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Abstract: Strategies for controlling the indoor climate in greenhouses are based on a few sensors
and actuators in combination with an assumption that climate variables, such as temperature,
are uniform throughout the greenhouse. While this is already an improper assumption for
conventional greenhouses, it especially does not hold for the new trend of growing crops at
multiple layers. In addition, different temperature values are desired at the different layers,
which turns out to give an uncontrollability issue with the current set of actuators. To solve
this issue, fans are placed at each of the layers and an MPC strategy is employed for controlling
this nonlinear MIMO system. A case study further shows that such a control strategy reduces
the consumed energy of the greenhouse, while maintaining the desired temperature values.

1. INTRODUCTION

Since 2000, technical innovations within the greenhouse
industry focus on the so called closed greenhouse concept:
an entirely closed system allowing the grower complete
control on the growing process with less energy consumed.
Important parameters for growth are the spatial distri-
bution of humidity, temperature, CO2 and light. These
parameters are controlled via a few heaters and fans and
many light sources, aiming for a uniform climate through-
out the greenhouse. This uniformity is important, since a
greenhouse is covered with crops in the same stage of their
life. However, it cannot be assumed that such a uniform
distribution takes place in reality, due to natural air flow
and draft through open windows. Often, fans are installed
high in the greenhouse, operating at constant speed, to mix
the air and thus create uniformity. Yet, in practice tem-
perature differences up to 5 degrees are of no exception.
The few sensors currently deployed in greenhouses do not
provide an accurate observation of the three-dimensional
climate. Moreover, the few actuation options available are
not able to spatially influence the climate in a controlled
manner.

Existing control systems use a simplification of the ther-
modynamics in a greenhouse. Nonlinear effects, such as
convection at a surface and buoyancy (rise of hot air)
are ignored, see for example [Bennis et al., 2008], since
their corresponding physical phenomena governing the
dynamics of temperature and humidity are too difficult
to model and control using traditional techniques, e.g,
[Caponetto et al., 2000]. On top of that, a recent trend
in the greenhouses industry is to increase production by
growing crops on multiple layers, rather than a single layer,
as illustrated in Figure 1. Often, the stage in life of crops
that are grown varies per layer, which further implies that
the local climate desired for each layer is different. As such,
even though it is already difficult to manage a uniform
climate across one cultivation layer, in future, a control
setup is desired that can create a different climate for each
layer.

Fig. 1. Two front-views of a single section of a greenhouse.
The conventional setup for growing crops involves
one layer, whereas the new setup consists of multiple
layers, where the life stage of crops differs per layer.

A solution to this problem is sought for along the line of
networked (control) systems. Networked systems enable
a setup that can measure and monitor indoor climate
with high spatial resolution, which further allows for local
control actions focused on targeted areas. A conceptual
approach of such a networked system, for which the
benefits were studied in [Speetjens et al., 2008], yields

• many small, cheap, wireless sensors provide spatial
climate information with high resolution;

• multiple small, flexible actuators cooperate with ex-
isting actuators to influence the climate distribution;

• distributed control algorithms for climate optimiza-
tion support ease-of-deployment.

The goal of this article is to address the second item
listed above for controlling the temperature distribution
of a greenhouse in multiple vertical layers. Studies related
to the first and third item are found in, for example,
[Camponogara et al., 2002, Speetjens et al., 2008, Witrant
et al., 2009, Venkat et al., 2005]. Though solutions on the
third item of distributed control show promising results,
they are currently limited to linear processes. Instead, the
air flow in greenhouses, which mainly results from buy-
onacy effects, introduces nonlinear effects in the climate
model of greenhouses. Therefore, before continuing to a
distributed control solution, this article studies a feasible



MIMO control strategy for a centralized system based on a
nonlinear climate model. Typically, climate dynamics are
captured by a CFD model (computational fluid dynamics),
which is not suitable for control purposes as CFD models
are computationally demanding. To solve this issue, a
simplified model is presented first, which is then used in
an MPC strategy for controlling the temperature values at
multiple layers in the greenhouse. The case study involves
the two-dimensional front view of a multi-layer green-
house, as depicted in Figure 1. The three-dimensional case
is part of future work. The greenhouse is equipped with a
temperature controlled floor. This controllable actuator is
extended with numerous fans to control the temperature
distribution on the different layers.

2. PRELIMINARIES

R, R+, Z and Z+ define the set of real numbers, non-
negative real numbers, integer number and non-negative
integer numbers, respectively. Further, ZC := Z ∩ C,
for some C ⊂ R. The null-matrix and identity-matrix
of corresponding dimensions are denoted as 0 and I,
respectively. For a time-varying vector x(t) ∈ Rn, let us
define x[k] as the value of x(t) at the k-th sample instant
and let the matrix X[0 :k] := (x[0], x[1], · · · , x[k]). The q-th
element of a vector x ∈ Rn is denoted as {x}q, while {A}qr
denotes the element of a matrix A in the q-th row and r-
th column. The transpose and inverse (when it exists) of a
matrix A ∈ Rn×n are denoted as A>, A−1, respectively.
A � 0 denotes that A is positive definite.

3. PROBLEM FORMULATION

Let us consider the front view of a single greenhouse
section, as depicted in Figure 1. The figure indicates that
there are three different layers in the greenhouse at which
crops are grown. Each layer desires a different temperature
value for an optimal growth of the corresponding crops.
Existing greenhouses control the temperature of their floor
and thereby, heat the greenhouse under the assumption
that crops are grown at a single layer. Such a conventional
system is unable to control the different temperatures in a
multi-layer setup, since heated air at the floor will directly
go to the top of the greenhouse and not mix with the
air in between the layers. This behavior is illustrated in a
front-view of the temperature distribution in a greenhouse,
see Figure 2. Note that the desired uniform temperature
distribution per layer makes the control problem even more
complex.

To solve this issue, numerous fans are placed for controlling
the air flow in accordance with the temperature of the
floor. Conventional PID control, which is most common
for today’s greenhouses (see [Straten and Henten, 2010]),
has limited performance with the considered setup. Fur-
thermore, it was pointed out in [Pinon et al., 2005] that
actuators used in greenhouses are subject to constraints.
These aspects, in combination with the following control
objectives, imply that an MPC control strategy is most
suitable:

• The setup requires a MIMO control strategy with
constrained control actions;
• Greenhouses consume a large amount of energy but,

while consumed energy is to be reduced, an increase of
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Fig. 2. Climate profile in a (simplified) multi-layer green-
house with a temperature controlled floor. Tempera-
ture (K) is represented by color, air speed by arrows.

the production of crops is desired to maximize profits.
Since these two quantities are inversely coupled an
optimal trade-off should be made.

• Weather related disturbances, like clouds blocking
the sun, can often be well predicted and should
be anticipated in the greenhouse, as the actuators
are generally too slow to surpress these disturbances
using feedback only.

For the considered case study, a two-dimensional predic-
tion model is developed, using a finite element approach.
To that extent, the greenhouse is divided into rectangular
cuboids, each with a grid point in its center. Each grid
point i ∈ Z[1,n] has a temperature Ti ∈ R and T :=

(T1 T2 · · ·Tn)
>

. Further, the air flow direction at a grid
point i is the result of four flow values, each perpendicular
to one of the four edges of cell i, which are collected in
the vector v ∈ R4n. These variables define the state vector

x[k] :=
(
T>[k] v>[k]

)>
at each k-th sample instant, for

some sampling time τ ∈ R+. Then, the state space model
of the temperature distribution is characterized by some
nonlinear function f : Rn × Rl → Rn, i.e.,

x[k + 1] = f(x[k],u[k]). (1)

Control actions that regulate the fans and the floor tem-
perature are represented by u[k] ∈ Rl. Further, let the
state and control values be bounded by x[k] ∈ X ⊆ Rn
and u[k] ∈ U ⊆ Rl, for all k ∈ Z+. For clarity of the
control strategy, let us assume that current temperature
and air flow distributions of the greenhouse, i.e., x[k], are
fully available, for example, via a state estimation method.

The goal is to develop an MPC algorithm for controlling
the temperature values of the greenhouse at the different
layers, while simultaneously minimizing energy consumed
by the actuators. To that extent, a derivation of the state
space model in (1) is presented, next. The derivation
provides a simplification of the temperature and air flow
relations, driving heat transport by conduction and con-
vection. Subsequently, the employed MPC is developed,
followed by a two-dimensional case study for controlling
the temperature profile in the considered greenhouse.



4. CLIMATE MODEL

This section presents the climate model that will be used
for simulation and for prediction in the MPC algorithm. A
detailed account on the derivation of the model does not
suit the focus of this article. Instead, a description is given
of the three main drivers that determine the temperature
distribution within a greenhouse, i.e.,

• heat conduction in air;
• heat convection at a surface;
• heat transport through air flow (buoyancy and fans).

Ti

Ti,N

Ti,ETi,W

Ti,S

vi,N

vi,W vi,E

vi,S

Fig. 3. An illustration of the temperature and air speed
variables of cell i with respect to its neighboring cells,
i.e., denoted as north, east, south and west.

Let the two-dimensional area be divided into n cells,
according to Figure 2. Each cell i has a temperature Ti[k],
density ρi[k] and four air speed values corresponding to the
edges of cell i, i.e., vi,w[k], vi,e[k], vi,s[k] and vi,n[k], see also
Figure 3. Note that the temperatures in the neighboring
cells that surround the i-th cell are denoted as Ti,w[k]
(west), Ti,e[k] (east), Ti,s[k] (south) and Ti,n[k] (north).

Remark 4.1. The fact that air flow is continuous at edges
implies that if cell j is a neighbor of cell i, such that
Ti,w = Tj , then vi,w[k] ≡ −vj,e[k] holds. Further, boundary
conditions impose that if the edge of cell i is characterized
by a surface, i.e., walls, ceiling, floor or layers, the air speed
perpendicular to that surface is 0.

Let us continue with a characterization of the process
model f(·, ·), for which it is sufficient to introduce the
dynamic behavior of each temperature value Ti[k + 1] as
a function of its surrounding variables at the k-th sample
instant. Further, let the density of cell i be given as

ρi[k] =
P

R · Ti[k]
, (2)

where R is the gas constant and P is the pressure in the
greenhouse. Then, the results of [Patankar, 1980] imply
that the expression to determine the next temperature
value of cell i, is given by

Ti[k + 1] =
1

a[k]

(
a0[k]Ti[k] +

∑
q∈{w,e,s,n}

ai,q[k]Ti,q[k]
)
, (3)

a[k] = a0[k] +
∑

q∈{w,e,s,n}

ai,q[k], a0[k] =
ρi[k]cpVi

τ
.

Note that in (3),
∑
q∈{w,e,s,n} ai,q[k] is a short notation for

ai,w[k]+ai,e[k]+ai,s[k]+ai,n[k], with a similar concept for

the sum
∑
q∈{w,e,s,n} ai,q[k]Ti,q[k]. The parameters cp and

Vi are the specific heat (capacity) of air and the volume of
cell i, respectively. Further, the scalar variables ai,q ∈ R+,
for all q ∈ {w,e,s,n}, determine the influence of neigh-
boring temperature values on Ti. They are characterized
by a “conduction/convection” term Di,q ∈ R+ and a mass
flow term Fi,q ∈ R+ that depends on the air speed, for all
q ∈ {w,e,s,n}, i.e.,

ai,q[k] = Di,q[k] + max{Fi,q[k], 0}, ∀q ∈ {w,e,s,n}. (4)

The value of Di,q[k] ∼ βair is proportional to the heat con-
ductivity of air βair ∈ R+, if the corresponding neighbor
is another cell. In case cell i is bordered by a surface, then
Di,q[k] ∼ hi,q[k] is proportional to the convection coeffi-
cient hi,q[k] ∈ R. This coefficient has nonlinear, nonconvex
and discontinuous properties depending on, for example,
the “Nusselt number”, turbulent or laminar air behavior,
the distance to the surface, the air flow parallel to the
surface and the difference in temperature values. Note that
the controlled floor temperature influences the temper-
ature in the greenhouse according to such a convection
coefficient. The interested reader is referred to [Incropera
et al., 2005] for more details. Here, let us continue with
the mass flow term Fi,q depending on the corresponding
air speed, see [Patankar, 1980], i.e.,

Fi,q[k] = ρi[k]cpHi · vi,q[k], ∀q ∈ {w,e},
Fi,q[k] = ρi[k]cpWi · vi,q[k], ∀q ∈ {s,n}, (5)

where Hi ∈ R+ is the height of cell i, while Wi ∈ Ri
denotes its width. The remaining variables to complete
the process model are the four air speed values of cell i at
the different edges q ∈ {w,e,s,n}, which are derived, next.

Recall that v denotes the collection of all air speed values
in the greenhouse at the corresponding sample instant, i.e.,

v = (v1,n v1,e v1,s v1,w · · · vn,n vn,e vn,s vn,w)
>

Then, the expression to determine v[k + 1] is introduced
via a linear state space representation, yielding

v[k + 1] := Av[k] + Bρuρ[k] + Bfuf [k]. (6)

The variables uρ[k] ∈ Rn and uf [k] ∈ Rl−1 denote the
sources of the air flow, i.e., the buoyancy speed and
controlled fans, respectively. Each of these sources acts
directly on a particular air speed, due to which the
elements of Bρ ∈ R4n×n and Bf ∈ R4n×l−1 are either
equal to 0 or 1. Note that the control action u[k] ∈ Rl
thus consists of the controlled floor temperature, denoted
as Tfloor[k] ∈ R, and of the above controlled fans uf [k].
To characterize the effect of the buoyancy speed, let us
define ui,ρ[k] ∈ Rn as a speed additional to the northern
air speed of each cell i, i.e., vi,n[k]. As such, it follows

that uρ[k] := (u1,ρ[k] · · ·un,ρ[k])
>

. The buoyancy speed
is modeled as air speed in the northern direction that is
either negative, for heated air that will go up, or positive,
for cold air that tends to go down. Further, the force
driving the buoyancy speed depends on the average density
in cell i with respect to the average densities of the cells
on the West and East, proportional to the gravitational
constant g, i.e.,

ui,ρ[k] : = g

(
1−

1
2 (ρi,w[k] + ρi,e)[k]

ρi[k]

)
, (7)

The remaining matrix A ∈ R4n×4n in (6) governs the
propagation of the sources into a consistent flow field.



Physics dictate that a flow field should obey the laws of
mass conservation, energy conservation and momentum
conservation. For more information on these laws, the
reader is referred to [Patankar, 1980]. The coefficients
of A are chosen inspired by conservation of momentum,
i.e. air flow wants to propagate in its original direction,
unless hindered by surfaces or colliding flow. This also
satisfies the boundary conditions from Remark 4.1. The
resulting matrix A obeys the law of mass conservation,
but introduces a small error regarding the law of energy
conservation. In the results of Section 6, some energy was
dissipated in the model (< 2.5 J/s).

5. MODEL PREDICTIVE CONTROL

A MIMO controller is constructed that calculates the
actuator input matrix U = (u[0],u[1], · · · ), in order to
achieve a desired climate profile, with minimal energy.
This can be formulated as the minimization of a quadratic
objective function J , according to

min
U

J =

∞∑
k=0

ε[k]>Qε[k] + u[k]>Ru[k], (8)

where ε[k] = T[k] − σ[k] ∈ Rn is a vector containing the
temperature tracking errors with respect to setpoints σ[k],
Q � 0 ∈ Rn×n defines the costs of these tracking errors
and R � 0 ∈ Rl×l defines the costs of the actuation.

The minimization in (8) is approximated using a receding
horizon approach. At each time instant kc, corresponding
with controller sampling time τc > τ , the actuation matrix
Ũ[kc] = (ũ[0], · · · , ũ[Hc − 1]) ∈ Rl×Hc is calculated,
minimizing

min
Ũ

J =

kc+Hp−1∑
κ=kc

ε[κ]>Qε[κ] +

Hc−1∑
κ=0

ũ[κ]>Rũ[κ]

+ (Hp −Hc)ũ[Hc − 1]Rũ[Hc − 1].

(9)

Here, Hc is the control horizon and Hp ≥ Hc is the
prediction horizon. If Hp > Hc, the inputs ũ[Hc − 1]
are maintained during the remaining Hp − Hc controller
sampling intervals. After each optimization, u[kc] = ũ[0] is
applied to the system. After τc seconds, the entire process
is repeated.

Using the model described in Section 4, predictions of the
temperature tracking error ε[κ], for all κ ∈ Z[kc kc+Hp−1]

as a function of Ũ[kc] can be made. Note that the model
is highly nonlinear and discontinuous, which means that
gradient based solvers cannot be used to perform the
minimization in (9), as these would either loose stability
due to discontinuity, or converge to a local minimum due
to non-convexity of the prediction model. Therefore, we
use MIDACO 1 , [Schlüter et al., 2009], a derivative free
solver that aims to find the global minimum.

The MIDACO solver is based on ant colony optimization
and was especially designed for constrained mixed integer
nonlinear optimization problems, though it can also handle
other problems, such as the continuous unconstrained non-
linear problem in (9). The solver will escape local minima,
though it might need many function evaluations to do so.
It is impossible to know beforehand how many iterations

1 http://www.midaco-solver.com

are necessary and therefore how much time is needed for
the global optimum to be reached. From experience with
the problem in this paper, it ranges between hundreds
and thousands iterations, depending on the number op
optimization variables. Fortunately, MIDACO offers ex-
tensive parallelization options, significantly reducing the
computation time. The MIDACO solver also allows for a
’warm start’, meaning that an initial guess of the optimal
actuation trajectory can be provided as a starting point
for the solver [Schlüter et al., 2009]. This way, part of
the previously calculated actuator input trajectory can be
provided as a starting point for the optimization in the
next controller time step, reducing the optimizer’s time
till convergence. Specifically, (Ũ[1 : Hc− 1], 0.5ũ[Hc− 1])

of the optimized Ũ[kc−1] is provided as starting point for
the optimization at time kc.

6. GREENHOUSE CASE STUDY

The aim is to create a climate profile such that the
temperature in the lower layers is higher than in the
middle and upper layers, using minimal energy. This
relates to the situation in which the lower layers are used
for germination, the middle layers for young plants and
the top layer for adult plants. The allowable temperature
range is smallest for the lowest layer and increases as the
plant grows older. The adult plants in the top layer can
handle the largest temperature variations. This is captured
by choosing σ and Q such that the setpoint for the cells
in the lower layers is 288.65 K, with related tracking error
costs of 0.26. For the cells in the middle layers, the setpoint
is 288.15 K with corresponding tracking error costs of 0.24.
The outside temperature is 283.15 K.

The choice of parameters τc, Hp, Hc in (9) represents
a trade-off between accurately approximating (8) and
computational feasibility. A small value for controller
sampling time τc will allow the controller to track the
setpoints accurately and without overshoot, but comes at a
price of having only a time budget of τc seconds to perform
the optimization when operating in real-time. A large
prediction horizon Hp needs more computation for each
iteration in the optimization, but results in a smoother
controller. Prediction horizon Hp should at least be taken
large enough to make the effects of the floor heater
observable in (9). Finally, A large control horizon Hc will
give a more accurate calculation of the optimal u[kc] = ũ[0]
which is to be injected into the system. However, it is
a multiplier to the amount of optimization variables and
therefore severly influences the required computation time.
With aforementioned taken into consideration, we have
chosen τc = 60 seconds, Hp = 9, (540 seconds) and
Hc = 2, (120 seconds), which results in 10 optimization
variables and a computation time of approximately 0.59
s for 6 parallel function evaluations on a 6-core Intel(R)
Core(TM) i7-3960X CPU.

Figure 4 depicts the result of using only floor heating to
warm up the greenhouse, with ũ[kc] = ũfloor[kc] the input
to the floor heating which is bounded by 0 ≤ ũfloor[kc] ≤
10000 Watts and has associated costs given by R = 10−9.
Clearly, with such a setup it is infeasible to create warmer
climates at the bottom of the greenhouse and colder
climates above. Instead, buoyancy forces accelarate the
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(a) Climate profile after 6000 seconds of control with floor heating.
Temperature (K) is represented by color, air speed by arrows.
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(b) Temperatures in lower (blue) and middle (green) layer, with
corresponding setpoints (dotted). Actuation of floor heating.

Fig. 4. Results of using MPC on floor heating only to create different climate conditions per layer. The contruction of
the layers prevents warm air from entering. Instead, the greenhouse is slowly heated from top to bottom.
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(a) Climate profile after 1500 seconds of control with floor heating
and fans (blue dotted lines). Temperature (K) is represented by
color, air speed by arrows.
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(b) Temperatures in lower (blue) and middle (green) layer,
with corresponding setpoints (dotted). Actuation of floor heating
(blue) and average of 4 fans (green).

Fig. 5. Results of using MPC on floor heating and fans to create different climate conditions per layer. Warm air is
routed through the layers and short circuited back to the floor, warming only the relevant parts of the greenhouse.

warm air upwards and most of the energy ends up high in
the greenhouse where no plants are present. Moreover, due
to the construction of the multi-layer cultivation setup,
natural air flow can hardly gets into the layers. In practice,
the plants in the layers further inhibit airflow. As a result,
heat transport near the plants is dominated by conduction,
instead of convection, which is orders of magnitude slower.
In some cases it might even be too slow to compensate for
the heat a plant drains from its surroundings to support
its vaporization process (not modelled here). In Figure 4b,
it can be seen that it takes approximately 6000 seconds to
obtain the desired temperature in the lowest layer, with a
too high temperature in the middle layer.

We propose to overcome these problems by adding four
fans, as depicted in Figure 5a by the dotted blue lines.

By properly controlling the floor heating and the fans, the
warmth rising from the floor should be routed through
the layers. Preferably, the air is then rerouted back to the
floor to be reheated, instead of ending up in the top of
the greenhouse. The actuator input vector is extended to

ũ[kc] =
(
ũfloor[kc], ũ

>
fans[kc]

)>
with fan input boundaries

0 ≤ ũfans[kc] ≤ 72 Watts per fan, which corresponds
to a maximum induced airflow of 0.4 m/s per fan. Note
that the fans in the bottom layer blow to the right,
while the fans in the middle layer blow to the left.
The related costs for the actuation is provided by R =
diag{

(
10−9, 0.025, 0.025, 0.025, 0.025

)
}.

The results of this setup are shown in Figure 5. In
Figure 5a, it can clearly be seen that the heated air



is indeed routed though the layers and returned to the
floor to be reheated. Due to this shortcut, hot air hardly
infiltrates the top half of the greenhouse, which actually
cools down during the 1500 seconds simulation due to the
cold outside. The right figure shows that the temperatures
in the layers assume there setpoint values after about 1000
seconds, after which the system enters a certain steady
state. This steady state solution is an instable thermal
situation, with warm air below and cool air above. This
situation can only be maintained using the fans.
Comparing to the conventional setup of using only floor
heating with the setup containing additional fans, the
latter is able to reach all desired setpoints 6 times faster
than the conventional setup, which can only satisfy one
setpoint. The setup with fans uses 39.7% less energy in
reaching these setpoints. More importantly, in maintaining
the desired temperature profile, 19.8% energy is saved, by
not heating up the upper half of the greenhouse.

While the model described in Section 4 is able to perform
150 times faster than real-time for the given system (using
only one core of the CPU), the time needed for the solver to
approximate the global optimum still far exceeds the time
budget of τc = 60 s that is available in real-time operation.
The results in Figure 4 are obtained using a time budget
of 1800 seconds for each optimization. Yet, even when
stopping the optimizer after τc seconds and using the
intermediate results, the controller is stil able to perform
satisfactory, all be it in a less smooth fashion. Figure 6
shows the results for the controller when operating in real-
time. Compared to the results in Figure 5, it can be seen
that the ’suboptimal’ real-time controller needs more time
to achieve the same steady state solution. In the process
of heating up, more heat escapes the optimal route and
leaks to the top of the greenhouse.
Using the realtime controller, all setpoints are still
achieved 4 times faster than in the conventional setup. The
energy savings in reaching the setpoints are significantly
lower than in the controller from Figure 5, yet still 20.5%.
Maintaining the setpoint, especially in the presence of
disturbances, will also be less efficient, but in this example
energy savings of 9.8% are still achieved.

7. DISCUSSION AND CONCLUSIONS

The presented results show that it is possible to create
multiple climates at different layers in a greenhouse, while
saving a significant amount of energy. This has been done
by deploying fans and controlling them using an MPC
approach with a physical prediction model. It should be
noted that in this study, the used model is still fairly
coarse and only two-dimensional. Moreover, the same
model was used for simulation of the greenhouse and
prediction in the controller, without presence of unknown
disturbances and with the assumption of having optimal
state estimation. With this in mind, it should not be
expected that the presented energy saving in the order
of 40% can actually be achieved in practice. However,
given that the model includes all relevant heat transport
processes, this first attempt of localized climate control
validates further investigation into the topic.
Future work includes refinement of the model, tuning
of solver parameters to increase convergence speed and
experimenting in a small scale greenhouse (22 m3).
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Fig. 6. Temperatures in lower (blue) and middle (green)
layer, with corresponding setpoints (dotted). Actu-
ation of floor heating (blue) and average of 4 fans
(green), resulting from real-time controller.
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