
Genome Analysis of Legionella pneumophila Strains
Using a Mixed-Genome Microarray
Sjoerd M. Euser1*, Nico J. Nagelkerke2, Frank Schuren3, Ruud Jansen1, Jeroen W. Den Boer1

1 Regional Public Health Laboratory Kennemerland, Haarlem, The Netherlands, 2 Department of Community Medicine, United Arab Emirates University, Al-Ain, United

Arab Emirates, 3 TNO Microbiology and Systems Biology, Zeist, The Netherlands

Abstract

Background: Legionella, the causative agent for Legionnaires’ disease, is ubiquitous in both natural and man-made aquatic
environments. The distribution of Legionella genotypes within clinical strains is significantly different from that found in
environmental strains. Developing novel genotypic methods that offer the ability to distinguish clinical from environmental
strains could help to focus on more relevant (virulent) Legionella species in control efforts. Mixed-genome microarray data
can be used to perform a comparative-genome analysis of strain collections, and advanced statistical approaches, such as
the Random Forest algorithm are available to process these data.

Methods: Microarray analysis was performed on a collection of 222 Legionella pneumophila strains, which included patient-
derived strains from notified cases in the Netherlands in the period 2002–2006 and the environmental strains that were
collected during the source investigation for those patients within the Dutch National Legionella Outbreak Detection
Programme. The Random Forest algorithm combined with a logistic regression model was used to select predictive markers
and to construct a predictive model that could discriminate between strains from different origin: clinical or environmental.

Results: Four genetic markers were selected that correctly predicted 96% of the clinical strains and 66% of the
environmental strains collected within the Dutch National Legionella Outbreak Detection Programme.

Conclusions: The Random Forest algorithm is well suited for the development of prediction models that use mixed-genome
microarray data to discriminate between Legionella strains from different origin. The identification of these predictive
genetic markers could offer the possibility to identify virulence factors within the Legionella genome, which in the future
may be implemented in the daily practice of controlling Legionella in the public health environment.
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Introduction

The bacterium Legionella is the causative agent for Legionnaires’

disease, an acute pneumonia that accounts for a significant

amount of community-acquired pneumonias (ranging from 1.9–

20%) [1–3], and proves fatal in about 6–8.5% of diagnosed cases

[4,5]. Legionella is ubiquitous in both natural and man-made

aquatic environments, and the major route of transmission is

inhalation of the bacterium that is spread into the air as an aerosol

from its reservoir [6]. A wide range of contaminated water systems

have been identified as the source of infection for Legionnaires’

disease patients in numerous outbreak investigations, including

cooling towers, saunas, and whirlpool spas. Genetic comparisons

of the clinical and the environmental Legionella strains form an

essential part of these investigations [7,8], although interpretations

are often made without full understanding of the underlying

distribution of genotypes in clinical and environmental strain

populations [9].

In the Netherlands, a National Legionella Outbreak Detection

Programme (NLODP) [10] was installed in 2002, which aimed to

shorten response time between diagnosis of patients and source

identification, and to improve source investigation and elimina-

tion. Together with the implementation of new governmental laws

and guidelines to prevent growth of Legionella bacteria in potential

sources, it was attempted to diminish the overall impact of

Legionnaires’ disease in the Netherlands. Nevertheless, despite

these excessive efforts the incidence of Legionnaires’ disease has

only increased since 1999 [11].This unexpected trend might partly

be due to the unfocussed broad scope of preventive measures that

do not take virulence factors into account [12–14]. Previous

studies have shown that the majority (.90%) of Legionnaires’

disease cases are caused by the species Legionella pneumophila, and

about 80% more specifically by L. pneumophila serogroup 1 [15,16].

However, the distribution of genotypes within these clinical strains

is significantly different from the distribution found in environ-

mental strains [16–18]. These findings suggest a discrepancy in

virulence between genotypes with a possible genetic base for these
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differences [12], which is in line with results from the multigenome

analysis of 249 Legionella strains that was performed by Cazalet et

al. [19]. The development of novel genotypic methods that offer

the ability to distinguish clinical from environmental strains could

form a welcome next step in focusing more on relevant (virulent)

Legionella species in control efforts.

In a previous study, we described the development of a mixed-

strain microarray using comparative genome hybridization

(CGH), that contained genetic data from both clinical and

environmental strains [12]. A supervised statistical analysis using

Genetic Programming was used to identity DNA markers that

could discriminate between clinical and environmental Legionella

strains, and a model consisting of five markers was developed to

predict the origin of a strain: clinical or environmental. The final

model correctly predicted 100% of the clinical strains and 69% of

the environmental strains [12]. Despite these promising results,

there might be other methodological approaches that could lead to

(at least) comparable predictive performances. Potentially, geo-

graphical differences in virulence may have influenced the

previous analysis [5], as clinical strains from Dutch patients who

stayed abroad during their incubation period were included in the

strain collection. In this study we have explored these possibilities.

We would like to improve these results by using more strict

inclusion criteria for the strain collection, using continuous

microarray data instead of binary data, and exploring alternative

statistical approaches. Therefore, we here present a novel

approach using the microarray data of the Legionella strains that

were generated by Yzerman et al., to develop a new prediction

model that can appropriately discriminate between clinical and

environmental strains using a minimal number of DNA markers.

This prediction model was based on the Random Forest algorithm

[20,21], which is well suited for the use of microarray data in the

prediction of the origin of strains using a small set of DNA markers

[20].

Methods

Strain Collection
The strain collection that was described by Yzerman et al. [12],

was also used for the present analyses. This collection encompasses

patient-derived strains from notified cases in the Netherlands in

the period from 2002–2006 and the environmental strains that

were collected during the source investigation for those patients.

Together, microarray data were available for 257 unique Legionella

strains.

For our analyses, we excluded the clinical strains (n = 34) that

were derived from patients who had stayed abroad for $5 days

during their incubation period of 2–10 days (as they might have

been infected by a source situated abroad), resulting in a more

correct comparison with Dutch environmental strains. Addition-

ally, we excluded the clinical strain (n = 1) from a patient who had

stayed in a hospital during the incubation period, as nosocomial

Legionnaires’ disease is likely to occur due to less virulent strains

[22]. This resulted in a strain collection of 222 unique Legionella

strains (49 clinical strains and 173 environmental strains) that were

used in the present study (File S1).

Microarray Development
The development of the mixed-genome microarray has been

described elsewhere [12]. In short, eight L. pneumophila strains were

selected based on their diversity (both clinical and environmental

strains were used) to provide a shotgun library. The microarray

consisted of 3360 genomic fragments and was used to analyze the

genomic composition of the 222 Legionella strains in our collection,

by comparing labeled DNA from each strain with the library. The

data for all spots were calculated as ratios between the tester strain

and the reference strains.

The number of markers was reduced based on the observation

that approximately 80% of the 3360 markers were present in all

strains and therefore apparently encompassed the L. pneumophila

core genome. The remaining 20% did show variation in presence

between individual strains. Additionally, the number of relevant

markers was further reduced by only selecting a limited number of

representatives in those cases where multiple markers showed

nearly identical patterns over the complete data set (suggesting

partial overlap or close linkage in the genome). This resulted in a

selection of 480 potentially relevant markers that were used in the

further development of the prediction model [12].

For all of these 480 markers, Yzerman et al., determined an

individual marker-dependent cut-off value to convert the linearly

distributed ratios into binary values that represent the presence or

absence of each marker [12]. As Random Forest allows the use of

continuous predictor variables, we chose to use the continuous

microarray data (ratios) to make a selection of DNA markers to

enter in our prediction model.

Methodological Approaches for Marker Selection
The selection of a minimum number of relevant genetic markers

that together achieve good predictive performance is one of the

challenges in most gene expression studies [20]. Several method-

ological approaches that can cope with the high-dimensionality

(more variables than observations) and noisiness of the data

generated in microarray studies have been developed in recent

years [23]. However, many of these approaches are not

appropriate when the main objective is to obtain the smallest set

of genetic markers [20,23].

Random Forest is an algorithm for classification that uses an

ensemble of different classification trees [20,21]. Every single

classification tree is built using a bootstrap sample of the data, and

at each split in the tree the candidate set of variables is a random

subset of the variables. This means that Random Forest uses both

bagging (bootstrap aggregation) and random variable selection for

tree building, which results in low correlation of the individual

trees [20]. The Random Forest method has excellent performance

in classification tasks, and several characteristics that make it well

suited for the analyses of microarray data, including the following:

(1) it can handle many more variables than observations; (2) it has

good predictive performance even when most predictive variables

are noise; (3) it does not overfit; and (4) it can handle a mixture of

categorical and continuous predictors [20]. Taking this all in

consideration, we chose the Random Forest method to select a

minimal set of predictive markers for the L. pneumophila strain

collection.

Marker Selection for L. pneumophila Strains
Although Random Forest itself makes use of cross-validation, we

decided to increase the level of cross-validation as follows. The L.

pneumophila strain collection in total consisted of 49 clinical isolates

and 173 environmental strains. These strains were randomly

assigned to 10 different training datasets, each consisting of 24

clinical strains and 87 environmental strains. For all 10 training

datasets Random Forest was used to select the 25 markers with the

highest rank of ‘‘importance’’ in the prediction of the origin of the

strains (clinical or environmental). From these 250 selected

markers (25 markers per training dataset) we selected the 25

genetic markers that were present in the majority of the 10 training

datasets (File S2).

Microarray Analysis of Legionella Strains
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An eleventh training dataset was randomly constructed

consisting of 24 clinical and 87 environmental strains. A logistic

regression model (PASW release 18.0, IBM SPSS inc., New York,

NY) was developed (forward logistic regression) with the 25 genetic

markers entered as independent variables, and the origin of the

strains (clinical or environmental) as dependent variable (Files S3

and S4). The choice of using logistic regression was based on the

ease of adjusting this model (by changing the intercept parameter

only) when prior probabilities in datasets vary. Although the

followed methodological approach in general aimed to develop a

correct prediction of the origin of strains with a minimal set of

DNA markers, the main goal of the prediction model was the

correct prediction of the clinical isolates. The incorrect prediction

of a clinical isolate (false-negative) could potentially form a future

risk in the public health environment, when this model will be

further implemented in intervention strategies. The predictive cut-

off value for the predicted probabilities was therefore adjusted to

maximize the number of correctly predicted clinical isolates, while

keeping the number of incorrectly predicted environmental

isolates as low as possible. The predictive performance of this

model was then tested with a dataset consisting of those strains that

were not present in the eleventh training dataset (25 clinical strains

and 86 environmental strains), the so-called test dataset (File S5).

The performance of the final prediction model is presented in

262 tables, with the corresponding calculations of sensitivity,

specificity, negative predictive value (NPV), and positive predictive

value (PPV). In public health interventions, and especially in

laboratory screening methods, a high NPV is an important

performance characteristic [24,25], and this was another reason

why we attempted to correctly predict as many of the clinical

isolates as possible.

Functionality of Markers
The sequences of the four markers that were selected in the final

prediction model were compared with all sequences present in the

NCBI database (http://www.ncbi.nlm.nih.gov) using BlastN and

BlastX. These sequences included the whole genomes of Legionella

longbeachae (strain NSW150) [26] and L. pneumophila strains Paris

[27], Philadelphia [28], Lens [27], Corby [29], Alcoy [30], 130b

[31], Lorraine [32], and HL 0604 1035 [32], and ATCC 43290

[33].

Results

Within the 250 markers with the highest rank of ‘‘importance’’

that were selected by the Random Forest analyses of the 10

randomly selected training datasets, 51 markers were present more

Figure 1. Receiver operating characteristic (ROC) curve for the eleventh test dataset (n = 111). This figure shows the performance of the
logistic regression model with the four predictive markers (7B8, 15D6, 16E4, 33F8) for the eleventh test dataset. The proportion of the predicted
clinical strains out of the truly clinical strains (true positive rate or sensitivity) is plotted against the proportion of the predicted clinical strains out of
the truly environmental strains (false positive rate or 1-specificity).
doi:10.1371/journal.pone.0047437.g001
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than once. The 25 genetic markers that were present in the

majority of the 10 training datasets were entered in the logistic

regression model. These logistic regression analyses resulted in the

selection of four DNA markers for the final model. In order to

attempt to maximize the sensitivity of the model (predict as many

of the clinical strains correctly), while minimizing the loss of

specificity, we used an arbitrary cut-off value of 0.06 to translate

the logistic regression prediction of the training dataset into a

classification of the clinical and environmental strains. The 111

strains in the eleventh training dataset were predicted with a

sensitivity of 96%, a specificity of 75%, a PPV of 51%, and a NPV

of 98% (Table 1). The 111 strains in the eleventh test dataset that

were not used for building the logistic regression model were

additionally analyzed, and were predicted with a sensitivity of

96%, a specificity of 66%, a PPV of 45%, and a NPV of 98%

(Table 2). Figure 1 shows the receiver operating curve of the

logistic regression model predictions for the eleventh test dataset.

The area under the curve (AUC) or c-statistic was 0.9037.

The sequence analyses of the four selected markers showed that

all four markers were present in one or more of the completely

sequenced Legionella isolates (Table 3). One of these markers (16E4)

is probably related to cell wall synthesis (N-acetylneuraminate

synthase), another (33F8) to cellular transport (Xylose symporter).

Furthermore, marker 16E4 lies within the lipopolysaccharide

synthesis (LPS) region that was identified by Cazalet et al. (2008) as

specific for L. pneumophila serogroup 1 strains [19]. We additionally

checked the eight L. pneumophila strains that were used to develop

the microarray and could confirm that all four selected markers

were present in one or more of these strains. This diminishes the

possibility that the selection of the four markers was influences by

technical errors or contamination.

Discussion

We have successfully developed a model to predict the origin of

L. pneumophila strains (clinical or environmental) using mixed-

genome microarray data. In this model we used the Random

Forest algorithm combined with a logistic regression model to

select four genetic markers that correctly predicted 96% of the

clinical strains and 66% of the environmental strains that were

collected within the Dutch National Legionella Outbreak Detection

Programme. The negative predictive value (NPV) of the model

was relatively high (98%) which corresponds to the criteria for an

adequate screening test in public health intervention that were

suggested in previous studies on other pathogens (MRSA, ESBL)

[24,25].

Compared with our previous study where we used Genetic

Programming to select genetic markers to classify L. pneumophila

strains in clinical and environmental strains, the present Random

Forest model shows a similar performance with respect to

sensitivity (100% for Genetic Programming vs. 96% for Random

Forest), specificity (69% vs. 66%), PPV (49% vs. 45%), and NPV

(100% vs. 98%). However, the five genetic markers that were

selected by Genetic Programming differed from the four markers

that were selected by Random Forest, which complicates the

interpretation of these findings.

One of the differences between the Random Forest method and

the Genetic Programming was the use of the continuous

microarray data, without binarization (dichotimization) based on

a somewhat arbitrary marker-dependent cut-off value. The

Random Forest algorithm is well suited for the use of many

continuous predictor variables [20], and allowed us to use all

available discriminatory power that was present in the data for our

prediction model. Furthermore, the more stringent selection

criteria for the clinical isolates in our strain collection may have

resulted in another set of predictive markers in the model

compared to the previous study [12], although a detailed analysis

of the reasons why different approaches lead to different marker

selection still has to be made. The exclusion of isolates that were

derived from patients who have possibly been infected outside the

Netherlands, may have diminished the influence of regional

differences in genotypic variation between the Dutch environ-

mental isolates, and isolates from abroad. The prediction of the

Random Forest prediction model is therefore based on the

genotypic variation between clinical and environmental isolates

that are representing the situation within the Netherlands, and not

in other countries. Further studies using strain collection from

other geographic regions, and collected in different time periods

could help to determine the influence of these factors on the

genotypic variation.

The analysis of the sequences of the four identified markers

suggests that there are several possible biological pathways that

could underlie their predictive value. The identification of marker

16E4 that lies within the previously reported LPS cluster [19] may

indicate the importance of this region for further investigation of a

genetic base for virulence differences between Legionella strains.

The identification of predictive genetic markers with the

Random Forest model offers the possibility to further study

virulence factors within the Legionella genome, which in the future

Table 1. Prediction results for the 111 strains in the eleventh
training dataset.

Training dataset Origin of strains Total

Clinical Environmental

Prediction clinical 23 22 45

Prediction environmental 1 65 66

Total 24 87 111

Sensitivity 96%

Specificity 75%

PPV 51%

NPV 98%

PPV = positive predictive value; NPV = negative predictive value.
doi:10.1371/journal.pone.0047437.t001

Table 2. Prediction results for the 111 strains in the eleventh
test dataset.

Test dataset Origin of strains Total

Clinical Environmental

Prediction clinical 24 29 53

Prediction environmental 1 57 58

Total 25 86 111

Sensitivity 96%

Specificity 66%

PPV 45%

NPV 98%

PPV = positive predictive value; NPV = negative predictive value.
doi:10.1371/journal.pone.0047437.t002
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may even be implemented in the daily practice of controlling

Legionella in the public health environment. For instance,

appropriate control procedures could either be timely implement-

ed or abandoned, based on the potential risk of the Legionella

strains found in water samples during regular sampling investiga-

tions, although other factors such as the population at risk should

always be taken into account as well.
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