model

Hardie [26] employs a discrete observation model that relates the ideally sampled
image z and the observed frames y:

ym =
H∑

r=1

wm,rzr + ηm (2.9)

where wm,r represents the contribution of the rth HR pixel in z to the mth

LR pixel in y. This contribution depends on the frame-to-frame motion and on
the blurring of the Point Spread Function (PSF). ηm denotes additive noise.

The HR image estimate ẑ is defined as the z that minimizes:

Cz =
L∑

m=1

(
ym −

H∑
r=1

wm,rzr

)2

+ λ

H∑

i=1




H∑

j=1

αi,jzj




2

(2.10)

with L the number of LR samples and H the number of HR grid points.
The cost function in (2.10) balances two types of errors. The left term is

minimized when a candidate z, projected through the observation model (2.9),
matches the observed data. The right term is a regularization term, which is
necessary as directly minimizing the first term is an ill-posed problem. The pa-
rameters αi,j (2.11) are selected to perform a Laplacian operation on z and ensure
that the regularization term is minimized when z is smooth.

(2.11)
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2.3.5 Farsiu’s robust method

In comparison with Hardie’s method, the reconstruction method proposed by
Farsiu et al. [21] separates the fusion and deblurring processes of an SR recon-
struction method: 1) the LR frames are fused with median Shift & Add (similar
as described in Section 2.3.1, but now the median, rather than the mean, is taken
of the samples at each HR grid point), 2) the fusion result z0 is deblurred using
an iterative minimization method. The cost function that must be minimized to
obtain the SR image ẑ from fusion result z0 is shown in (2.12).

Cz = ‖A(Gz− z0)‖1 + λ

P∑

l=0

P∑
m=0

αm+l‖z− Sl
hSm

v z‖1 (2.12)

Here, matrix A is a diagonal matrix with diagonal values equal to the square
root of the number of measurements that contributed to make each element of
z0. Therefore undefined pixels in z0 will have no influence on the SR estimate
ẑ. Matrix G is a blur matrix that models the PSF of the camera system. The
regularization term on the right is based on the bilateral Total Variation (TV)
criterion [21]. Matrices Sl

h and Sm
v shift z by l and m pixels in horizontal and

vertical directions, respectively. The scalar weight α, 0 < α < 1, is applied to
give a spatial decaying effect.

2.3.6 Pham’s structure-adaptive and robust method

Pham [49] recently proposed an SR reconstruction method using adaptive Nor-
malized Convolution (NC). NC [35] is a technique for local signal modeling from
projections onto a set of basis functions. Pham uses a first-order polynomial basis
(2.13):

f̂(s, s0) = p0(s0) + p1(s0)x + p2(s0)y, (2.13)

where f̂ is the approximated intensity value at sample s, (x, y) are the local
coordinates of s with respect to the center of analysis, s0 and pi are the projec-
tion coefficients. In contrast with a polynomial expansion like the Haralick facet
model [24], NC uses 1) an applicability function to localize the polynomial fit
and 2) allows each input sample to have its own certainty value. To determine
the projection coefficients at an output position s0, the approximation error is
minimized over the extent of an applicability function a centered at s0:

ε(s0) =
∫

(f(s)− f̂(s, s0))2c(s)a(s− s0)ds, (2.14)

with a the applicability function and c the certainty of each sample within the
extent. A schematic overview of Pham’s method is depicted in Figure 2.1.
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Figure 2.1: Flow diagram of Pham’s structure-adaptive and robust SR recon-
struction method.

After registration of the LR samples, the first step of the fusion process consists
of estimating an initial polynomial expansion (using a flat model at a locally
weighted median level), which results in IHR0 . Next, NC using a robust certainty
(2.15) is performed, which results in a better estimate IHR1 and two corresponding
derivatives IHRx

and IHRy
.

c(s, s0) = exp

(
−|f(s)− f̂(s, s0)|2

2σ2
r

)
(2.15)

Here, the photometric spread σr defines an acceptable range of the resid-
ual error |f − f̂ |. The derivatives are used in the last fusion step to construct
anisotropic applicability functions for adaptive NC. Such an applicability func-
tion is an anisotropic Gaussian function whose main axis is rotated to align with
the local dominant orientation. Deblurring is done with bilateral TV regulariza-
tion (as in Farsiu’s method).

2.4 Performance evaluation experiments

To measure the performance of SR reconstruction several quantitative measures,
such as Mean Squared Error (MSE) and Modulation Transfer Function (MTF),
are often used. However, we use the Triangle Orientation Discrimination (TOD)
measure as proposed in [7]. The TOD method determines the smallest triangle size
in an image of which the orientation can be discriminated. This evaluation method
is preferred over methods like MSE and MTF because 1) the measurement is done
in the spatial domain and is well localized, and 2) it employs a specific vision task.
This vision task is directly related to the acquisition of real targets, which was
first shown by Johnson [32]. Such a relationship is relevant for determining the
limitations of your camera system including the image processing for recognition
purposes. The MSE and MTF are neither localized nor task related. The MTF
method is also not suited for evaluating non-linear algorithms, which most SR
reconstruction methods are.
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2.4.1 TOD method

The TOD method is an evaluation method designed for system performance of a
broad range of imaging systems. It is based on the observer task to discriminate
four different oriented equilateral triangles (see Figure 2.2).

leftup right down

Figure 2.2: The four different stimuli used in the TOD method.

The observer task is a four-alternative forced-choice, in which the observer has
to indicate which of the four orientations is perceived, even when he is not sure.
In the experiments an automatic observer is used, which makes its choice θ̂ based
on the minimum MSE between the triangle in the SR result IHR and a triangle
model M :

θ̂ = min
θ,s
{ 1
N

∑

~x

(IHR(~x; θf , sf )−M(~x; θ, s))2}. (2.16)

Here, θ indicates the orientation, s indicates the size of the triangle, ~x are the
sample positions and N is the number of samples. Note that θ is limited to the
four different orientations and s is quantized in steps of 4/17th of the LR pixel
pitch. The subscript f denotes one member of these sets. Although (2.16) is
minimized for θ and s, only the estimated orientation θ̂ is used as a result. Note
that triangle model M can also incorporate a gain and offset parameter.

The probability of a correct observer response increases with the triangle size.
In [7] it is shown that this increase can be described with a Weibull distribution:

pc(x) = 0.25 + 0.75/1.5(α/x)β

, (2.17)

where α is x at 0.75 probability correct and β defines the steepness of the
transition. Such a Weibull distribution can be fitted to a number of observations
for different triangle sizes as depicted in Figure 2.3. From this fit the triangle size
that corresponds with a 0.75 probability correct response (T75) is determined. T75

(in LR pixels) is a performance measure, where a smaller T75 indicates a better
performance. When for different conditions, e.g. SNR, T75’s are determined, a
performance curve can be plotted. Such curves will be used in Section 2.5 to show
the results.
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Figure 2.3: Example of a possible Weibull distribution of probability correct
observer response.

2.4.2 Real-world data experiment

In this experiment the performance of an SR reconstruction method on real-world
data is measured.

Setup

The setup of the experiment (including TOD) is depicted in Figure 2.4. The
LR data ILR comes from a real-world thermal IR camera (FLIR SC2000) with
a rotating mirror in front of the lens. In the scene a Thermal Camera Acuity
Tester (T-CAT [61]) is present as depicted in the left part of Figure 2.4. This ap-
paratus contains an aluminium plate with 5 rows of 4 equilateral triangle shaped
cutouts. A black body plate is placed 3 cm behind this plate. Between the plates
several temperature differences can be created. By controlling the temperature
difference, different contrast levels (SNR’s) are obtained. Although the triangle
shaped cutouts on the plate vary in size, more size variation can be obtained
by changing the distance from the apparatus to the camera. Real-world data se-
quences (40 frames) are processed with three different SR reconstruction methods
with optimized parameter settings: Elad’s method, Hardie’s method and Pham’s
method.

From both the ILR data and the reconstructed IHR data the orientation of the
triangles is determined. This is done using (2.16) with gain and offset estimation
in triangle model M . The triangle model M is implemented with shifted, blurred
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and downsampled triangles in the Triangle Database. The Triangle Database
contains equilateral triangles with sides 12, 16, ..., 280 pixels. In our evaluation
each triangle is equidistantly shifted, blurred (σ = 0.9 × S) and downsampled
(S = 17) resulting in 25 realizations for each triangle. Here the blurring with
σ = 0.9×S is chosen such that these reference triangles will have a right balance
between residual aliasing and high-frequency content [62]. The orientation of the
triangle obtained from the Triangle Database that results in the smallest mean-
square error with the triangle in the data is selected. In the final step of the
experiment setup the obtained orientation in the previous step is compared with
the known Ground-Truth (GT) orientation of the triangle in the original real-
world data.

Measurements on real-world data

To validate the performance on real-world data of the SR reconstruction methods
with simulations, some measurements are needed of the real-world data: 1) SNR,
2) Point-Spread-Function (PSF) of the lens and 3) fill-factor (ff), which is the
percentage of photo-sensitive area of the pixels on the focal plane array sensor.

The real-world data was recorded with three different temperature differences
of the T-CAT, which results in three SNR’s. Here, the SNR (dB) is defined as:

SNR = 20 log10

( |ITR − IBG|
σBG

)
, (2.18)

with ITR the triangle intensity, IBG the background intensity on the T-CAT
plate and σBG the standard deviation of IBG. Our measurements resulted in
SNR’s: 7 dB, 30 dB and 48 dB.

The parameters of the camera (PSF and ff) are obtained by estimating the
overall blur (LR pixels), σtot, in the real-world data by fitting an erf-model to
several edges in the data (with highest SNR). Measurements on edges of large tri-
angles resulted in an overall blur of σtot ≈ 0.7, whereas on medium sized triangles
an overall blur of σtot ≈ 0.5 was measured. When comparing these measurements
with the specifications of the camera (FLIR SC2000), the smallest overall blur
seems more likely. Given the camera model as depicted in Figure 2.5, the PSF
blur can be determined from the overall blur for a certain fill-factor. In modern
infrared cameras a realistic fill-factor is approximately 80% (p.101 in [47]). Given
a σtot = 0.5 the blurring of the lens is σpsf = 0.4.

2.4.3 Simulated data experiment 1

Based on the estimates of the camera’s parameters, simulated data sets have been
generated. After processing the simulated data sets with the same SR reconstruc-
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Figure 2.4: Left: example of real-world data ILR. Right: flow diagram of the
real-world data experiment.

tion methods as in the previous experiment an indication can be obtained of the
predictability of the real-world performance of these algorithms.

Camera model

A data set is simulated with a camera model as depicted in Figure 2.5. Where
IHY Pi is a discrete representation of a scene sampled at the Nyquist rate with a
S× smaller sampling distance than the observed frames ILRi . δi represents the
translation of the camera, the PSF of the lens is modeled with a 2D Gaussian
function G with standard deviation S · σpsf and the fill-factor is modeled with
a uniform filter U with width S ·

√
ff. The overall noise in the camera model is

assumed to be Gaussian distributed.

Downsample

S iLRIiHYPI Trans-

lation

S· i
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blurring
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camera model

Figure 2.5: Camera model used in the experiments.

In this experiment two simulated data sets ILR are generated: 1) σpsf = 0.3,
ff = 0.8, which results in a less blurred data set as derived in Section 2.4.2 and 2)
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σpsf = 0.55, ff = 0.8, which results in a more blurred data set. The downsampling
factor is chosen as S = 17. The shift vectors S · δi are random integer shifts ([0,S]
pixels in the hyper-resolution (HY) domain) such that this results in sub-pixel
shifts in the simulated data. Different amounts of Gaussian noise are added,
resulting in a SNR varying from 12 dB to 42 dB.

Setup

The setup of the experiment on simulated data is depicted in Figure 2.6. The
Scene Generator produces HY scenes IHY P containing different triangle sizes and
orientations from the Triangle Database. The Camera Model converts the IHY P

data to ILR data in such a way that for each triangle size 16 realizations are present
in the data set. Note that the number of realizations determines the statistical
validity of the experiment. The ILR data, of which an example is shown in the
left part of Figure 2.6, is the input for the SR reconstruction methods. Note that
the settings of these methods are the same as for processing the real-world data.
From both the ILR data and the reconstructed IHR data the triangle orientation
is determined using (2.16). Note that for this experiment no gain and offset
estimation is used in the triangle model M .

Scene

Generator

Camera

Model

SR

Reconstruction

Determine

Orientation

Compare with

OriginalOrientation

Triangle

Database

Shift,

Blur,

I
LR

I
LR

I
HYP

I
HR

Figure 2.6: Left: example of simulated data ILR. Right: flow diagram of the
simulated data experiment.

2.4.4 Simulated data experiment 2

This experiment is done to show that the TOD method is a useful tool to select
a specific SR reconstruction method according to the imaging conditions (cam-
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era’s fill-factor, optical PSF, SNR). Here, camera model parameters (σpsf = 0.2,
ff = 1) are chosen that result in a more aliased data set than the previous simu-
lated data sets. These parameters are chosen to enhance the differences between
the SR reconstruction methods. To measure the performance of each method,
the same setup is used as in “Simulated data experiment 1” (see Figure 2.6).
The performance of the SR reconstruction methods is measured for the following
conditions:

• Different number of frames

• Different SNRs

• Different zoom-factors

Note that the first two conditions are determined by the simulated data and the
last one (ratio between resulting HR grid and original LR grid) is determined by
the algorithm. Only Hardie’s, Farsiu’s and Pham’s method are tuned to perform
optimally under the varying conditions. For all three methods the parameter λ
is tuned. The tuning criterium is to obtain a smallest T75 triangle size under the
condition at hand. Note that the parameter λ in Hardie’s method has a slightly
different meaning than in the other two methods. The parameter σ, which is the
standard deviation of a Gaussian function and represents both the PSF due to
the optics and the sensor blur due to the fill factor, is chosen in such a way that
it fitted best to the blurring of our used camera model.

The results of all experiments are discussed in the following section.

2.4.5 TOD versus MSE

An alternative measure to TOD is the MSE:

MSE =
1
N

∑

~x

(IHR(~x; θf , sf )−M(~x; θf , sf ))2. (2.19)

To show the difference between both measures, the following experiment is
performed. Simulated LR data (varying SNR) is processed with the Hardie SR
reconstruction method with different settings (varying λ and number of frames).

The resulting images are first scored with the TOD method and subsequently
the MSE is calculated between the SR results and a triangle model M of size sf

closest to the triangle threshold (T75) found. Contour plots of both measures are
depicted in Figure 2.7.

It is clear from Figure 2.7 that the profiles of the TOD measure differ from
the corresponding MSE profiles. Analyzing the profiles for a fixed frame number
shows that the ‘optimal’ λ resulting in the lowest T75 is significantly smaller
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Figure 2.7: (a) Contour plot T75, SNR 42 dB, (b) Contour plot T75, SNR 24
dB, (c) Contour plot MSE, SNR 42 dB, (d) Contour plot MSE, SNR 24 dB.

than the ‘optimal’ λ resulting in the lowest MSE: 10−2 and 1, respectively. The
corresponding SR results (not depicted in this chapter) show that a small λ result
in steep edges with some ringing at the boundary of the triangles. Note that
TOD and thereby correct identification does not solely depend on the lowest MSE
found, but rather on the separability (= expected difference in MSE between the
observation and the correct assignment and the MSE between the observation and
an incorrect assignment divided by the variance of the MSE). Hence, the ringing
imposes a positive influence on this measure of separability.

2.5 Results

All results of the experiments can be found at the end of this chapter. Note
that the vertical-axis in the plots indicate the triangle threshold size at 75%
probability correct. A smaller triangle threshold size (T75) corresponds with a
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better performance, hence the lower the curve, the better the performance.

2.5.1 Results real-world and simulated data experiment 1

The results of the “Real-world data experiment” and the “Simulated data exper-
iment 1” can be seen in Figure 2.8. These graphs show that the performance
on real-world data can be approximated by the performance of a simulated data
set. The depicted performance of the two simulated data sets form a performance
lower bound (σpsf = 0.55 and ff = 0.8, resulting in an “overall” σtot ≈ 0.6) and
a performance upper bound (σpsf = 0.3 and ff = 0.8, resulting in σtot ≈ 0.4)
on the real-world performance. Note that in Figure 2.8 the performance upper
bound is visually a lower bound and the performance lower bound is visually an
upper bound. Elad’s method shows that for all SNRs the performance on the
real-world data is close to the performance upper bound. For Hardie’s method
we see the opposite for high SNRs: here the real-world performance is equal to
the performance lower bound. Furthermore, it can be seen that the performance
on real-world data of the three algorithms is similar for low- and medium SNR,
whereas for high SNR Pham’s and Hardie’s method perform slightly better.

2.5.2 Results simulated data experiment 2

In Figure 2.9 the performance of all SR reconstruction methods with zoom-factor
2 for different number of LR input frames is compared. Here the black line indi-
cates the performance on “raw” unprocessed LR input data and therefore should
be taken as baseline reference. From these plots it is clear that the performance
of all SR reconstruction methods improves when processing more frames. For
high SNRs this improvement is only marginal, but for low SNRs it is significant.
Kaltenbacher’s method performs poorly when processing only 4 LR frames. This
can be explained by the fact that the shifted LR frames are non-evenly spread,
which results in an unstable solution. When 64 LR frames are processed, Lertrat-
tanapanich’s method performs worst for low SNRs. For high SNRs the perfor-
mance of Elad’s method performs worst. The best performing SR reconstruction
methods (when many LR frames are available) are Kaltenbacher’s method and
Hardie’s method, closely followed by the method of Pham.

To illustrate the effect of an increasing zoom-factor, Figure 2.10 shows perfor-
mance curves of all SR reconstruction methods for zoom-factor 1, 2 and 4. All
methods processed the same 64 LR frames (σpsf = 0.2 and ff = 100%). From Fig-
ure 2.10 it is clear that the performance of zoom-factor 2 and 4 for most methods
(except for Kaltenbacher’s method and Farsiu’s method) is comparable. For low
SNRs the performance of each method (for all zoom-factors) is significantly better
compared to LR performance. Here, the temporal noise reduction is visible. For
high SNRs the results show an improvement of a factor 2, which approximately
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equals the amount of aliasing in the LR data. This explains why zoom-factor 4
does not yield a significant better performance. Note that the bad performance of
Kaltenbacher with zoom-factor 4 compared with zoom-factor 2 can be explained
by the fact that this method has no regularization and hence becomes ill-posed.
Furthermore, an improvement by a factor 2 (between zoom-factor 1 and zoom-
factor 2 & 4) is not obtained for low SNRs. Here, the temporal noise reduction is
more relevant than the anti-aliasing. The performance of some SR reconstruction
methods, when processed with zoom-factor 1 under high SNR, is slightly worse
compared to baseline LR performance. This could be explained by blurring in
the fusion process and/or blurring as a result of registration errors.

2.6 Conclusions

From the results in the previous section, the following conclusions can be derived:

• From the results of the real-world data experiment it can be concluded that
the performance of different SR reconstruction methods on real-world data
can be predicted accurately by measuring the performance on simulated
data, if a proper estimate of the parameters of the real-world camera system
is available.

• With the ability to predict the performance of an SR reconstruction method
on real-world data, it is possible to optimize the complete chain of a vision
system. The parameters of the camera and the algorithm must be chosen
such that the performance of the vision task is optimized.

• It is shown that with the TOD method the performance of SR reconstruction
methods can be compared for a specific condition of the LR input data.
Considering the imaging conditions (camera’s fill-factor, optical PSF, SNR)
the TOD method enables an objective choice on which SR reconstruction
method to use.

• Comparing the performance of the unregularized Kaltenbacher’s method
with the regularized methods of Hardie, Farsiu and Pham (Figure 2.9), it
can be concluded that in general regularization is not required for good
performance when many input frames are available.

• The relative performance of the various methods change little as a function
of SNR.

• The results presented in Figure 2.10 show that a larger zoom-factor does not
yield a better performance. This can be explained by the fact that sensors
with high fill-factors exert an amount of blurring on the LR input frames
and therefore limit the resolution gain and hence the maximum achievable
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resolution gain. For high SNRs the resolution gain is approximately equal
to the amount of aliasing in the LR data and for low SNRs the resolution
gain is minor compared with the temporal noise reduction.
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Figure 2.8: Performance measurements on real-world and simulated data (40
frames). Blue line: sim. data created with σpsf = 0.55 & ff=80%, green line:
sim. data created with σpsf = 0.3 & ff=80%. (a) Elad, (b) Hardie (σ = 0.55,
λ = 0.01), (c) Pham (σ = 1, λ = 10−3, β = 10). All data is processed with
zoom-factor 2.
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Figure 2.9: Performance measurements on simulated LR data (σpsf = 0.2, ff
= 100%) processed with different SR reconstruction methods (zoom-factor 2) with
optimized settings, (a) 4 frames, (b) 16 frames, (c) 64 frames.
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Figure 2.10: Performance measurements on simulated LR data (σpsf = 0.2, ff
= 100%, 64 frames), processed with different methods with optimized settings for
zoom-factor 1, 2 and 4. (a) Elad, (b) Lertrattanapanich, (c) Kaltenbacher (no
zoom-factor 1 results could be obtained with our implementation), (d) Hardie, (e)
Farsiu, (f) Pham.



Chapter 3
Super-resolution reconstruction for
moving point target detection

Abstract

When bright moving objects are viewed with an electro-optical system at long range,
they will appear as small slightly blurred moving points in the recorded image sequence.
Typically, such point targets need to be detected in an early stage. However, in some
scenarios the background of a scene may contain much structure, which makes it difficult
to detect a point target.
The novelty of this work is that super-resolution reconstruction is used for suppression
of the background. With super-resolution reconstruction a high-resolution estimate of
the background, without aliasing artifacts due to under-sampling, is obtained. After
applying a camera model and subtraction, this will result in difference images containing
only the point target and temporal noise.
In our experiments, based on realistic scenarios, the detection performance, after back-
ground suppression using super-resolution reconstruction, is compared to the detection
performance of a common background suppression method. It is shown that using the
proposed method, for an equal detection - false alarm ratio, the signal strength of a point
target can be up to 4 times smaller. This implies that a point target can be detected at
a longer range.

1Parts of this research are described in European patent application nr. 06077053.4: point
target detection with super-resolution.

2This chapter has been published in J. Dijk, A.W.M. van Eekeren, K. Schutte, D.J.J. de
Lange and L.J. van Vliet, Super-resolution reconstruction for moving point target detection,
Optical Engineering, vol. 47, no. 8, 2008. [11]
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3.1 Introduction

In surveillance applications moving targets need to be detected at a very early
stage. Electro-optical surveillance systems observe missiles or other incoming
threats as moving point targets. At maximum detection range these point targets
will have a low signal-to-noise ratio with respect to the background. Furthermore,
the background may also contain structure (clutter) of high contrast.

Usually, the first step of point target detection is to suppress the clutter of the
stationary background in the image. A clutter suppression step should remove the
information of the static background while preserving the target signal energy.

One of the essential steps for background suppression is to determine the
apparent motion between the frames, i.e. the registration step. The apparent
motion of the background can, on a small scale, often be described by translational
motion between two subsequent camera frames Ik and Ik−1.

A standard way of performing background suppression is by Shift, Interpolate
and Subtract (SIS). One of the frames is corrected for the shift (dx, dy) using
interpolation (Ĩk−1) and is subtracted from the other frame. In the experiments
in this chapter we use bspline interpolation. After subtraction a difference image
∆DSIS

k results:

∆DSIS
k (x, y) = Ik(x, y)− Ĩk−1(x + dx, y + dy). (3.1)

Note that for point targets with a small apparent motion with respect to the
background, the point target’s signal energy in the difference image ∆DSIS

k is
almost lost. Another problem of SIS is that due to under-sampling by the image
sensor, aliasing artifacts in the recorded image sequence remain present in the
difference image. Both will hamper point target detection.

In this chapter we propose to use super-resolution (SR) reconstruction to im-
prove the detection of moving point targets. The SR reconstruction algorithm is
used in the background suppression step. In previous work [49, 55] we developed
Super-Resolution (SR) reconstruction techniques to improve the spatial resolution
of under-sampled image sequences by exploiting the subpixel shift between the
frames. Using SR for point target detection has the advantage that 1) the signal
and aliasing contribution in the last frame can be predicted, which substantially
reduces the aliasing related clutter in the difference image, 2) the temporal noise
is reduced, which improves the Amplitude-to-Noise Ratio (ANR) of the point
target in the difference image, and 3) the ANR in the background estimate is
suppressed, which increases the ANR in the difference image. The latter is espe-
cially noticeable for point targets with a small apparent motion with respect to
the background. Note that point targets which have no motion with respect to
the background will be totally part of the background estimate. Therefore, they
are not visible in the difference image.
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After SIS or the SR background suppression step, standard detection algo-
rithms such as thresholding or track-before-detect [67, 58] can be used. In this
chapter results are shown for a 3-out-of-5 tracking algorithm [8] and for direct
thresholding.

This chapter is organized as follows. In the next section the advantages of SR
reconstruction for point target detection are discussed from a theoretical perspec-
tive. In section 3.3 the SR based point target detection method is presented. In
section 3.4 the setup of these experiments is described. The experimental results
are shown in section 3.5. Finally, conclusions are presented in section 3.6.

3.2 Theory

Super-Resolution (SR) reconstruction is a well-known technique to increase the
spatial resolution of a sequence of aliased Low-Resolution (LR) images using tem-
poral information. The zoom factor of a SR reconstruction method is the ratio
of the size of the resulting High-Resolution (HR) image with respect to the size
of the LR images. Numerous SR reconstruction methods are described in the
literature. Overviews are given by Park [45], Farsiu [21] and Van Eekeren [14].
Generally, SR reconstruction can be split up in three parts [48]: 1) registration,
2) fusion and 3) deblurring. The first part is necessary to align the content of all
frames with subpixel accuracy. The two following steps will fuse the aligned data
on a HR grid and deblur the result.

SR reconstruction can be used for point target detection to improve the back-
ground suppression step. With SR reconstruction it is possible to create a HR
model of the background. This HR background model contains less or no aliasing
and ideally does not contain the point target. With the HR background model ~Z
(reordered in a vector) and a transfer matrix Hk, an estimate can be made of LR
image ~Ik (reordered in a vector). The transfer matrix Hk describes 1) the model
of the camera, 2) the estimated motion between ~Z and ~Ik and 3) the zoom factor.
A difference image of frame k is then created by applying:

∆ ~DSR
k = ~Ik −Hk

~Z. (3.2)

Hk
~Z suffers from aliasing exactly the same way as ~Ik, so the difference image

is free from clutter due to aliasing. If the images were subtracted in the high-
resolution space, this would not be the case, as the background image ~Z is aliasing-
free and the HR version of ~Ik contains the interpolated aliasing.

In the next subsections the advantages of SR reconstruction for point target
detection will be explained from a theoretical perspective.
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3.2.1 Aliasing noise reduction

In a camera system the measured signal is limited by 1) the band-limitation of
the optics and 2) the sampling of the sensor. Aliasing is an effect due to under-
sampling. Both limitations are depicted in Figure 3.1.
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Figure 3.1: The aliased spectrum (no marks) of a signal which is band-limited
and under-sampled. The Modulation Transfer Function (MTF) is modeled by
Gaussian lens blur (σpsf = 0.3) and uniform sensor blur (area fill-factor = 81%).
The non-aliased spectrum (denoted with triangles) results after applying the MTF
to the original spectrum. To obtain the aliased spectrum, the spectral energy above
the half-sampling frequency = fs/2 needs to be folded (denoted with the arrow) and
added to the non-aliased spectrum. Note that the aliased spectrum does not have
any information above the half-sampling frequency. All spectra are normalized
such that the DC value equals one.

Here, the blurring of the lens is modeled with Gaussian blurring (σpsf = 0.3)
and the sensor is modeled as a 2-D array of non-overlapping square photosensitive
elements with fill-factor = 81%. The scene spectrum is modeled with a quadratic
decay, which is characteristic in natural images [54]. Note that this might slightly
differ from the real scene spectrum of the images used in the simulations of which
no spectrum was determined.

Applying SR reconstruction increases the sampling rate such that the aliased
frequency spectra are unfolded and part of the high-frequency spectrum is re-
covered. This implies that a better, i.e. (almost) aliasing free, HR estimate of
the background is obtained. Applying the camera model for frame k to this HR
background image yields the same aliasing artifacts as in the recorded image Ik.
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Subtraction of these two images is very effective in suppressing the background,
because by sampling the HR image at exactly the same grid positions (including
sub-pixel shift) as the corresponding LR image, exactly the same aliasing artifacts
for frame k are created. After subtraction, the difference image will contain only
temporal noise and the point target signal. Note that the main aliasing effect on
the point targets is that their maximum energy per frame is not constant.

3.2.2 Temporal noise reduction

All cameras inadvertently add temporal noise to the scene information. Let us
assume that there are N recorded frames available, containing additive Gaussian
distributed noise with standard deviation σn. The resulting noise in a difference
image after SIS (3.1) will be

√
2σn. Note that we assume that the images are

corrected for non-uniformity correction. This can be done by the camera or based
on the images. In this chapter, we do not evaluate the effects of non-uniformity
reduction by SR on the detection of point targets.

Now, assume that SR reconstruction is used to calculate a difference image as
in (3.2). Here, the estimated LR frame HkZ is based on N recorded frames, which
reduces the noise standard deviation with factor

√
N . Therefore, the resulting

noise in a difference image after SR reconstruction is:

σ∆SR
n =

√
N + 1

N
σn. (3.3)

If many frames are used, the noise in the resulting difference image will be
only slightly higher than σn, the noise in a single LR image. The fraction of noise
in the SR difference image compared to the SIS difference image is

σ∆SR
n

σ∆SIS
n

=

√
N+1

N σn√
2σn

≈ 1√
2
. (3.4)

This means that for the same amount of false detections, the point target
amplitude that can be detected with SR reconstruction in a temporal noise limited
situation will be a factor

√
2 lower.

3.2.3 Point target amplitude preservation

Another advantage of background suppression using SR reconstruction is that
the point target intensity in the difference image is preserved for large and small
apparent motion of the point target with respect to the background. Ideally, the
point target is not present in the projection of the HR background image, i.e. the
point target intensity in the difference image is the same as the amplitude of the
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point target. The difference image is calculated with (3.2). In the non-ideal case,
however, the point target can be visible in the projection of HR image Z. Note
that the main aliasing effect on the point targets is that their maximum energy
per frame is not constant.

To analyze the point target amplitude preservation, point targets with am-
plitude one are simulated. First, point targets are placed in a super scale image
with a constant background, which is a factor 15 larger than LR image Ik. This
super scale image is shifted and blurred with the MTF as described in Figure 3.1
and afterwards subsampled with factor 15. The simulation method is fully ex-
plained in section 3.4.3. To the resulting LR images a small amount of Gaussian
distributed noise (σn = 0.002) is added.

The effect of point target amplitude preservation is measured as the maximum
of the difference images ∆DSR

k . If this maximum is around one, the point target
amplitude is well preserved. The point target intensity in the difference image
is simulated for two different SR reconstruction methods: Hardie (non-robust)
and Zomet (robust). Both methods model the camera blur with Gaussian blur
(σcam = 0.41) and use 48 frames for reconstruction. A more detailed explanation
of both methods is given in section 3.3.2.

As a comparison the point target amplitude preservation of SIS for varying
point target motion is simulated as well. Here, the difference images ∆DSIS

k are
calculated with (3.1).

The results are shown in Figure 3.2. As expected, the robust Zomet method
(Z1 and Z2) performs best for point targets with a small apparent motion with
respect to the background. There is no significant effect between the different
zoom factors. Note that the robust Zomet method preserves the point target
amplitude better than the non-robust Hardie method. This can be explained by
the fact that the point target is treated as an outlier in Zomet’s SR reconstruction.
The difference between robust and non-robust SR is explained in more detail in
section 3.3.2. If the point target velocity is large (>1.5 pixels), the point target
profile of the previous recorded frame will hardly influence the point target profile
in the current frame. For those cases the point target amplitude in the difference
image is maximal. The high maximum value in the difference image after SIS for
a high point target velocity can be explained by the bspline interpolation which
is used for the shift. This interpolation can cause lobes which are below the
background and add up to the point target in the non-interpolated frame.

Summarizing, using SR reconstruction for background suppression has the
following advantages from a theoretical perspective: 1) aliasing artifacts are re-
duced, 2) temporal noise is reduced and 3) the point target is better preserved in
the difference image for small apparent motion with respect to the background.
Therefore, the largest gain of using SR reconstruction for background suppres-
sion is expected for recorded sequences with much structure in the background
(causing significant aliasing artifacts) and a small apparent point target motion.
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Figure 3.2: Relative point target amplitude in a difference image as a function
of the point target velocity. The relative point target amplitude for a difference
image resulting from SIS (bspline) is indicated with diamonds. Zomet (robust
SR) is indicated with Z1 and Z2 (zoom factor 1 and 2 respectively) and Hardie
(non-robust SR) is indicated with H1 and H2. 48 frames are used for the SR
reconstruction and Gaussian blur σ = σcam = 0.41 is used to describe the camera
blur.

3.3 Point target detection using super-resolution
reconstruction

This section describes the point target detection method based on background
suppression using SR reconstruction. Although this method is based on existing,
well-known techniques, the combination and use of those techniques is innovative.
First, the registration method is described, followed by the SR reconstruction
method and finally the detection and tracking methods.

3.3.1 Registration

Registration aligns the content of all LR frames prior to SR reconstruction. This
registration step is also needed for background subtraction with SIS. There are a
variety of image registration techniques described in the literature [71]. We per-
form registration with a very precise iterative gradient-based shift estimator [49].
This gradient-based shift estimator [40] finds the displacement (dxk1, dyk1) be-
tween two shifted images, Ik−1(x, y) and Ik(x, y), as a least-squares solution:
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it.1 : min
dxk1,dyk1

1
P

∑
x,y

(
Ik − Ik−1 − dxk1

∂Ik−1

∂x
− dyk1

∂Ik−1

∂y

)2

. (3.5)

Here, image Ik is approximated with a Taylor expansion of image Ik−1, (x, y)
are the pixel positions and P is the number of pixels in image Ik. The partial
derivatives are calculated with a Gaussian gradient filter (see p.64 in [68]).

The solution of (3.5), (dxk1, dyk1), is biased, which is corrected in an iterative
way:

it.n : min
dxkn,dykn

1
P

∑
x,y

(
Ĩk(x + dxk(n−1), y + dyk(n−1)) ...

− Ik−1 − dxkn
∂Ik−1

∂x
− dykn

∂Ik−1

∂y

)2

. (3.6)

In iteration n (n > 1), Ik is translated by interpolation (indicated by ‘tilde’)
with the estimated subpixel displacement (dxk(n−1), dyk(n−1)) from the previous
iteration. Now, the displacement (dxkn, dykn) between the shifted Ik and Ik−1 is
estimated. This displacement is accumulated with the displacement obtained in
the previous iteration. This schema is iterated until convergence and results in
a very precise (σdisp ≈ 0.01 pixel for noise free data) unbiased registration [49].
The total estimated displacement with the iterative gradient-based shift estimator
after M iterations is:

(dxk, dyk) = (dxk1, dyk1) + ... + (dxkM , dykM ). (3.7)

Note that this registration method, due to its iterative character, can also
cope with multiple-pixel image shifts. In such a case, the registration will not be
accurate after the first iteration because the Taylor expansion is not accurate for
large shifts. However, after a few iterations the remaining shift will be small and
hence the Taylor expansion becomes accurate.

3.3.2 Robust super-resolution fusion and deblurring

The second and third step of super-resolution reconstruction are fusion and de-
blurring. Numerous SR reconstruction methods can be found in the literature;
some methods work in the Fourier domain [59, 33], there exists robust meth-
ods [20], non-robust methods [26] and some methods [49] are adaptive. Van
Eekeren [14] made a quantitative performance comparison between a selection
of different SR reconstruction methods. One of the best performing methods is
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the method proposed by Hardie et al. [26]. Like many other SR reconstruction
methods it models the image formation process in the following way:

~Ik = DkCkFk
~Z + ~θk = Hk

~Z + ~θk, (3.8)

where ~Ik is the kth LR frame, ~Z is the HR image scene and ~θk denotes normally
distributed additive noise. All reordered in a vector. Fk is the geometric warp
matrix based on the results of the registration. Ck is the blurring matrix of
the camera and Dk is the decimation matrix which resamples the image to low
resolution. For simplification all matrices are combined in Hk. The blurring of
the camera is modeled by Gaussian blurring. Note that it is allowed to represent
basic operations such as warping and blurring in a matrix, because they are linear
in the image intensities.

As already stated in section 3.2.3, a robust SR algorithm for background sup-
pression is proposed because the point target is better preserved in the difference
image. A robust algorithm is less sensitive to outliers in the background data,
such as moving point targets. With enough frames available and sufficient ap-
parent motion of the point target with respect to the background, a robust SR
algorithm will treat the point target as an outlier. For this reason we use a robust
method, proposed by Zomet et al. [72], in the experiments. This method is similar
to Hardie’s method but uses robustness in the minimization procedure.

This is best explained by comparing the minimization procedure used by
Hardie with that used by Zomet. We start by giving a short derivation of the
Hardie method, and then stress the differences with Zomet.

The total squared error of resampling HR image ~Z is given by:

L(~Z) =
1
2

N∑

k=1

∑

i

(~Ik(i)− (Hk
~Z)(i))2 (3.9)

with N the total number of LR frames and i the LR pixels. Note that ~Z is
based on all ~Ik’s. Taking the derivative of L with respect to ~Z results in:

∇L(~Z) =
N∑

k=1

HT
k (Hk

~Z − ~Ik) =
N∑

k=1

~Gk (3.10)

with HT
k the transposed of Hk. A gradient-based iterative minimization

method updates the estimation in each iteration n by

~Zn+1 = ~Zn + ε∇L(~Z) (3.11)

with ε the step size in the direction of the gradient. The procedure above
can be seen as a version of the Iterated Back Projection method [31]. In each
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iteration the difference between the resampled HR image Hk
~Z and LR image ~Ik

is projected back to the HR grid.
A replacement of the sum of back-projected images ~Gk in (3.10) with a scaled

pixel-wise median introduces the robustness of Zomet’s method:

∇L(~Z) ≈ N ·median
(

~Gk

)N

k=1
. (3.12)

3.3.3 Detection and tracking of point targets

After background subtraction, the point targets need to be detected in the differ-
ence image. The difference images show the amplitude difference between a mov-
ing target and its local background, noise, and aliasing artifacts (SIS method).
On such a difference image the detection of the objects is done. The simplest
detection technique is to threshold the magnitude of the difference image. All
pixels with a value above a certain threshold value are detected as targets.

Tk =

{
0, for ∆Dk(x, y) ≤ threshold
1, for ∆Dk(x, y) > threshold

(3.13)

This detection method works well for targets that have a sufficiently high
Amplitude-to-Noise Ratio (ANR), so that the moving object can be detected in
every frame. However, objects having an amplitude close to the local background
may not be detected this way.

The specificity of a detection algorithm can be increased if it is performed
on a series of subsequent difference images instead of a single difference image.
Tracking can be used to associate the detections in the images. It is assumed that
a target path is a continuous path over time, which means that the positions of
correct detections are highly correlated over the frames. Uncorrelated detections
are unlikely to be correct detections.

In this chapter a 3-out-of-5 tracking algorithm [8] is used to increase the speci-
ficity. This tracking algorithm performs first a special dilation on 5 subsequent
frames after thresholding. This allows a limited displacement of the point target
in the next frames. In order to keep the moving point target in track, a dilation
with different kernel sizes is performed on frame 1, 2, 4 and 5. The center frame,
3, is not dilated. Kernel sizes are chosen such that point targets which have an
apparent motion with respect to the background of maximum 2 pixels/frame can
be tracked (see Figure 3.3). Afterwards a pixel-wise summation is performed.
Pixels with a sum larger than or equal to 3 are marked as detection after track-
ing. This means that the targets are present in at least three of the five frames.
Note that this tracking algorithm can be improved (using velocity and heading of
the point target), which will result in a further reduction of the number of false
alarms without losing sensitivity.
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dilation kernel target k+2

target in frame k target in frame k+2

dilation kernel target k-1

2 pix

Figure 3.3: The different kernel sizes used for the ’special’ dilation in the 3-
out-of-5 tracking algorithm. The smallest kernel size is 2 pixels, which support
tracking of point targets with an apparent motion up to 2 pixels/frame.

3.4 Experimental setup

The performance of the different algorithms is tested on images containing point
targets. These images are constructed by inserting simulated point targets in
a real image sequence. To simulate a realistic scenario, first a few real-world
scenarios are analyzed.

3.4.1 Real-world scenario

An incoming missile at long distance is observed as a point in a recorded sequence.
Such an incoming missile must be detected as early as possible. In this analysis
two missiles, a Stinger [2] and an AA-10 [3], are chosen, because most of these
missiles are radar silent. This means that they must be detected using an electro-
optical sensor. First, let us analyze the observed velocity of missile. The apparent
velocity (expressed in rad/s) of a missile with respect to the background from the
observer’s point of view can be described with:

vt =
v

d
sin α. (3.14)

Here, v is the velocity of a missile, d is the distance to the observer and α is
the angle between the missile’s path and the shortest path to the observer. The
apparent motion of a missile in camera coordinates depends on the Instantaneous
Field-Of-View (IFOV) and the frame rate of the camera.

Realistic specifications of an infrared camera for the task of missile detection
are: a center wavelength of 4 µm, IFOV = 1.5 mrad, a frame rate of 15 Hz and a
sensitivity of 0.025 K. The latter determines the amount of noise radiance. With
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these specifications a missile, such as a Stinger, flying at Mach 2 at 2 km with
α = 10◦ has an apparent motion of approximately 2.6 pixels/frame. For a scenario
with a larger range (e.g. an AA-10 flying at Mach 4 at 60km with α = 10◦) the
apparent motion is approximately 0.17 pixels/frame.

The observed missile intensity depends on its radiated energy at a certain
wavelength. Propagation losses are ignored in our analysis. The observed missile
and background are regarded as black bodies of which the energy per unit time
per unit surface area per unit wavelength can be calculated with Planck’s law [53].
The total observed radiance Et on one sensor element is defined as

Et = βEm + (1− β)Ebg, (3.15)

with Em the radiance of the missile, Ebg the radiance of the background and
β the area fraction of the missile. The difference in radiance between an observed
missile and its background is defined as: ∆Em = β(Em −Ebg). For two different
real-world scenarios ∆Em is calculated and compared with the clutter radiance
and the noise radiance.

High clutter scenario. In this scenario a Stinger is fired from the ground to
an air-target at 3 km. The temperature of the background is chosen to be 290 K
and the clutter is chosen to be ∆Tcl = 1 K. The Stinger has a velocity of Mach 2
and has a diameter of 7 cm. Its velocity defines its aerodynamic temperature [30]
to be 480 K. The diameter of the missile, the distance to the target, IFOV and
transfer of the camera define the area fraction β to be 1.9 · 10−4. This results in
the ratio between the missile’s radiance and the noise radiance: ∆Em/En ≈ 24
with En the noise radiance. The ratio between clutter radiance and noise radiance
is: ∆Ecl/En ≈ 41. This indicates a clutter-dominated scenario.

Low clutter scenario. In this scenario an AA-10 is fired from an aircraft
at 9 km altitude to an air-target at a distance of 60 km. The air temperature
is estimated (-10 K / +1 km altitude difference) to be 203 K and the clutter is
estimated to be ∆Tcl = 0.1 K. The AA-10 flies with Mach 4 and has a diameter
of 23 cm. Its velocity defines its aerodynamic temperature [30] to be 736 K.
The diameter of the missile, the distance to the target, IFOV and transfer of
the camera define the area fraction β to be 5.1 · 10−6. This results in the ratio
between the missile’s radiance and the noise radiance: ∆Em/En ≈ 9. The ratio
between clutter radiance and noise radiance is: ∆Ecl/En ≈ 0.04. This indicates
a noise-dominated scenario.

3.4.2 Simulated scenario

The point target images used for the experiments are constructed from a real
image sequence which was recorded with an infrared camera (Radiance HS, 3 -
5 µm, 256 × 256, 15 fps). The recorded images, which have an intensity range



3.4 Experimental setup 47

of [1000, 1172] grey values, contain noise with an estimated standard deviation
of 1 grey value. Furthermore, they contain artifacts such as bad pixels and non
uniformity. Before inserting the point targets, the recorded image sequence is
corrected for the latter two types of artifacts [55]. This will improve the detection
results and will make it easier to compare the results of our experiments. The
camera movement of the recorded sequence is approximated by a frame-to-frame
translation, which is on average over the frames vx = 3.10 pixels/frame and
vy = 0.64 pixels/frame.

3.4.3 Simulated point targets

The point targets are simulated and added to the LR camera images. First the
point targets are placed in a super scale image, which is a factor 15 larger than
the LR camera image. Here the position of the point target is integer based. To
obtain the LR image with the point target, a camera model is applied to the
super scale image. In this camera model the MTF of the camera is modeled by a
lens blur (σpsf = 0.3 LR pixel) and a fill-factor (81% area). The camera MTF is
plotted in Figure 3.1. The camera model also subsamples the super scale image
with a factor of 15. This subsampling is done by taking each 15th pixel. The
resulting LR image contains the point target with aliasing. The maximum point
target energy depends on the LR sub-pixel position of the LR image. We define
the amplitude of a point target as the average maximum intensity of the point
target in all available LR images. The point target simulation is visualised in
figure 3.4. Here can also be seen that due to aliasing the maximum energy per
frame of the point targets is not constant.

(a) superscale point (b) point with camera model (c) downscaled point

Figure 3.4: Two simulated point targets with different locations. At the left (a),
the input point target in super scale is visualised. Note that the point is slightly
larger than 1 pixel for visualisation purposes. In the center figures (b), the camera
model is applied to the point target. It can be seen that the point target energy
is divided over a large number of pixels. When the image is downscaled (c), the
point target energy is still in more than one pixel.
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Adding the point target to the background instead of replacing the background
introduces an error. In this simulation the error is small because of two reasons.
First, the point target is placed in a superscale image and downscaled as described
above, instead of placing it directly into the low resolution image. In this way, the
point target will suffer from aliasing in a similar way as the background. Second,
the target is a point target and has therefore a small footprint. The error that is
made by adding instead of replacing in the super scale image is ∆Eadd = β∆Ecl,
which is the clutter radiance that is not replaced. In our scenario’s, the worst
case of ∆Eadd is En1.9 ·10−4 ·41 ≈ En10−2. This means that the maximum error
that is made is 100 times smaller than the temporal noise.

For the experiments, the amplitude and apparent motion of the point target
with respect to the background are varied according to the calculations of the
different real-world scenarios. The point target amplitude is varied between 4
and 56 grey values and the apparent motion of the point target is varied between
0.125 LR pixels per frame (almost no movement with respect to the background)
to 2 LR pixels per frame. For each velocity 8 different subpixel start locations
of the point target are chosen. To simulate the different clutter scenarios, two
different kind of sequences are constructed: one with the point target in a low
clutter region and one with the point target in a high clutter region of the real
image sequence. The upper part (256×128) of a few frames of a constructed point
target sequence is shown in Figure 3.5. Here, the point target is placed in a low
clutter region with an apparent motion w.r.t. the background of 2 pixels/frame.

(a) frame 1 (b) frame 24 (c) frame 48

Figure 3.5: Three frames (256×128) of a constructed point target sequence. The
position of the point target can be seen in Figure 3.6. The amplitude of the point
target is 56 grey values. The point target is moving with an apparent velocity of
2 LR pixel/frame w.r.t. the background.

3.4.4 Processing details

The constructed LR images are registered using the techniques presented in sec-
tion 3.3.1. The number of iterations used is 5. The σ of the Gaussian derivative
filters is 1. Then the constructed LR images are processed by three different
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background suppression methods: 1) SIS with bspline interpolation, 2) Zomet’s
robust SR reconstruction method with zoom factor 1 and 3) Zomet’s robust SR
reconstruction method with zoom factor 2. The camera model used in Zomet’s
method consists of a Gaussian blurring only. In our experiments this blurring has
been set to σ̃cam = 0.41, which is the best Gaussian fit to the real camera model
(σpsf = 0.3 and fill-factor = 81%). In the Zomet reconstruction 10 iterations are
used. There is no regularisation used in the Zomet algorithm.

3.5 Results

Figure 3.6 shows the difference images for the three different background suppres-
sion methods. It can be seen that the difference image resulting after background
suppression with Zomet’s SR reconstruction method with zoom factor 2 contains
much less background contributions than the other methods. This effect is best
seen in the center part of the image where the structure of the buildings is hardly
visible in comparison with the other two difference images. Furthermore it can
be seen that both difference images based on Zomet’s method contain less noise
than the difference image based on SIS.

(a) SIS (b) Zomet 1 (c) Zomet 2

Figure 3.6: Difference images for the different background suppression methods
displayed with intensity range [-6, 6]. The positions of the point target are in-
dicated with a circle. The difference image is shown for the 24th frame in the
sequence. The amplitude of the point target is 12 grey values and its apparent
motion w.r.t. the background is 2 LR pixel/frame.

To evaluate the performance of the different methods under different scenarios,
sequences of 48 frames are used. The different scenarios are created using: 1)
different clutter levels (indicated with CNR = Clutter Noise Ratio), 2) different
point target amplitudes (indicated with ANR = Amplitude Noise Ratio) and 3)
different point target velocities (indicated with PTV = Point Target Velocity).
The latter two can be controlled, because they are simulated, but the clutter level
cannot. Therefore, as low clutter region the sky-area in the image is selected and
as high clutter region the building-area in the center. Clutter is defined as the
maximum gradient magnitude present in the Region-of-Interest (ROI) used for a
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specific scenario. In Figure 3.7 the ROIs (one for high and one for low clutter)
are visualized for frame 24. Note that in our analysis the point target is always
present in the ROI. Furthermore, an external mask is used to mask the bad pixels
in the original camera scene.

Figure 3.7: Regions-of-Interest in frame 24 that are used for analyzing the point
target detection in a low and high clutter scenario. All images are visualized
between [1000, 1120]. Note that no simulated point target is present in these
images.

The detection results are presented in two different ways. First, the results are
presented by means of Receiver Operating Characteristic (ROC) curves. These
curves represent the relation between the true positive rate (sensitivity) and the
false positive rate (1 - specificity) for different threshold values. Next, the per-
formance for the different algorithms is compared for a representative operating
point.

3.5.1 ROC curves

An ROC curve relates the sensitivity to the specificity of an algorithm. For a
detection method such an ROC curve can be determined by varying the threshold
and counting the number of true and false detections (knowing the ground truth).
In our analysis, first the fraction of true detections is determined. A true detection
occurs when in PT ROI, a 5×5 neighborhood around the point target, a detection
is present. Here, a detection is defined as one or more connected pixels after
thresholding or tracking. As every frame contains one point target, the number
of true detections divided by the total number of frames equals the fraction of
true detections. This is indicated on the vertical axis of the ROC curve.

The next part of the analysis is to determine the number of false detections.
First, the true detections are removed if they are smaller than twice the size of the
PT ROI. This is done to make sure that true detections are not counted as false
detection as well, except when a true detection is large too. The latter situation
can occur for small threshold values. After this removal, the number of false
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detections in each frame is determined after labeling (4-connected neighbours)
all detections. In the ROC curves that are presented here, the number of false
detections per second is plotted on the horizontal axis. These numbers correspond
with a frame rate of 15 frames/second and a frame size of 256×256 pixels. Because
the evaluation is done on a smaller, defined ROI (see Figure 3.7), the measured
number of false detections are scaled such that they correspond to a 256 × 256
pixel frame.

In Figure 3.8 the improvement in detection performance that can be obtained
by using tracking is shown. The high clutter scenario is used with a low point
target velocity (0.125 pixel/frame) and an ANR of 12. It can be seen that tracking
improves the detection results for both background subtraction with Zomet and
the SIS method.
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(a) no tracking (b) 3-out-of-5 tracker

Figure 3.8: ROC curves of the three different background suppression methods
for a high clutter scenario (buildings), a point target velocity of 0.125 pixels/frame
and an ANR of 12. Sub-figure (a) shows ROC curves obtained without using
tracking and sub-figure (b) shows ROC curves after using a 3-out-of-5 tracker.

Figure 3.9 shows ROC curves of a low clutter scenario. These curves show
that the background subtraction methods using SR reconstruction outperform
the SIS method. For fast moving point targets in a low clutter scenario (lower
row of Figure 3.9), the Zomet method performs better due to its noise reduction
capabilities. For slow moving point targets (upper row of Figure 3.9) the Zomet
method performs also better because the point target is efficiently suppressed in
the background estimation, resulting in more point target energy in the difference
image. Therefore, the improvement using Zomet is much larger for point targets
with a slow apparent velocity than for point targets with a high apparent velocity.
As expected, the difference in performance between the two zoom factors of Zomet
is not significant, because there is not much residual aliasing in the low clutter
scenario.
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Figure 3.9: ROC curves of the three different background suppression methods
+ tracking for a low clutter scenario (sky). SIS = Shift, Interpolate and Subtract,
Zomet 1 & 2 = Zomet’s robust SR method with zoom factor 1 and 2, respectively.
TR = tracking. The upper row ((a),(b),(c)) shows results of data with low appar-
ent point target velocity (0.125 pixels/frame) and the lower row ((d),(e),(f)) with
high apparent point target velocity (1 pixels/frame). Each column shows a specific
point target Amplitude Noise Ratio (ANR).

Figure 3.10 shows ROC curves of the high clutter scenario. These results show
the excellent performance of Zomet’s SR method with zoom factor 2. This method
reduces the aliasing artifacts, which are specifically present in the high clutter
region, much better than both other methods. This can also be seen from the
difference images depicted in Figure 3.6 in the building ROI. In the upper row of
Figure 3.10 (small apparent point target motion with respect to the background)
Zomet’s SR method (both zoom factors) outperforms the SIS method. This can be
explained by a higher point target amplitude in the difference image of Zomet’s
method. The difference image of Zomet with zoom factor 2 also contains less
aliasing artifacts. Note that in Figure 3.10d the SIS method performs better than
Zomet’s method with zoom factor 1 for small ANR. This is explained by the fact
that the background estimation generated with the Zomet 1 method will have
aliasing errors. Because this background estimation is used for the detection in
all frames, these aliasing errors will result in correlated false detections. In the
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SIS method, there are also aliasing errors in the frames, but these errors will be
uncorrelated over subsequent frames, and will therefore not lead to correlated
detections. As correlated false detections are assumed to be correct detections by
the tracking algorithm, the Zomet 1 method will lead to more false detections.
This result shows that it is useful to apply SR reconstruction with a zoom factor
larger than 1, as this reduces the aliasing noise.
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Figure 3.10: ROC curves of the three different background suppression methods
+ tracking for a high clutter scenario (buildings). SIS = Shift, Interpolate and
Subtract, Zomet 1 & 2 = Zomet’s robust Super-Resolution method with zoom
factor 1 and 2, respectively. TR = tracking. The upper row ((a),(b),(c)) shows
results of data with low apparent point target velocity (0.125 pixels/frame) and the
lower row ((d),(e),(f)) with high apparent point target velocity (1 pixels/frame).
Each column shows a specific point target Amplitude Noise Ratio (ANR).

3.5.2 Performance comparison

The area under the ROC curve is often used as a performance measure [9, 50].
In our case the interesting part of the ROC curve is when the number of false
detections is small [60]. Therefore, the area under the ROC curve is determined
up to a value of 20 false detections/second (for a 256 × 256 pixel frame and 15
frames/second).
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In this chapter the performance of a specific scenario is determined by ANR80,
the ANR of the point target that corresponds with a 80% area under the ROC
curve. This is the Amplitude-to-Noise Ratio for which 80% of the point targets
are detected with 20 false detections/second. Note that a smaller ANR80 indicates
a better performance. An operating point of 80% area under the ROC curve up
to 20 false detections/second seems useful: the fraction of true detections is high
enough to perform more advanced tracking while reducing the number of false
positives even further.

For each scenario, ROC curves are measured for varying ANRs. Under each
ROC curve the area under the ROC curve up to 20 false detections/second is
calculated. By linear interpolation between those areas the ANR80 is determined.
The resulting ANR80s are shown in Table 3.1 including the precision. The pre-
cision of the ANR80 is determined from the standard deviation of each point (8
measurements) on the ROC curves. The inaccuracy of the interpolation is not
taken into account in this precision. As can be seen in Table 3.1, the improve-
ment of tracking is in the order of 1.5, except for point targets with the highest
apparent target velocity (PTV) of 2 pixels per frame, where the effect of tracking
is negligible. This might be explained by the limited association window used in
the tracking algorithm.

The relative performance of the proposed detection method using Zomet’s
robust SR reconstruction for background suppression compared to the detection
method based on SIS is presented in Table 3.2. Each number indicates the ratio
of the ANR80 of SIS + TR (baseline) and the ANR80 of Zomet 1 + TR or Zomet
2 + TR. Larger numbers indicate a better performance.

For the smallest apparent target velocity the improvement is at least 2.3 for the
Zomet method compared to SIS. For high clutter scenarios, Zomet 2 is significantly
better than Zomet 1, while for low clutter scenarios the difference between Zomet
1 and Zomet 2 is not significant. The largest improvement compared to the
baseline is obtained with Zomet 2 for the scenario of high clutter and a small
apparent point target velocity. Here, the improvement is almost a factor 4.

The measured improvement in performance of a detection method using SR
reconstruction to the expected theoretical improvement is also given in Table 3.2.
The theoretical values are based on the analysis in section 3.2.2 (3.4) and 3.2.3
(Figure 3.2) and are given by: TI = Inoise · Iampl. Here, Inoise is the ANR
improvement due to the temporal noise reduction, which is

√
2 and Iampl is the

ANR improvement due to point target suppression in the background by using
robust SR reconstruction.

As we cannot quantitatively estimate the reduction of the aliasing noise, the
values for the high clutter scenario are only indicative. As can be seen in this ta-
ble, mostly the real performance is smaller than our theoretical expectations. For
point targets with a high apparent motion with respect to the background, the im-
provement is primarily due to temporal noise reduction. Here, our measurements
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are close to what is expected. For small apparent motion of the point targets, the
difference between theory and measurements is somewhat larger. This may be
explained by the fact that the simulated point targets are placed in real recorded
data, which introduces an error in the position and therefore in the apparent
motion of the point target. Relatively, this error is larger for smaller apparent
motions.

3.6 Conclusions and discussion

In this chapter we present a new method for point target detection based on Super-
Resolution (SR) reconstruction of the background. With a simulation based on a
real-world sequence we show that the specificity and sensitivity of a point target
detection method is improved. The improvement in specificity is based on two
properties of the SR reconstruction algorithm: temporal noise reduction and anti-
aliasing. Due to the temporal noise reduction and anti-aliasing the number of false
alarms decreases, as there is less noise in the background estimation and therefore
also less noise in the difference image on which the detection is based.

The sensitivity of point target detection is increased by the point target sup-
pression capabilities of SR reconstruction in the background estimate. Therefore,
the amplitude of the point target is preserved in the difference image. This ef-
fect is larger for point targets with lower apparent target velocity. Robust SR
reconstruction is used, because this suppresses outliers and therefore has hardly
any contribution of the point target in its background estimation, whereas for
non-robust SR reconstruction methods a small portion of the point target energy
will still be seen in the background estimation.

It can be seen that background suppression with SR reconstruction performs
better than a standard Shift, Interpolate and Subtract (SIS) algorithm in almost
all tested scenarios. As expected SR reconstruction with zoom factor 2 performs
better than SR reconstruction with zoom factor 1 in high clutter scenarios. This
effect is due to the fact that a better estimation of the background by using
anti-aliasing, as is done with zoom factor 2, will decrease the number of false
detections. In low clutter scenarios a higher zoom factor does not improve the
performance.

The improvement using Super-Resolution reconstruction is only demonstrated
for a limited dataset. However, these results provide indicators for the perfor-
mance of these techniques using other imaging systems and for other scenes. The
performance depends on the properties of the imaging system, such as the sharp-
ness and the sampling frequency of the system. These properties result in different
aliasing properties. Given the theory, the performance gain will be lower for sys-
tems with less aliasing. On the other hand, the performance gain will increase
for systems with more aliasing. The results also depend on the amount of clutter
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Table 3.2: Relative performance of the proposed detection method using Zomet
for background suppression and the detection method based on Shift, Interpolate
and Subtract (SIS). For all methods only the results with tracking (TR) are given.

Zomet 1 + TR Zomet 2 + TR theoretical
vs. SIS + TR vs. SIS + TR improvement

low clutter, PTV 0.125 2.9 ± 1.0 3.1 ± 0.9 4.1
low clutter, PTV 0.25 3.0 ± 0.7 2.9 ± 0.8 2.8
low clutter, PTV 0.5 2.9 ± 1.0 2.2 ± 0.8 2.4
low clutter, PTV 1 1.4 ± 0.6 1.6 ± 0.8 1.7
low clutter, PTV 2 1.3 ± 0.3 1.3 ± 0.3 1.2
high clutter, PTV 0.125 2.3 ± 0.5 3.8 ± 0.6 > 4.1
high clutter, PTV 0.25 2.4 ± 0.6 3.7 ± 0.5 > 2.8
high clutter, PTV 0.5 1.8 ± 0.3 2.9 ± 0.4 > 2.4
high clutter, PTV 1 1.0 ± 0.2 1.7 ± 0.3 > 1.7
high clutter, PTV 2 0.8 ± 0.1 2.0 ± 0.4 > 1.2

in the scene. In our simulations we tested two scenarios: a high clutter scenario
which was clutter dominated and a low clutter scenario which was temporal noise
dominated. This provides two measuring points at the extremes of the clutter-
to-noise ratio. The performance gain of scenes with another clutter-to-noise ratio
will therefore be in-between the low and high clutter improvement shown in this
chapter.

Summarizing, we show that point target detection after background suppres-
sion with SR reconstruction is significantly better than detection results with the
SIS method, especially in high clutter scenarios and for low apparent target mo-
tion w.r.t. the background. While maintaining an equal detection performance,
the proposed method using SR reconstruction can detect point targets which have
an up-to 4 times smaller Amplitude-to-Noise-Ratio in the scenarios studied. In
practice this implies that a point target can be detected at longer range.





Chapter 4
Super-resolution reconstruction of
large moving objects and
background

Abstract

Unlike most Super-Resolution (SR) methods described in literature, which perform only
SR reconstruction on the background of an image scene, we propose a framework that
performs SR reconstruction simultaneously on the background and on moving objects.
After registration of the background, moving objects are detected and to each moving
object registration is applied. The fusion and deblurring tasks of the framework are
performed by the well-known method of Hardie. To evaluate the performance of the
framework the Triangle Orientation Discrimination (TOD) method is used. The TOD
method quantitatively measures the SR performance on the image background and on
moving objects. From experiments it can be concluded that under proper conditions, the
SR performance on moving objects is similar as the SR performance on the background.

4.1 Introduction

Super-Resolution (SR) reconstruction is nowadays a well-known technique in im-
age processing. Although the concept already exists for 20 years [59], not much

1The major part of this chapter has been published in A.W.M. van Eekeren, K. Schutte, J.
Dijk, D.J.J. de Lange and L.J. van Vliet, Super-Resolution on moving objects and background, in
Proc. 13th International Conference on Image Processing, vol.1, pp.2709–2712, IEEE, 2006. [13]

59
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attention is given to a specific case: SR reconstruction on moving objects. This
is remarkable, because moving objects (e.g. cars, flying objects) are often the
interesting parts in an image sequence. The novelty of our proposed framework
is that it performs SR reconstruction on moving objects as well.

In order to perform SR reconstruction, a sequence of Low-Resolution (LR) im-
ages is used which contains sub-pixel motion. After the LR images are registered
accurately, a High-Resolution (HR) image sequence is obtained after fusion.

However, if moving objects are present in the LR image sequence, or when
the LR image sequence consists of multiple depth layers, it is not trivial to use a
‘standard’ registration technique because multiple instances of apparent motion
are present in the sequence. To overcome such problems we will make use of
masks during registration [55]. In this chapter a framework will be presented
which performs a correct registration and SR reconstruction on all regions with
distinguishable apparent motion in an image sequence; so on the background and
on moving objects.

In most papers, the performance evaluation of SR reconstruction methods
leaves much to be desired, showing only some nice looking processed images. The
exact SR performance remains unknown. With the large amount of SR methods
available nowadays it is of great importance to have a proper performance measure
for comparing these methods. To obtain a quantitative performance measure we
propose to use the Triangle Orientation Discrimination (TOD) method [7].

The outline of this chapter is as follows. In section 4.2 a global setup is pre-
sented of the proposed framework. A description of the used evaluation method, a
setup of the evaluation experiment and the obtained performance measurements
of our framework can be found in section 4.3. Finally, in section 4.5 conclusions
will be drawn.

4.2 Framework

We focus on a framework for SR reconstruction on the background and on mov-
ing objects within dynamic image sequences. A flow diagram of the proposed
framework in steady state is depicted in Figure 4.1. In this flow diagram the
blocks ‘REGISTRATION background’ and ‘FUSION & DEBLUR background’
are the elementary blocks for a SR reconstruction method of image sequences
without moving objects. To perform SR reconstruction on moving objects as well,
the blocks ‘MOVING OBJECT DETECTION’ and ‘MERGING background and
moving objects’ are essential. As can be seen in Figure 4.1 after the ‘MOVING
OBJECT DETECTION’ each moving object is processed in the same way (first
‘REGISTRATION’ followed by ‘FUSION & DEBLUR’) as an image sequence
without moving objects. In our framework we use for the ‘FUSION & DEBLUR’
part a SR reconstruction method described by Hardie [26].
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Figure 4.1: Frame-based flow diagram of framework (steady state) for SR re-
construction on background and moving objects. Note that each moving object is
processed separately in a ‘standard’ way.

4.2.1 Registration

At initialization the first two frames of an image sequence are assumed to contain
no moving objects. Hence we are able to form a proper model of the scene’s back-
ground and the background motion vector field at initialization. When a moving
object is entering the scene for the first time the registration of the background
is slightly incorrect, because no mask from ‘MOVING OBJECT DETECTION’
is present yet. However, it is assumed that this registration is accurate enough
to detect the moving object in the next block of the framework. Note that the
dashed lines in Figure 4.1 denote the feedback of the previous calculated motion
vector field.

In steady state the masks from ‘MOVING OBJECT DETECTION’ are used
for a correct registration of the background in the next image frame (see feedback
in Figure 4.1). The masks are tracked over time and a prediction is made of the
moving objects locations in the next frame. Such regions will not be used to
calculate the motion vector field of the background.

For correct registration of the moving objects it is essential that no object-
border pixels (of which it is unknown whether they belong to the background or



62 Super-resolution reconstruction of large moving objects and background

moving object) are used. Therefore, the masks are eroded in advance.
To estimate the motion vector field, an iterative gradient-based shift estimator

as proposed by Lucas and Kanade [40] is used. This estimator, which approaches
the Cramer-Rao bound, results in a very precise unbiased registration [48].

4.2.2 Moving object detection

Moving object detection is an essential step for SR reconstruction of an image
sequence with moving objects, because multiple regions with different apparent
motion are present. Moving objects are detected by comparing a warped esti-
mate of the background, Îbg(xLR), with the current frame I(xLR) as depicted in
Figure 4.2.

Warp
bgR
|Rbg| > TH)(ˆ

LRbg xI

)( LRbg xm )( LRxI

)(1 LRxM

)( LRn xM

Figure 4.2: Flow diagram of moving object detection.

The estimate of the background, Îbg(xLR), is calculated by a simple ‘Shift &
Add’ fusion (see [18] for more details) of a number (e.g. 10) of previous back-
ground images on a LR grid. A background image is defined here as an image
which contains only background information: no moving objects are present or
the moving objects are masked out.

The background estimate is warped to the current frame with the motion
vector field mbg(xLR), which was calculated in the ‘REGISTRATION background’
step. Next, the warped background estimate is subtracted from the input image
I(xLR) and the residue image Rbg(xLR) results.

All pixels in |Rbg(xLR)| are compared with a threshold TH and are marked as
moving object (1) or as background (0). Each group of pixels marked as moving
object will obtain a corresponding mask Mi(xLR), with i a unique label for this
moving object. Mask Mi(xLR) is used in ‘REGISTRATION moving object i’.
Furthermore, it is used to predict the region of the moving object in the next frame
(feedback loop to ‘REGISTRATION background’) and it is used for MERGING
moving object i with the background.
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4.2.3 Fusion and deblurring

The ‘FUSION & DEBLUR’ blocks in the framework can be implemented by
various methods reported in literature. Some methods combine fusion and de-
blurring, while others perform both parts sequentially. In this chapter we use
the well-known combined SR reconstruction method of Hardie. It is used on the
background as well as on the moving objects.

Hardie assumes a discrete observation model that relates the ideally sampled
image z and the observed frames y:

ym =
N∑

r=1

wm,rzr + ηm (4.1)

where wm,r represents the contribution of the rth HR pixel in z to the mth

LR pixel in y. This contribution depends on the frame-to-frame motion and on
the blurring of the Point Spread Function (PSF). ηm represents additive noise.

If the registration parameters are estimated, the observation model can be
completely specified. The HR image estimate ẑ is defined as the z that minimizes:

Cz =
pL∑

m=1

Mm

(
ym −

N∑
r=1

wm,rzr

)2

+ λ

N∑

i=1




N∑

j=1

αi,jzj




2

(4.2)

with p the number of LR frames, L the number of LR pixels per frame and
M(m) the mask value at pixel m. Note that in the Hardie’s original cost function
M =1 for every LR pixel.

The cost function in (4.2) balances two types of errors. The first term is
minimized when a candidate z, projected through the observation model, matches
the observed data. The second term is a regularization term, which is necessary
because directly minimizing the first term is an ill-posed problem. The parameters
αi,j are selected as proposed by Hardie such that this term is minimized when z
is smooth.

For SR reconstruction of moving object i all p masks Mi(xLR) obtained
from ‘MOVING OBJECT DETECTION’ are used, which result in HR image
Imobi(xHR). SR reconstruction of the background uses the same, but inverted,
masks, and results in HR image Ibg(xHR).

Although Hardie was originally designed as a reconstruction method for static
sequences, we have applied it to dynamic sequences. The number of frames p
used is 40 and the actual frame is used as reference frame. Note that the Hardie
method is not very efficient for dynamic processing, because for each new frame
the cost function has to be minimized again.



64 Super-resolution reconstruction of large moving objects and background

4.2.4 Merging

The final step of the framework merges the reconstructed moving objects with
the reconstructed background. Because our algorithm is not capable of doing an
accurate segmentation on boundaries of background and moving objects, no SR
reconstruction is performed here. This boundary region is filled with bi-linear
interpolated LR pixels Ĩ(xHR) as depicted in Figure 4.3.

)( HRbg xI

)( HRmob xI
i

)(
~

HRxI

Estimated

boundary

moving object i

Figure 4.3: Visualization of a resulting HR image I(xHR) after merging back-
ground and moving object i.

The estimated boundary of moving object i at the current frame is defined by
a Nearest Neigbor (NN) interpolation of mask Mi(xLR) and is denoted Mi(xHR).
A dilation of Mi(xHR) gives the outer border of the boundary region and an
erosion of Mi(xHR) gives the inner border.

4.3 Evaluation experiment

To measure the performance of SR reconstruction, we use the Triangle Orientation
Discrimination (TOD) method (Bijl and Valeton [7]). This evaluation method
is preferred over other methods (e.g. comparing of MTF (Modulation Transfer
Function)) because 1) the measurement is done in the spatial domain and therefore
well localized, and 2) it employs a specific vision task.

4.3.1 TOD method

The TOD method is an evaluation method designed for system performance of a
broad range of imaging systems. It is based on the observer task to discriminate
four different oriented equilateral triangles (see Figure 4.4).
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leftup right down

Figure 4.4: The four different stimuli used in the TOD method.

The observer task is a four-alternative forced-choice, so the observer has to
indicate which of the four orientations is perceived, even if he is not sure. The
probability of a correct observer response increases with the triangle size. For
a number of observations at different contrast a 75% correct triangle size is de-
termined and the corresponding TOD curve plotted. This curve describes the
performance of the imaging system under measurement.

4.3.2 Setup

A flow diagram of our evaluation method setup using the TOD method is depicted
in Figure 4.5.

Scene
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Figure 4.5: Flow diagram of the evaluation experimental setup using the TOD
method.

The camera model incorporates the PSF of the lens, the fill-factor of the pixels
on the focal plane array sensor, and several noise sources including the readout-
and photon noise. In our experiment a ‘regular’ camera with σpsf = 0.3 and
a fill-factor of 0.9 is simulated. The overall noise is assumed to be Gaussian
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distributed.
Our evaluation method employs an automatic observer that tries to discrimi-

nate the orientation of the triangles before and after processing. This is done by
correlating such a triangle with a database containing ‘ideal’ triangles (see Fig-
ure 4.4) of different size and sub-pixel position. The orientation of the triangle
that maximizes the similarity measure is taken as the result.

4.3.3 Experiment

We evaluated two different SR reconstruction techniques with respect to a raw
input (LR) sequence (40 frames) containing one triangle: 1) a simple ‘Shift &
Add’(S&A) fusion [18] with zoom-factor 1, which only has a noise reducing effect
and 2) a Hardie reconstruction with zoom-factor 2. The S&A fusion is performed
only on a LR sequence without moving objects (background), while Hardie is
performed on a sequence with moving objects (8x8 and 16x16 LR pixels) as well.
In the latter case the SR performance is measured as well on the background as
on the moving object. To obtain one point in the TOD curve (see Figure 4.6) we
processed for each triangle orientation 6 different sizes with 8 different subpixel
positions and noise realizations. This means that each point in the TOD curve
results from 192 different observations.
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Figure 4.6: TOD curves of the evaluated SR reconstruction techniques. Dotted
lines represent SR on background and solid lines SR on moving objects.
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4.4 Results

The resulting TOD curves from the experiment are depicted in Figure 4.6. SNR
is defined here as SNR = 20 log10(∆I/σn) with ∆I the image intensity range and
σn the standard deviation of the additive Gaussian noise. Note that the triangle
threshold (LR pixels) is inversely proportional to the SR performance (smaller
threshold is higher performance). From Figure 4.6 it can be seen that the abso-
lute SR performance improvement of Hardie SR2 w.r.t. LR on the background
is approximately constant for the measured SNRs. Inspecting the performance of
SR2, LR and S&A shows that 1) for low SNRs the improvement is mainly due to
noise reduction (S&A), whereas 2) for high SNRs the improvement is completely
due to an increase in resolution. Furthermore it can be seen that the SR per-
formance on moving objects decreases with decreasing object size and that for
middle and high SNRs the SR performance on large objects is comparable with
the SR performance on the background.

To show the performance of our framework on real data, we processed an
image sequence containing a moving van (containing no triangles) captured with
an infrared (IR) camera (see Figure 4.7). Carefully studying this result, more
detail is e.g. visible at the trees in the background and on the center of the van.
Note that at the boundary of the van and the background LR pixels are merged.

4.5 Conclusions

We can conclude that our framework has a comparable SR performance for mov-
ings objects and background under the conditions that 1) objects are ‘large’, e.g.
16x16 pixels, and 2) the SNR is not too small. For small moving objects the
amount of information inside the object is too small to do a sufficient registra-
tion. The decrease in SR performance for moving objects for decreasing SNRs
can be explained by a decreasing performance of the registration and the moving
object detection part of our framework. A processed image sequence captured
with an infrared camera, shows that the proposed framework is also performing
well on real data.
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(a) one of 80 LR frames (400× 400) (b) result after SR with zoomfactor 2

(c) Detail of LR frame in (a) (d) Detail of SR result in (b)

Figure 4.7: Two times SR reconstruction of an Infrared image sequence con-
taining a moving object (minibus). Note that (c) and (d) are contrast enhanced
for visualization.



Chapter 5
Super-resolution reconstruction of
small moving objects in simulated
data

Abstract

Moving objects are often the most interesting parts in image sequences. When im-
ages from a camera are undersampled and the moving object is depicted small on the
image plane, processing of the image sequence afterwards may help to improve the vis-
ibility / recognition of the object. This chapter addresses this subject and presents an
approach which performs Super-Resolution (SR) specifically on small moving objects us-
ing a polygon-based object description. This approach is not bound to a finite pixel grid
and has the advantage that less unknowns have to be estimated in the optimization pro-
cess in comparison to a standard pixel-based SR algorithm. This chapter describes the
setup of the proposed polygon-based SR algorithm and shows its superior performance
in comparison to a pixel-based SR algorithm.

5.1 Introduction

Although the concept of Super-Resolution (SR) already exists for more than 20
years [59], not much attention is given to a specific case: SR reconstruction on

1This chapter has been published in A.W.M. van Eekeren, K. Schutte, O.R. Oudegeest and
L.J. van Vliet, Super-Resolution on moving objects using a polygon-based object description, in
Proc. 13th Annual Conference of the Advanced School for Computing and Imaging, pp.317–321,
ASCI, 2007. [15]
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moving objects. In [13] we presented an algorithm which simultaneously performs
SR on the foreground and background of a scene. Both are processed separately
with a standard pixel-based SR algorithm. This algorithm works fine if a moving
object (foreground) is relatively large (the number of boundary pixels is small
in comparison to the total number of object pixels) and contains enough inner
structure to permit precise registration. However, if an object is small (the number
of boundary pixels comprises more than fifty percent of the total number of object
pixels) and the object itself contains hardly any internal structure, a standard
pixel-based SR approach will fail. On one hand there is not enough gradient
information to perform a proper registration of the object and on the other hand
a standard pixel-based SR approach makes an error across the object boundary
(assuming a cluttered background). This boundary region consists of so-called
‘mixed pixels’, which contain partly information from the object and partly from
the background.

To tackle the aforementioned problems we propose to perform SR on small
moving objects using a polygon-based object description. Assuming rigid objects
with homogeneous intensity that move (constant speed and acceleration are as-
sumed) along a known trajectory through the real world, a proper registration
is done by fitting a model trajectory through the object’s center of mass in each
frame. The boundary of a moving object is modeled with a polygon description.
With this model a relation is obtained between the position of the edges of the
polygon and the estimated intensities of the mixed pixels. By minimizing the
model error between the measured intensities and the estimated intensities in a
least squared error sense, which is similar to conventional pixel-based SR algo-
rithms, a sub-pixel accurate polygon description is obtained. The performance of
the proposed polygon-based SR algorithm is compared to a conventional pixel-
based SR algorithm using a quantitative measure obtained from Triangle Orien-
tation Discrimination (TOD).

The chapter is organized as follows. In section 5.2 the setup of the proposed
polygon-based SR algorithm is presented. Section 5.3 describes the TOD-based
performance measurements of the polygon-based SR algorithm compared to a
conventional pixel-based SR algorithm and results are presented. In the last
section conclusions are drawn.

5.2 Algorithm

Our algorithm can be split up into three parts: 1) obtaining a background model
and moving object detection, 2) model-based trajectory fitting for object regis-
tration and 3) obtaining a sub-pixel accurate polygon description by solving an
inverse problem. The latter is the main part of the algorithm and will be explained
first.
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5.2.1 Polygon description

Given that a proper detection (object mask sequence) and registration (object
shift vector ~t) of a moving object is obtained, a polygon description (ordered set
of vertices) of the boundary of a moving object can be estimated. A flow diagram
of the polygon description part is depicted in Figure 5.1.
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Figure 5.1: Flow diagram of the polygon description part of the algorithm.

Polygon initialization

The optimization scheme depicted in Figure 5.1 must be initialized with an initial
polygon description of the object. This is done by first applying a pixel-based SR
algorithm to the object mask sequence and threshold that result. This so-called
SR object mask is used to determine the vertices of the initial polygon description
p0. In this chapter the centre of gravity and the size of the SR object mask are
used to construct p0 as an equilateral triangle.

For larger and more complex shapes, the boundary pixels of the SR object
mask can be selected as vertices of p0. To simplify this polygon description (and
limit the number of unknowns) a Douglas-Peucker algorithm can be used [12].
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Camera model

The Camera model maps a polygon description to an estimated (modeled) Low-
Resolution (LR) image sequence. The estimated intensity of each LR pixel ỹm

is calculated given a polygon description p and assuming a uniform rectangular
pixel support (5.1).

ỹm(p) = IbgAbg + IfgAfg (5.1)

Here Ibg is the local background intensity, which is assumed to be known from
a pixel-based SR method. The foreground (object) intensity Ifg is assumed to
be constant and known. Abg is the partial area of the support of pixel m that
overlaps the background given the polygon description p. Hence, the partial area
covering the foreground is defined as: Afg = 1−Abg. The width (w) of the pixel
support is also assumed constant.

Cost function

The cost function that is minimized for p is defined as:

C =
N∑
m

(ym − ỹm(p))2 + µ... (5.2)

where the first part (summation) minimizes the model error for all pixels m
and the last part, which is left empty, can be used to regularize the process by
incorporating a-priori knowledge (e.g. a model of the expected object and/or
a penalty for self-intersecting polygons). ym are the measured intensities of the
registered LR pixels and ỹm are the corresponding estimated intensities (5.1). The
actual minimization of the cost function is done with the Levenberg-Marquardt
method with a mixed quadratic and cubic line search procedure.

To show qualitatively the performance of the polygon description part of the
algorithm, we fitted a polygon with 5 vertices to a simulated LR image sequence
(10 frames) containing a sub-pixel shifted binary object. The LR image sequence
is noise free and is simulated with the same camera model as described in the
previous section. The resulting polygon (red) is superimposed on the first LR
frame (see Figure 5.2).

5.2.2 Background modeling and moving object detection

Our detection of moving objects is based on the assumption that a moving object
deviates from a static background. Ideally, a static background is estimated using
a robust pixel-based SR algorithm [21, 49]. Such robust SR algorithms provide
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Figure 5.2: Polygon with 5 vertices fitted to undersampled data (10 frames)
of a binary object. The blue circles represent the ground-truth vertices used to
simulate the LR data. The green stars are the vertices used as initialization (by
hand) and the red stars are the final vertices found with the proposed polygon-based
SR algorithm. No a-priori knowledge is incorporated in the cost function used in
this example.

a proper background estimate even in the presence of small moving objects. In
the experiments as described in section 5.3.2 a median of all image frames is used
as robust background estimate; in this case it is allowed as in the experiment
no motion in the background scene is present. The SR background model, after
shifting and down-sampling with a camera model, can be compared to each frame
of the image sequence. After thresholding these difference images and removal of
spurious detections with morphological operations, an object mask for each frame
results.

5.2.3 Registration

With the object masks, obtained from the detection part, a global position of
the object in each frame is known. For performing SR however, a very precise
sub-pixel registration is needed. When sufficient internal structure is present,
gradient-based registration can be performed. In the setting of small moving
objects this is usually not the case and therefore another approach is needed.

Assuming that the contrast between object and background is sufficient, in
each frame the Center Of Gravity (COG) of the object is calculated. When the
motion model of the moving object is known, such a model is fit in a robust way to
the calculated COGs. We assume a linear motion model in the real world, which
seems realistic given the setting of small moving objects: the objects are far away
from the observer (viewer) and will have a small displacement in the image plane
due the high frame rate of today’s image sensors. When enough (≥ 20) frames
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are available, a robust fit to the COGs results in a sufficient precise and accurate
sub-pixel registration of the moving object.

5.3 Experiments

To test the performance of our polygon-based SR algorithm for moving objects,
it is compared in a quantitative way (TOD) with the performance of a well-
performing pixel-based SR algorithm developed by Hardie [26]. The performance
is tested on simulated data containing a small moving object on a cluttered back-
ground.

5.3.1 Triangle orientation discrimination

The TOD method is an evaluation method designed for system performance of a
broad range of imaging systems [7], but it can also be used to test the performance
of image enhancement techniques [6, 14]. It is based on the observer task to
discriminate four different oriented equilateral triangles (see Figure 5.3).

leftup right down

Figure 5.3: The four different stimuli used in the TOD method.

In the experiments two automatic observers are used: one for the pixel-based
SR result ISR and one for the polygon-based SR result pf . The first one makes
its choice θ̂ based on the minimum MSE between the triangle in ISR and a pixel-
based triangle model M :

θ̂ = min
θ,s
{ 1
N

∑

~x

(ISR(~x; θk, sk)−M(~x; θ, s))2}. (5.3)

Here, θ indicates the orientation, s indicates the size of the triangle, ~x are
the sample positions and N is the number of samples. Note that θ is limited to
the four different orientations and s is quantized in steps of 4/17th of the LR
pixel pitch. The subscript k denotes one member of these sets. Although (5.3) is
minimized for θ and s, only the estimated orientation θ̂ is used as a result. Note
that triangle model M can also incorporate a gain and offset parameter.
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The second observer is used for the polygon-based SR results (pf ) and mini-
mizes a similar error as in (5.3):

θ̂ = min
θ,s
{
∫

x

(pf (θk, sk)− ptr(θ, s))2dx}, (5.4)

where ptr indicates a polygon model of an equilateral triangle with orientation
θ and size s. The probability of a correct observer response increases with the
triangle size. In [7] it is shown that this relationship can be described with a
Weibull distribution:

pc(x) = 0.25 + 0.75/1.5(α/x)β

, (5.5)

where α is x at 0.75 probability correct and β defines the steepness of the
transition. Such a Weibull distribution can be fitted to a number of observations
for different triangle sizes as depicted in Figure 5.4. From this fit the triangle size
that corresponds with a 0.75 probability correct response (T75) is determined. T75

(in LR pixels) is a performance measure, where a smaller T75 indicates a better
performance.
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Figure 5.4: Example of a Weibull fit to measured probability correct observer
responses.

5.3.2 Comparison polygon versus pixel-based approach

The setup of the experiment is depicted in Figure 5.5.
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Figure 5.5: Flow diagram of the comparison between a conventional pixel-based
SR algorithm and the proposed polygon-based SR algorithm on moving objects.
The performance measure is obtained with the TOD method.

Here, the ‘LR sequence triangle’ is a simulated, under-sampled, image se-
quence containing a moving triangle with homogeneous intensity. The LR data is
obtained from Hyper-Resolution (HYR) data, which has a 17× denser sampling
grid, through a simulated camera model. This camera model simulates the cam-
era’s sensor (100% fill-factor), but no lens blurring is taking in to account. Note
that both the pixel-based SR algorithm as well as the polygon-based SR algo-
rithm are implemented in such a way that no model errors are introduced. To be
able to apply the TOD method, different LR sequences with various triangle sizes
and SNR’s are simulated. An example of a HYR image and its corresponding LR
image is depicted in Figure 5.6. On both images the sub-pixel accurate polygon
description as found by our SR algorithm is superimposed in red.

As is depicted in the upper part of Figure 5.5, the detected moving trian-
gle data together with the measured object positions (y) is processed with a
pixel-based SR algorithm (Hardie). Afterwards the orientation of the triangle is
determined with the TOD method (5.3). In the lower part of Figure 5.5 the data
is processed with the proposed polygon-based SR algorithm, which allows us to
use a-priori knowledge about the object. The polygon-based method is tested
in two different modes: one using no a-priori knowledge and one using a-priori
knowledge. The first mode implies that the regularization term (µ...) in (5.2) is
empty.

In the second mode a strong restriction is set on the interior angles of the
polygon description. Because it is known that an equilateral triangle must be
found, the interior angles must be approximately 60 degrees (assuming three
vertices). The functional that is minimized for this mode is:
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(a) (b)

Figure 5.6: (a) Part of original HYR image containing a moving triangle of 32
pixels. (b) Corresponding LR image (triangle size is here reduced to 31/17 = 1.88
pixels). On both images the sub-pixel accurate polygon description as found by
our SR algorithm is superimposed in red.

C =
N∑
m

(ym − ỹm(p))2 + · · ·

µ(1− e−
∑P

j (αj−α0)
2/2σ2

α). (5.6)

Here, αj is the inner angle of polygon pi at vertex j and α0 is the preferred
angle. σα expresses the steepness of the joint probability density function. The
value of σα should be seen in relation to the preferred angle α0. In our experiments
α0 = π/3 (equilateral triangle constraint) and σα = π/9 are used. Note that a
flat prior is used for the angle difference.

Furthermore, for both modes the foreground intensity and the width of the
pixel support (w = 1 LR pixel) are assumed to be known. Also the initialization
step is the same: according to the centre of mass and the size of the SR object mask
four different oriented equilateral triangles are used as initial polygon description
p0. This is done to prevent that the optimization process gets stuck in a local
minimum. Note that already some a-priori knowledge is assumed by initializing
with three vertices. The polygon description (pf ) that results in the smallest
value of functional C is used for the TOD measurement (5.4).
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5.3.3 Results

The results obtained from the comparison experiment are depicted in Figure 5.7.
Note that a smaller T75 indicates a better performance. The Signal-to-Noise Ratio
(SNR) is defined here as 20 log10(|Ībg − Ifg|/σn), with Ībg the mean intensity of
the local background, Ifg the foreground intensity and σn the standard deviation
of the noise.
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Figure 5.7: TOD performance comparison between a polygon and a pixel-based
approach on simulated data (effective uniform rectangular blur of 1 LR pixel, 20
frames). Black line: Hardie, zoom 4, w = 1, optimized λ. Red line: polygon de-
scription with 3 vertices using no a-priori knowledge (mode 1), Blue line: polygon
description with 3 vertices using a-priori knowledge (mode 2).

5.4 Conclusions

From the obtained results the following conclusions can be drawn:

• For high and medium SNR’s our SR algorithm using a polygon-based object
description performs significantly better than a conventional well-performing
pixel-based SR algorithm according to the TOD measure considering a small
moving object on a cluttered background.
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• Although the main improvement in performance is obtained without using a-
priori knowledge, a little more can be gained using some a-priori knowledge.

• For low SNR’s the performance is comparable to the pixel-based SR algo-
rithm. The tendency of the performance curves in Figure 5.7 shows us that
the pixel-based method seems to be performing better when SNR < 15 dB.





Chapter 6
Super-resolution reconstruction of
small moving objects in real-world
data

Abstract

This chapter presents an approach which performs multi-frame super-resolution (SR)
reconstruction on small moving objects, i.e. objects that consist solely of boundary
pixels. The method improves the visibility, detection as well as automatic recognition of
small moving objects. It is capable for this task because it models explicitly the space-
time variant partial area effect of ‘mixed pixels’, which consist of both the moving object
and the local background of the scene. The presented approach simultaneously estimates
a subpixel precise polygon boundary as well as a high-resolution intensity description of
a small moving object. Experiments on simulated and real-world data show excellent
performance of the proposed multi-frame SR reconstruction method.

6.1 Introduction

In many applications the most interesting events are related to changes occurring
in the scene: e.g. moving persons or moving objects. In this chapter we focus
on multi-frame Super-Resolution (SR) reconstruction of small moving objects,

1This chapter has been submitted as A.W.M. van Eekeren, K. Schutte and L.J. van Vliet,
Multi-Frame Super-Resolution Reconstruction of Small Moving Objects, to IEEE Trans. Image
Processing, IEEE, Nov. 2008. [16]
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i.e. objects that are comprised solely of boundary pixels, in under-sampled image
sequences. These so-called ‘mixed pixels’ depict both the foreground (moving
object) and the local background of a scene. Especially for small moving objects,
resolution improvement is useful.

Multi-frame SR reconstruction2 improves the spatial resolution of a set of sub-
pixel displaced Low-Resolution (LR) images by exchanging temporal information
for spatial information. Although the concept of SR reconstruction already exists
for more than 20 years [59], only little attention is given to SR reconstruction on
moving objects. In [5, 13, 17, 19, 27, 64] this subject has been addressed.

Although [5] and [19] apply different SR reconstruction methods, iterated-
back-projection [31] and projection onto convex sets [46] respectively, both use a
validity map in their reconstruction process. This makes these methods robust to
motion outliers. Both methods perform well on large moving objects (the number
of mixed pixels is small in comparison to the total number of object pixels) with
a simple motion model, such as translation. Hardie et al. [27] use optical flow to
segment a moving object and subsequently apply SR reconstruction to it. In the
experiment they present, the background is static and SR reconstruction is done
solely on a masked large moving object.

In previous work [13] we presented an algorithm that performs, after segmenta-
tion, simultaneously SR reconstruction on a large moving object and background
using Hardie’s SR reconstruction [27]. However, in [13] no SR reconstruction is
applied to the boundary (mixed pixels) of the moving object because of a clut-
tered background. In [17] we presented the first results of SR reconstruction of
small moving objects with simulated data. However, at that time no experiments
were done on real-world data.

In [64] SR reconstruction is performed on moving vehicles of approximately
10 by 20 pixels. For object registration a trajectory model is used in combination
with consistency of local background and vehicle. However, in the SR reconstruc-
tion approach no attention is given to mixed pixels.

An interesting subset of moving objects are faces. Efforts done in that area
using SR reconstruction include [29] and [66], in which the modeling of complex
motion is a key element. However, the faces in the used LR input images are far
larger than the small objects in this chapter.

When a moving object is small (it consists solely of mixed pixels) and the
background is cluttered, even the state-of-the-art pixel-based SR reconstruction
methods mentioned above will fail. Any pixel-based SR reconstruction method
makes an error at the object boundary, because it is unable to separate the space-
time variant background and foreground information within a mixed pixel.

2In the remainder of this chapter ‘SR reconstruction’ refers to ‘multi-frame SR reconstruc-
tion’.
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To tackle the aforementioned problem we propose to perform SR reconstruc-
tion on small moving objects using a simultaneous boundary and intensity es-
timation of a moving object. Assuming rigid objects that move with constant
speed through the real world, a proper registration is done by fitting a trajectory
through the object’s location in each frame. The boundary of a moving object is
modeled with a subpixel precise polygon and the object’s intensities are modeled
on a High-Resolution (HR) pixel grid.

After applying SR reconstruction to the background, the local background
intensities are known on a HR grid. When the intensities of the moving object
and the position of the edges of the boundary are known as well, the intensities
of the mixed pixels can be calculated. By minimizing the model error between
the measured intensities and the estimated intensities similar to state-of-the-art
pixel-based SR algorithms, a subpixel precise boundary and intensity description
of the moving object are obtained.

Especially for small moving objects our approach improves the recognition
significantly. However, the use of our SR reconstruction method is not limited to
small moving objects. It can also be used to improve the resolution of boundary
regions of larger moving objects. This might give an observer some useful extra
information about the object.

The chapter is organized as follows. First, we model the relationship between
the real-world and the data observed by an electro-optical system. In Section 6.3
the proposed SR reconstruction method for small moving objects is presented.
Section 6.4 describes experiments on simulated and real-world data, and shows
the performance of the proposed method. In the final section conclusions are
presented.

6.2 Real-world data description

This section describes the model of the real-world at a 2D High-Resolution (HR)
grid and how this is observed by an optical camera system.

6.2.1 2D high-resolution scene

We model a camera’s field-of-view at frame k as a 2D HR image, consisting of R
pixels, sampled at or above the Nyquist rate without significant degradation due to
motion, blur or noise. Let us express this image in lexicographical notation as the
vector zk = [zk,1, ..., zk,R]T . zk is constructed from a translated HR background
intensity description b = [b1, ..., bV ]T , consisting of V pixels, and a translated HR
foreground intensity description f = [f1, ..., fQ]T , consisting of Q pixels. This is
depicted in the left part of Figure 6.1. Note that the foreground f has a different
apparent motion with respect to the camera than the background b.
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Figure 6.1: Flow diagram of the construction of a 2D HR scene zk at frame k
and the degradation to a LR frame ŷk via a camera model.

The foreground (small moving object) is not solely described by its intensity
description f , but also by a subpixel precise polygon boundary p = [v1x, v1y, ..., vPx, vPy]T

with P the number of vertices. The following assumptions are made about a mov-
ing object: 1) the aspect angle of the object stays the same and 2) the object is
moving at constant speed. These are realistic assumptions if a moving object is
far away and given the high frame rate of today’s image sensors.

At frame k the HR background and the HR foreground are translated and
merged to the 2D HR image zk in which the rth pixel is defined by:

zk,r = ck,r(p)f̃k,r + (1− ck,r(p))b̃k,r

= ck,r(p)
Q∑

q=1

tk,r,qfq + (1− ck,r(p))
V∑

v=1

sk,r,vbv, (6.1)

for k = 1, 2, ..., K and r = 1, 2, ..., R.
Here, K is the number of frames. The summation of weights tk,r,q represent the
translation of foreground pixel fq to f̃k,r by bilinear interpolation and in a similar
way the summation of sk,r,v translates background pixel bv to b̃k,r. The weight
ck,r represents the foreground contribution at pixel r in frame k depending on the
polygon boundary p. The foreground contribution varies between 0 and 1, so the
corresponding background contribution is then by definition equal to (1− ck,r).

A visualization of merging the translated background, b̃k = [b̃k,1, ..., b̃k,R]T ,
and the translated foreground, f̃k = [f̃k,1, ..., f̃k,R]T , is depicted in Figure 6.2. The
polygon boundary p defines the foreground contributions ck and the background
contributions (1− ck) in HR frame k.
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Figure 6.2: Flow diagram of merging foreground and background to obtain HR
image zk. The polygon boundary p is plotted on top of the background contribu-
tions (1−ck) for visualization. Note that in ck and (1−ck) black (= 0) indicates
no contribution, white (= 1) indicates full contribution and grey indicates a partial
contribution.

6.2.2 Camera model

Using the 2D HR image zk, the LR camera frame ŷk is constructed by applying
the physical properties of an optical camera system.

Blurring: The optical Point-Spread-Function (PSF), together with the sensor
PSF, will cause a blurring at the image plane. In this chapter the optical blur is
modeled by a Gaussian function with standard deviation σpsf . The sensor blur
is modeled by a uniform rectangular function representing the fill-factor of each
sensor element. A convolution of both functions represents the total blurring
function.

Sampling: The sampling as depicted in Figure 6.1 relates to the sensor pitch.
Noise: The temporal noise in the recorded data is modeled by additive, in-

dependent and identically distributed Gaussian noise samples nk with standard
deviation σn. For the recorded data used, independent additive Gaussian noise is
a sufficiently accurate model. Other types of noise, like fixed pattern noise and
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bad pixels, are not modeled explicitly.
All in all, the observed mth LR pixel from frame k is modeled as follows:

ŷk,m =
R∑

r=1

wk,m,rzk,r + ησn = ỹk,m + ησn , (6.2)

for k = 1, 2, ..., K and m = 1, 2, ..., M .
Here, M is the number of LR pixels in ŷk. The weight wk,m,r represents the
contribution of HR pixel zk,r to estimated LR pixel ỹk,m. Each contribution is
determined by the blurring and sampling of the camera. ησn represents an addi-
tive, independent and identically distributed Gaussian noise sample with standard
deviation σn.

6.3 SR method description

This section presents the method to perform SR reconstruction on small moving
objects based on the inversion of the forward model of section 6.2.

Our method can be split into three parts: 1) constructing a HR background
and detecting the moving object, 2) fitting a trajectory model to the detected
instances of the moving object through the image sequence to obtain subpixel
precise object registration, 3) obtaining a HR object description, containing a
subpixel precise boundary and a HR intensity description, by solving an inverse
problem. We explain the latter part first, because this is the most innovating part
of our method.

6.3.1 High-resolution object reconstruction

To find an optimal HR object description (consisting of a polygon boundary p and
an intensity description f), we propose to minimize the following cost function:

Cp,f =
1

KMσ2
n

K∑

k=1

M∑
m=1

(yk,m − ỹk,m(p, f ,b))2 +

λf

Q

h+v=1∑

h,v={0,1}
‖f − Sh

xSv
y f‖H + (6.3)

λp

(‖p‖
P

)2 P∑
p=1

Γp(p),
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where the first summation term represents the normalized data misfit contri-
butions for all pixels k,m. Normalization is performed with the total number of
LR pixels and the noise variance. Here, yk,m are the measured intensities of the
observed LR pixels and ỹk,m are the corresponding estimated intensities obtained
using the forward model of section 6.2. Although the estimated intensities ỹk,m

are also dependent on the background b, only p and f are varied to minimize (6.3).
The HR background b is estimated in advance as described in section 6.3.2.

Minimization of (6.3) is an ill-posed problem, therefore we apply regularization
to the foreground intensities and to the polygon boundary. The second term of
the cost function Cp,f regularizes the amount of intensity variation within the
object according to a criterion similar to the Total Variation (TV) criterion [38].
Here, Sh

x is the shift operator that shifts f by h pixels in horizontal direction and
Sv

y shifts f by v pixels in vertical direction.
The actual minimization of the cost function is done in an iterative way with

the Levenberg-Marquardt algorithm [42]. This optimization algorithm assumes
that the cost function has a first derivative that exists everywhere. However, the
L1-norm used in the TV criterion does not satisfy this assumption. Therefore we
introduce the hyperbolic norm (‖.‖H):

‖x‖H =
∑

i

(√
x2

i + α2 − α

)
(6.4)

This norm has the same properties as the L1-norm for large values (xi À
α) and it has a first (and second) derivative that exists everywhere. For the
experiments performed α = 1 is used.

The third term regularizes the variation of the polygon boundary p. Regular-
ization is needed to penalize unwanted protrusions, such as spikes, which cover a
very small area compared to the total object area. This constraint is embodied
by the measure Γp, which is small when the polygon boundary p is smooth:

Γp = 1/Ap with Ap = 0.5apbp sin(γp/2). (6.5)

Γp is the inverse of Ap, which is the area spanned by the edges (ap and bp) at
vertex vp and half the angle between those edges γp/2 as indicated by the right
part of (6.5).

From example (a) in Figure 6.3 it is clear why the area is calculated with half
the angle γp/2: if we would take the full angle γp, Ap would be zero, which would
result in Γp = ∞. Example (b) shows that the measure Γp will be very large for
small angles. Note that this measure is large as well for γp ≈ 2π (inward pointing
spike).
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Figure 6.3: Two examples (a) and (b) of the calculation of Γp at vertex vp of
polygon p. Γp is minimal in (a) when γp = π rad and in (b) Γp is almost infinity.

Note that in (6.3) normalization is performed on Γp with the square of the
mean edge length (‖p‖/P )2, with P the number of vertices and ‖p‖ the total
edge length of p. This normalization prevents extensive growth of edges in order
to minimize Γp.

As mentioned above, the actual minimization of the cost function is performed
in an iterative way with the Levenberg-Marquardt (LM) algorithm [42]. To allow
this, we put the cost function in (6.3) in the LM framework, which expects a
format like minβ

∑N
i (xi − x̃i(β))2 where xi is the measurement and x̃i(β) is the

estimate depending on parameter β.

In a straightforward case a vector with all residual values, e.g. [

N︷ ︸︸ ︷
..., (xi − x̃i), ...],

forms the input of the LM algorithm. In our case it is slightly more complex to
construct such a vector, which looks like:

KM︷ ︸︸ ︷
[
...,

1√
KMσn

(yk,m − ỹk,m), ...,

2Q︷ ︸︸ ︷

...,

√
λf

Q
(
√

(fi − fj)2 + α2 − α), ...,

P︷ ︸︸ ︷

...,
‖p‖
P

√
λpΓp, ...

]
,

(6.6)
with the letters on top indicating the number of elements used in each part of

the cost function, which makes the total size of this vector [1× (KM + 2Q + P )].
The cost function in (6.3) is iteratively minimized to find simultaneously an

optimal p and f . A flow diagram of this iterative minimization procedure in
steady state is depicted in Figure 6.4. Here the Cost function is defined in (6.3)
and the Camera model is defined in (6.1) and (6.2). Note that the measured data
used for the minimization procedure is a small Region Of Interest (ROI) around
the moving object in each frame.

The optimization scheme depicted in Figure 6.4 is initialized with an object
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Figure 6.4: Flow diagram of estimating a high-resolution description of a moving
object (p and f). y indicates the measured intensities in a region of interest
containing the moving object in all frames and ỹi are the corresponding estimated
intensities at iteration i. Note that the initial HR object description (p0 and f0)
is derived from the measured LR sequence and the object mask sequence.

boundary p0 and an object intensity description f0. These can be obtained in
several ways; we have chosen to use a simple and robust initialization method.

The initial object boundary is obtained by first calculating the median (frame-
wise) width and the median (frame-wise) height of the mask in the object mask
sequence. Afterwards we construct an ellipse object boundary with the previous
calculated width and height. At initialization the vertices are evenly distributed
over the ellipse. The number of vertices is fixed during minimization.

For initializing the object intensity distribution f0, a homogeneous intensity is
assumed. This intensity is initialized with the median intensity over all masked
pixels in the measured LR sequence.

Furthermore, the optimization procedure is performed in two steps. The first
step consists of the initialization described above and 5 iterations of the LM algo-
rithm. After this step it is assumed that the found object boundary and intensity
description are approaching the global minimum. However, to improve the esti-
mation of the object intensities near the object boundary, a second initialization
step is proposed. In this step all intensities of HR foreground pixels (f5) which
are close to and located completely within the object boundary are propagated
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outwards. Afterwards, 15 more iterations of the LM algorithm are performed to
let p and f converge.

6.3.2 Background SR reconstruction and moving object de-
tection

The detection of moving objects is based on the assumption that a moving object
deviates from a static background. In previous work [11] we have shown that for
a LR image sequence containing a moving point target, a robust pixel-based SR
reconstruction method is effective in estimating a HR background and detecting
the moving point target. The same approach is applied to the case of small
moving objects. However, the relative motion compared to the background must
be sufficient given the number of frames. Assuming K LR frames containing a
moving object of width W (LR pixels), the apparent lateral translation must be
more than 2(W + 1)/K LR pixels/frame for a proper background reconstruction.

In the literature several robust SR reconstruction methods are described [21,
49, 72]. We use the method developed by Zomet et al. [72], which is robust to in-
tensity outliers, such as small moving objects. This method uses the same discrete
camera model as given in (6.2). Its robustness is introduced by a robust back-
projection, that is based on applying a frame-wise median operation instead of a
mean operation. The latter one is often applied by non-robust SR reconstruction
methods that use Iterated Back Projection [31].

A LR representation of the background, obtained by shifting, blurring and
down-sampling of the HR background estimate b, can be compared to the corre-
sponding LR frame of the recorded image sequence:

δk,m =

(
yk,m −

R∑
r=1

wk,m,r b̃k,r

)
. (6.7)

Here, the weights wk,m,r represent the blur and down-sample operation, b̃k,r is
the rth pixel of the shifted HR background b in frame k and yk,m is the measured
intensity of the mth pixel in frame k. All difference pixels δk,m form a residual
image sequence in which the moving object can be detected.

First thresholding is performed on the residual image sequence, followed by
tracking. Thresholding is done with the chord method from Zack et al. [69], which
is illustrated by Figure 6.5. With this histogram based method an object mask
sequence mT = δk,m > Tδ results for k = 1, 2, ..., K and m = 1, 2, ..., M with K
the number of observed LR frames and M the number of pixels in each LR frame.

After thresholding, multiple detections may occur in each frame of mT . We
apply tracking to find the most similar detection in each frame to a reference
detection. This reference detection is defined by the median width (WR), the
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Figure 6.5: The chord method is based on finding the value of δ that gives the
maximum distance D. This value Tδ is used as threshold value.

median height (HR) and median residual energy (ER) of the largest detection in
each frame (median is taken frame-wise). Next, we search in each frame k the
detection with the smallest normalized Euclidian distance ∆k (regarding its width
Wk,i, height Hk,i and residual energy Ek,i) to the reference detection:

∆k (̂i) = min
i

(√
(
Wk,i −WR

WR
)2 + (

Hk,i −HR

HR
)2 + (

Ek,i − ER

ER
)2

)
, (6.8)

with î the index of the detection in frame k with the smallest normalized
Euclidian distance to the reference detection. After this tracking step an object
mask sequence mTT results with in each frame at most one detection.

6.3.3 Moving object registration

The object mask sequence mTT , obtained after thresholding and tracking, gives a
pixel-accurate indication of the position of the object in each frame. For perform-
ing SR reconstruction, a more precise (subpixel) registration is needed. When
moving objects contain sufficient internal pixels with sufficient structure or have
sufficient contrast with their local background, gradient-based registration [48]
can be performed. In the setting of small moving objects this is usually not the
case and another approach is needed.

When a motion model for a moving object is known, such a model can be
fitted to the object positions in time. We assume a constant motion model in the
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real world, which seems realistic given the nature of small moving objects: the
objects are far away from the observer and will have a small acceleration due to
the high frame rate of today’s image sensors.

First, an approximately pixel-precise position of the object in each frame is
determined by calculating the weighted Center Of Mass (COM) of the masked
pixels. The weighted COM of the masked pixels in frame k is defined by

ak =
1∑M

n=1 mn · yk,n

[
M∑

n=1

in ·mk,n · yk,n,

M∑
n=1

jn ·mk,n · yk,n

]T

(6.9)

with M the number of LR pixels in frame k, (in, jn) de (x,y)-coordinate of
pixel n, mk,n the corresponding mask value (0 or 1) and yk,n is the measured
intensity.

To fit a trajectory, all object positions in time must be known to a reference
point in the background scene. This is done by adding the previously obtained
background translation sk to the calculated object position for each frame: ãk =
ak + sk.

To obtain all object positions with subpixel precision, a robust fit to the mea-
sured object positions ãk is performed. Assuming constant motion, all object
positions can be described by a reference object position aR and a translation v.
Both the reference object position and the translation of the object are estimated
by minimizing the following cost function:

CaR,v =
K∑

k=1

(
1− exp

(
−d2

k(aR,v)
2σ2

t

))
, (6.10)

where dk denotes the Euclidean distance in LR pixels between the measured
object position and the estimated object position at frame k:

dk = ‖ãk − (aR + (k − 1)v)‖ . (6.11)

The cost function in (6.10) is known as the Gaussian norm [63]. This norm is
robust to outliers (e.g. false detections in our case). The smoothing parameter σt

is set to 0.5 LR pixel. Minimizing the cost function in (6.10) with the Levenberg-
Marquardt algorithm results in a subpixel precise and accurate registration of the
moving object. If e.g. 50 frames (K = 50) are used, the registration precision is
improved with factor ≈ 7.
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6.4 Experiments

The proposed SR reconstruction method for small moving objects is tested on
simulated data as well as on real-world captured data. The experiments on sim-
ulated data show the performance of our method under varying, but controlled
conditions. Real-world data is used to test our method under realistic conditions
and to study the impact of changes in object intensities caused by reflection, lens
abberations and small changes in aspect ratio of the object along the trajectory.

6.4.1 Test 1 on simulated data

We constructed a simulated under-sampled image sequence containing a small
moving car using the camera model depicted in Figure 6.1. Gaussian optical
blurring (σpsf = 0.3 LR pixel) and rectangular uniform sensor blurring (100%
fill-factor) are used to model the camera blur and Gaussian distributed noise is
added. The car describes a linear trajectory with respect to the background and
is modeled with two intensities, which both are above the median background
intensity. The low object intensity is exactly in between the median background
intensity and the high object intensity. The boundary of the car is modeled by a
polygon with 7 vertices.

In Figure 6.6(b) the simulated car is depicted at a HR grid. The car in this
image serves as a ground-truth reference for obtained SR reconstruction results. In
the LR image sequence the car covers approximately 6 pixels (all mixed pixels) as
can be seen in the upper row of Figure 6.6. In the LR domain the Signal-to-Noise
Ratio (SNR) of the car with the background is 29 dB and the Signal-to-Clutter
Ratio (SCR) is 14 dB. The SNR is defined as:

SNR = 20 log10

(
1
K

∑K
k=1 Īfg(k)− 1

K

∑K
k=1 Ībg(k)

σn

)
, (6.12)

with K the number of frames, Īfg(k) the mean foreground intensity in frame k
and Ībg(k) the mean local background intensity in frame k. Īfg(k) is calculated by
taking the mean intensity of LR pixels that contain at least 50% foreground and
Ībg(k) is defined by the mean intensity of all 100% background pixels in a small
neighborhood around the object. The SNR gives an indication on the contrast
of the object with its local background compared to the noise level. The SCR is
defined as:

SCR = 20 log10

(
1
K

∑K
k=1 Īfg(k)− 1

K

∑K
k=1 Ībg(k)

1
K

∑K
k=1 σbg(k)

)
, (6.13)
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with σbg(k) the standard deviation of the local background in frame k. The
SCR is a measure of the amount of contrast of the object with the mean local
background compared to the variation in the local background.

The result shown in Figure 6.6(c) is obtained by applying the pixel-based
SR reconstruction approach described in [13] with zoomfactor 4, using 85 frames
for reconstruction of the background and 50 frames for reconstruction of the
foreground. The same camera model is used as in the construction of the data.

Using the same data, camera model and zoomfactor, the SR reconstruction
result after applying our proposed method is depicted in Figure 6.6(d). The
parameters used during reconstruction are in step 1: λf = 10−4, λp = 10−6 and
in step 2: λf = 10−3, λp = 10−3. The object boundary is approximated with 8
vertices, which is one more than used for constructing the data, so the boundary
is slightly over-fitted. Comparing the results in Figure 6.6(c) and (d) shows that
the result of our new method bears a much better resemblance to the ground
truth reference in Figure 6.6(b).

(a) Zoom in on moving car in three different LR frames (5× 4 pixels).

(b) Ground truth. (c) 4× pixel-based SR. (d) 4× proposed SR.

Figure 6.6: Four times SR reconstruction of a simulated under-sampled image
sequence containing a small moving car. (a) shows three LR frames. (b) shows
the HR ground truth reference. (c) shows a state-of-the-art pixel-based SR result
and (d) shows the SR result of our new method.
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6.4.2 Test 2 on simulated data

This experiment is done on simulated image sequences similar to the one used
in the previous experiment. To investigate the performance of our method under
different conditions, we varied 1) the clutter (variance) of the local background
and 2) the noise level. The clutter of the background is varied by multiplying
the background with a certain factor after subtracting the median intensity. Af-
terwards the median intensity is added again to return to the original intensity
domain. The intensities and the size of the car are not changed. The car still
covers approximately 6 LR pixels (area) and the minimum object intensity (at
the back of the car) is exactly in between the median local background intensity
and the maximum object intensity.

Both the HR background and the HR foreground are reconstructed with zoom-
factor 4 using 85 frames and 50 frames respectively. The camera model used
during reconstruction is the same as used during constructing the data. For re-
construction of the moving object the same settings are used as in the previous
experiment. The object boundary is again approximated with 8 vertices.

The quality of the different SR results is expressed by a Normalized Mean
Squared Error (NMSE) with a ground truth reference zgt = cgtf̃gt of the object.
Note that this measure considers only the foreground intensities, the background
intensities are set to zero.

NMSE =
1/N

∑N
n=1(zgt(n)− zest(n))2

max(zgt)2
, (6.14)

with N the number of HR pixels, zest the estimated foreground intensities of
the SR result and zgt its ground truth reference. The normalization is done with
the squared maximum intensity in zgt.

In Figure 6.7 the NMSE is depicted for varying SNR and SCR. We divided
the results in three different regions: good (NMSE < 0.01), medium (0.01 <
NMSE < 0.03) and bad (NMSE > 0.03). For each region a SR result is shown
to give a visual impression of the performance. It is clear that the SR result in
the ‘good region’, with a realistic SNR and SCR, bears good resemblance to the
GT reference. Note that the visible background in those SR results is not used
to calculate the NMSE. Figure 6.7 shows that the performance decreases for a
decreasing SNR. Furthermore, the boundary between the ‘good’ and ‘medium’
region indicates a decrease in performance under high clutter conditions (SCR
< 5 dB).

6.4.3 Test on real-world data

The data for this experiment is captured with an infrared camera (the 1T from
Amber Radiance). The sensor is composed of indium antimonide (InSb) detectors
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Figure 6.7: Quantitative performance (normalized MSE) of the proposed SR re-
construction method on a simulated image sequence containing a moving car (6
pixels) for varying SNR and SCR. A smaller NMSE indicates a better perfor-
mance, which is also visualized by three different SR results.

(256×256) with a response in the 3−5µm wavelength band. Furthermore, we use
optics with a focal length of 50mm and a viewing angle of 11.2◦ (also from Amber
Radiance). We captured a vehicle (Jeep Wrangler) at 15 frames/second, driving
with a continuous velocity (≈ 1 pixel/frame apparent velocity) approximately
perpendicular to the optical axis of the camera. See Figure 6.8 for a top view
of this setup. While capturing the data, the platform of the camera was gently
shaken to provide subpixel motion of the camera. Panning was used to keep the
moving vehicle within the field of view of the camera.

d

camera vehicle

top view setup

Figure 6.8: Top view of the setup to capture real-world data.

We selected the distance such that the vehicle appeared small (≈ 10 LR pixels
in area) in the image plane. In the left column of Figure 6.9 a part of a LR frame
(64 × 64 pixels) and a zoom-in on the vehicle are shown. The vehicle is driving
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from left to right at a distance d of approximately 1150 meters. The SNR of
the vehicle with the background is 30 dB and the SCR is 13 dB. In the previous
experiment we have shown that for these values our method is capable to obtain
good reconstruction. In the right column of Figure 6.9 the result after applying
our SR reconstruction method shows that this is indeed the case.

The HR background is reconstructed from 85 frames with zoomfactor 4. The
camera blur is modeled by Gaussian optical blurring (σpsf = 0.3), followed by
uniform rectangular sensor blurring (100% fill-factor). The HR foreground is
reconstructed from 50 frames with zoomfactor 4 and the camera blur is modeled
in the same way as for the background. The object boundary is approximated
with 12 vertices and during the reconstruction the following settings are used:
λf = 10−4, λp = 10−6 in both step 1 and 2.

(a) LR reference frame (64× 64 pixels). (b) Zoomfactor 4 SR result with our proposed method.

(c) Zoom in on moving object in (a). (d) Zoom in on moving object in (b).

Figure 6.9: Four times SR reconstruction of a vehicle captured by an infrared
camera (50 frames) at large distance. (a) and (c) show the LR captured data, (b)
and (d) show the SR reconstruction result after applying our proposed method.

Note that much more detail is visible in the SR result than in the LR image.
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The shape of the vehicle is much more pronounced and the hot engine of the
vehicle is well visible. For comparison we depict in Figure 6.10 the SR result next
to a captured image of the vehicle at a 4× smaller distance. For visualization
purposes, the intensity mapping is not the same for both images. So a greylevel in
(a) may not be compared with the same greylevel in (b). This intensity mismatch
is explained by the fact that both sequences were captured at a different time,
which causes a change in reflection by the sun and heating of the vehicle. The
shape of the vehicle is reconstructed very well and the hot engine is located at a
similar place.

(a) 4× SR result. (b) Object 4× closer to camera.

Figure 6.10: 4× SR result of a jeep compared with the same jeep captured at a
4× smaller distance.

6.5 Conclusions

The proposed multi-frame SR reconstruction method improves the visual recog-
nition of small moving objects under realistic Signal-to-Noise Ratios and Signal-
to-Clutter Ratios. We showed that our method performs well in reconstructing a
small moving object where state-of-the-art pixel-based SR reconstruction meth-
ods fail. Our method not only performs well on simulated data, but also on a
real-world image sequence captured with an infrared camera.

The main novelty of the proposed SR reconstruction method is the use of
a combined boundary and intensity description of a small moving object. This
enables us to estimate simultaneously the object boundary with subpixel precision
and the foreground intensities from the mixed pixels, which are partly influenced
by the background and partly by the foreground.

Also we have introduced a hyperbolic error norm on the foreground intensity
differences in the cost functional of our SR reconstruction method. This robust
error norm permits use of the popular Levenberg-Marquardt minimization proce-
dure.



Chapter 7
Conclusions and discussion

In this thesis we presented different multi-frame Super-Resolution (SR) recon-
struction methods to improve the detection, resolution, Signal-to-Noise Ratio
(SNR) and contrast of moving objects in under-sampled image sequences. Apply-
ing these methods improves the detection and recognition rate of moving objects,
especially for small moving objects.

In this chapter an overview is given of the answers to the research questions
defined in the introduction of this thesis, some future research directions will be
given as well.

7.1 Performance evaluation

In Chapter 2 it is shown that Triangle Orientation Discrimination (TOD) [7]
provides a good quantitative measure for the performance of SR reconstruction
methods. The performance of different methods can be compared for a specific
condition of the Low-Resolution (LR) input data. Considering the imaging condi-
tions (camera’s fill-factor, optical Point Spread Function (PSF), SNR) the TOD
method enables an objective choice to determine which SR reconstruction method
to use.

Furthermore, it is shown that the performance of a SR reconstruction method
on real-world data can be predicted well by measuring the performance on simu-
lated data, if a proper estimate of the parameters of the real-world camera system
is available. This makes it possible to optimize the complete chain of a vision sys-
tem in an early stage. The parameters of the camera and the algorithm must be
chosen such that the performance of the vision task is optimized.

99
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It is also shown that regularization is not required for good performance when
a large number of recorded LR frames are available, i.e. stop criteria in iterative
methods will act as regularization. For low SNRs and many LR frames the perfor-
mance improvement is mainly due to temporal noise reduction. Results also show
that using a larger zoomfactor does not guarantee a better performance. This
can be explained by the fact that sensors with high fill-factors exert an amount
of blurring on the LR input frames and therefore limit the maximum achievable
resolution gain.

7.2 Point targets

The detection of point targets in an under-sampled image sequence can be im-
proved by applying robust SR reconstruction for background suppression. From
Chapter 3 it can be concluded that this has the following advantages: 1) less
aliasing artifacts in high clutter regions, 2) better point target amplitude preser-
vation for point targets with a small apparent motion and 3) less noise in the
difference image after background suppression.

It is shown that the use of SR reconstruction improves the specificity and
sensitivity of a point target detection method. The improvement in specificity
is based on two properties of the SR reconstruction algorithm: temporal noise
reduction and anti-aliasing. Due to temporal noise reduction and anti-aliasing
the number of false alarms decreases, as there is less noise in the background
estimation and therefore also less noise in the difference image on which the
detection is based.

The sensitivity of point target detection is increased by the point target sup-
pression capabilities of SR reconstruction in the background estimate. Therefore,
the amplitude of the point target is preserved in the difference image. This im-
provement is larger for point targets with a low apparent target velocity. Robust
SR reconstruction is used, because this suppresses outliers and therefore yields
hardly any contribution of the point target in its background estimation, whereas
for non-robust SR reconstruction methods a small portion of the point target
energy will still be present in the background estimation.

It can be seen that background suppression with SR reconstruction performs
better than a standard Shift, Interpolate and Subtract algorithm in almost all
tested scenarios. As expected, SR reconstruction with zoomfactor 2 performs
better than SR reconstruction with zoomfactor 1 in high clutter scenarios. This
effect is due to the fact that a better estimation of the background is obtained by
the anti-aliasing capabilities of the zoomfactor 2 approach. Hence, it will decrease
the number of false detections. In low clutter scenarios a higher zoomfactor
does not improve the performance, i.e. the local LR data was not hampered by
significant aliasing.
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7.3 Large objects

In Chapter 4 a method is presented to perform SR reconstruction on the back-
ground of a scene as well as on large moving objects in the scene. First registra-
tion is performed on the background after which the moving objects are detected.
Now, each moving object is registered separately and SR reconstruction is applied
to each masked sequence after registration. Simultaneously, SR reconstruction is
applied to the background and finally the super-resolved background and super-
resolved objects are merged into a high-resolution image frame. It is shown that
this method works on scenes with large moving objects.

From results we can conclude that our framework has a comparable SR perfor-
mance for movings objects and background under the conditions that 1) objects
are ‘large’ (≥ 16 × 16 LR pixels) and 2) the SNR is high enough (> 20 dB).
For smaller moving objects the amount of information inside the object is too
small to perform gradient-based registration with sufficient subpixel precision.
Furtermore, the SR performance on moving objects for low SNRs is bounded by
the performance of the registration and the moving object detection part of our
framework. A processed image sequence, captured with an infrared camera, shows
that the proposed framework also performs well on real-world data.

7.4 Small objects

In Chapter 5 and Chapter 6 a method is presented to perform SR reconstruc-
tion specifically on small moving objects in an image sequence. An object is small
if the majority of its constituting pixels are so-called mixed pixels. Mixed pix-
els contain information from the background and from the foreground (object).
This method describes a small moving object with a subpixel precise polygonal
boundary and a high-resolution (HR) intensity grid.

The proposed SR reconstruction method improves the recognition of small
moving objects under realistic Signal-to-Noise Ratios and Clutter-to-Noise Ratios.
First we showed that our method performs significantly better in reconstructing
a small moving object than the state-of-the-art in pixel-based SR reconstruction
methods. Our method not only performs well on simulated data, but also on
sequences captured with an infrared camera.

The main advantage of the proposed SR reconstruction method is that it
can estimate the object boundary with subpixel precision and therefore is able
to separate the foreground and background information within the mixed pix-
els. Especially for small moving objects our approach improves the recognition
significantly.

Also we have introduced a hyperbolic error norm on the foreground intensity
differences in the cost functional of our SR reconstruction method. This robust
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error norm permits use of the popular Levenberg-Marquardt minimization proce-
dure.

7.5 Future work

Even after four years of research it is inevitable to be left with some unsolved
issues. In our research this is no different. This section will address several issues
that remain for future research.

Moving object detection

Although this thesis did not focus on detection and tracking, it is an important
aspect and the first step in applying SR reconstruction to moving objects. If
objects are becoming smaller and/or the SNR is decreasing, it is harder to detect
them. Especially good tracking plays an important role here. More research is
needed to improve this part of our proposed methods.

Moving object registration

A good registration is a key element of successful SR reconstruction. A sufficient
precise registration (< 1/10 of a LR pixel using a 4 times denser HR grid) is
needed to fuse the LR samples on a HR grid. In this thesis we apply gradient-
based registration on the scene’s background and on moving objects if sufficient
gradient information is available. From the results in Chapter 4 we can conclude
that on moving objects with a size of 16× 16 pixels containing a sharp edge and
for a middle to high SNR it is just possible to obtain a sufficient precise gradient-
based registration.

These results are in line with the observations of Pham et al. [48], which
indicate that the precision of gradient-based registration is proportional to the
noise variance divided by the signal energy within a region of interest. However,
if moving objects are smaller than 16 × 16 pixels or their signal energy level is
low, another way of registration is needed. In Chapter 6 we have proposed a
registration method for small moving objects, which fits a model-based trajectory
through the object’s location in each frame.

The object location is determined by the center of gravity of the masked
object pixels after detection and tracking. It is not said that this is the best way
to find the object’s location, but it was good enough under the tested (realistic)
conditions.

A completely different approach to perform registration of moving objects
would be to incorporate the registration in the iterative optimization procedure
discussed in Chapter 6. This means that the proposed cost function needs to be
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minimized for the optimal registration parameters as well. It is hard to give an
indication of the precision that can be obtained by this approach. This is a topic
for future research.

Reconstruction

For the development of our SR reconstruction method for small moving objects
we put some constraints on the object; it must be rigid, the viewing angle may not
change and the intensity distribution must stay the same. For several scenarios
these constraints are valid, but it is not very difficult to think of a scenario for
which these constraints are invalid.

A different motion model must be incorporated in our reconstruction step to
deal with changes in viewing angle and/or variations in scale. We believe that
the parameters of such a motion model must be estimated simultaneously with
the boundary and intensity description of a moving object, because estimating
those parameters in advance seems very difficult in the setting of small moving
objects. A drawback of a more complex motion model is that it requires more
parameters, which enlarges the search space even further. Another issue in this
context is that the moving object must be described with a 2.5D model to allow
a change in viewing angle.

The object boundary description with a polygon leaves also some room for
improvement. In our implementation the number of vertices is fixed during the
optimization procedure. If the number of vertices could be varied, it would be
possible to e.g. delete vertices that connect edges which have approximately the
same orientation. It might also be interesting to experiment with other types of
boundary descriptions such as splines.

Except for reconstruction of small moving objects, our SR reconstruction
method is also capable of reconstructing the boundary region of large moving
objects or image regions with a large change in depth of field. We believe that
our proposed method can improve the visual quality and recognition in these
regions. However, some effort is needed to apply our method to these tasks.
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Summary

Super-Resolution of Moving Objects
in Under-Sampled Image Sequences

Multi-frame super-resolution (SR) reconstruction methods are capable of improv-
ing the resolution, signal-to-noise ratio and contrast of moving objects in under-
sampled image sequences. These improvements will help to increase the detection
and recognition rate of moving objects of various sizes. We distinguish point tar-
gets, objects that consist solely of “mixed” boundary pixels (small objects), and
objects with sufficient internal structure for registration (large objects).

To objectively compare various SR reconstruction methods and to optimize
their parameter settings, we used a quantitative performance criterion based on
a method known as Triangle Orientation Discrimination. It is shown that the
performance of a SR reconstruction method on real-world data can be predicted
well by measuring the performance on simulated data. This makes it possible
to optimize the complete chain of a vision system in advance. Furthermore it
is shown that regularization is not required for good performance when many
recorded frames are available for reconstruction.

Moving point targets against a cluttered background cannot be detected straight-
forwardly in under-sampled frames. We propose a method based on SR recon-
struction for improving the detection of moving point targets in image sequences.
A point target is the smallest possible object and it appears after blurring by
the camera as a “blurred” point (the point spread function) in the image plane.
Although it makes no sense to perform SR reconstruction on moving point tar-
gets themselves, their detection can be improved by applying SR reconstruction
to the background of the scene. From the high-resolution background image we
estimate the current low-resolution frame without point target. The difference
image obtained this way has the following advantages: 1) less aliasing artifacts
in high clutter regions, 2) better point target amplitude preservation for point
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targets with a small apparent motion and 3) less temporal noise. These advan-
tages result in fewer false detections for the same sensitivity. All in all, a better
detection performance of point targets is obtained.

When an image sequence contains multiple motion fields, due to e.g. mov-
ing objects, it is not possible to apply one of the “standard” methods for SR
reconstruction of the entire image. We developed a method to perform SR re-
construction on the background of a scene as well as on large moving objects in
the scene. We define a moving object to be large if the total number of pixels
contained by the object is large compared to the number of boundary pixels of the
object. First, registration of the background enables us to detect the moving ob-
jects. Afterwards, each moving object is tracked, the sequence registered for each
object separately, and SR reconstruction is applied. Simultaneously, SR recon-
struction is applied to the background and finally the super-resolved background
and super-resolved objects are merged into one high-resolution image frame. It is
shown that this method performs well on scenes with large moving objects. The
measured performance for large moving objects and for the background of a scene
is similar for medium and high signal-to-noise ratios.

The biggest challenge was to develop a method to perform SR reconstruction
specifically on small moving objects in an under-sampled image sequence. A small
moving object is defined as an object which consists solely of “mixed” boundary
pixels. Mixed pixels contain partly information from the varying background and
partly from the foreground (object). We propose to perform SR reconstruction on
small moving objects using a simultaneous boundary and intensity description of
a moving object. Assuming rigid objects that move (constant speed is assumed)
through the real world, a proper registration is accomplished by fitting a tra-
jectory through the object’s location in each frame. The boundary of a moving
object is modeled with a subpixel precise polygon and the object’s intensities are
represented on a high-resolution pixel grid. After applying SR reconstruction to
the background, the local background intensities are known on a high-resolution
grid. When the intensities of the moving object and the position of the edges of
the polygon boundary are known as well, the intensities of the mixed pixels can be
estimated. By iteratively minimizing the model error between the measured and
the estimated intensities, a subpixel precise boundary and intensity descriptions
of the moving object are obtained. Results show that the proposed method works
well on both simulated and real-world data and it is shown that, for reconstruct-
ing small moving objects, our method outperforms state-of-the-art pixel-based SR
reconstruction methods. Furthermore, a hyperbolic error norm on the foreground
intensity differences is introduced in the cost functional of our SR reconstruction
method. This robust error norm permits use of an L1-based regularization term
by the popular Levenberg-Marquardt minimization procedure.



Samenvatting

Super-Resolutie van Bewegende Objecten
in Onderbemonsterde Beeld Sequenties

Meerdere-beeld super-resolutie (SR) reconstructie technieken zijn in staat om de
resolutie, de signaal-ruis verhouding en het contrast van bewegende objecten in
onderbemonsterde beeld sequenties te verbeteren. Deze verbeteringen dragen bij
aan een betere detectie en herkenning van bewegende objecten van verschillende
groottes. We onderscheiden punt doelen, objecten die slechts uit “gemengde” rand
pixels bestaan (kleine objecten), en objecten met voldoende interne structuur voor
registratie (grote objecten).

Om verschillende SR reconstructie methodes objectief te vergelijken en om hun
instellingen te optimaliseren, gebruiken we een kwantitatief prestatie criterium dat
gebaseerd is op driehoek oriëntatie discriminatie. Er wordt aangetoond dat de
prestatie van een SR reconstructie methode op echte data voorspeld kan worden
door het meten van de prestatie op gesimuleerde data. Dit maakt het mogelijk
om de gehele keten van een visueel systeem vooraf te optimaliseren. Verder wordt
ook aangetoond dat regularisatie niet noodzakelijk is voor een goede prestatie als
veel opgenomen beelden beschikbaar zijn voor reconstructie.

Bewegende punt doelen tegen een afwisselende achtergrond kunnen niet zo
maar gedetecteerd worden in onderbemonsterde beelden. Wij stellen een methode
voor die gebaseerd is op SR reconstructie om de detectie van bewegende punt
doelen in beelden te verbeteren. Een punt doel is het kleinst mogelijke zichtbare
object en na waarneming met een camera verschijnt het als een uitgesmeerde
punt in het beeldvlak. Hoewel het niet zinvol is om SR reconstructie te doen op
bewegende punt doelen, kan hun detectie verbeterd worden door SR reconstructie
toe te passen op de achtergrond van de opgenomen scene. Met het verkregen hoge
resolutie achtergrond beeld schatten we het huidige lage resolutie beeld zonder
punt doel. Nu kan een verschil beeld worden bepaald met de volgende voordelen:
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1) minder bemonstering artefacten in gebieden met veel structuur, 2) beter behoud
van punt doel amplitude voor punt doelen met een kleine beweging en 3) minder
temporele ruis. Deze verbeteringen resulteren in minder foute detecties bij een
gelijke gevoeligheid. Kortom, een betere detectie van punt doelen wordt bereikt.

Als een beeld sequentie door bijvoorbeeld bewegende objecten meerdere be-
wegingsvelden bevat, is het niet mogelijk om “standaard” SR reconstructie tech-
nieken toe te passen op het hele beeld. Wij hebben een methode ontwikkeld die
zowel op de achtergrond van de scene als op grote bewegende objecten in de scene
SR reconstructie toepast. Wij noemen een bewegend object groot als het totaal
aantal pixels van dat object groot is ten opzichte van het aantal rand pixels van
hetzelfde object. Allereerst doen we registratie van de achtergrond, zodat we
de bewegende objecten kunnen detecteren. Vervolgens wordt ieder object apart
gevolgd, geregistreerd en wordt er SR reconstructie op toegepast. Tegelijkertijd
wordt er SR reconstructie gedaan op de achtergrond en tenslotte wordt de hoge
resolutie achtergrond samengevoegd met de hoge resolutie bewegende objecten.
Er wordt aangetoond dat deze methode goed werkt op scènes met grote bewegende
objecten. De gemeten prestatie op grote bewegende objecten is vergelijkbaar met
de prestatie op de achtergrond voor gemiddelde en hoge signaal-ruis verhoudingen.

De grootste uitdaging was om een methode te ontwikkelen om SR reconstruc-
tie toe te passen op kleine bewegende objecten. Een klein bewegend object is
hier gedefiniëerd als een object dat slechts uit gemengde rand pixels bestaat.
Gemengde pixels bevatten gedeeltelijk informatie van de wisselende achtergrond
en gedeeltelijk informatie van het object. Wij stellen een SR reconstructie meth-
ode voor die gebruik maakt van een simultane rand en intensiteit beschrijving
van het bewegend object. Uitgaande van niet-vervormbare objecten met een con-
stante snelheid in de echte wereld, wordt er een goede registratie bereikt door een
bewegingspad te schatten op basis van de object posities in elk beeld. De rand van
het object wordt beschreven met een subpixel nauwkeurige polygoon en de object
intensiteiten worden beschreven op een hoog resolutie grid. Na het toepassen van
SR reconstructie op de achtergrond zijn de lokale achtergrond intensiteiten be-
kend. Als de intensiteiten van het bewegend object en de positie van de polygoon
randen ook bekend zijn, kunnen de intensiteiten van de gemengde pixels worden
geschat. Door iteratief de model fout tussen de gemeten en geschatte inten-
siteiten te minimaliseren, wordt er een subpixel nauwkeurige rand en intensiteit
beschrijving van het bewegend object verkregen. Resultaten laten zien dat de
voorgestelde methode werkt op zowel gesimuleerde als op echte data en dat onze
methode significant betere prestaties levert op kleine bewegende objecten dan zeer
geavanceerde pixel gebaseerde SR reconstructie methodes. Verder introduceren
we een hyperbolische fouten norm voor de voorgrond intensiteit verschillen in de
kosten functie van onze SR reconstructie methode. Deze robuuste fouten norm
maakt het mogelijk om een L1-gebaseerde regularisatie term te gebruiken in de
populaire Levenberg-Marquardt minimalisatie procedure.
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