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Chapter 1 

1 Introduction 
Systems biology involves the study of biological systems by approaching them as an 

integrated and interacting network of genes, proteins, metabolites, and biochemical 
reactions. The biological system studied can be, for example, a cell, an organ, or a whole 
organism. By modeling the interacting network, systems biology attempts to identify the 
underlying mechanisms that influence the behavior and functionality of the biological 
system.  

1.1 Systems biology philosophies 
Within systems biology there are different philosophies with regard to the modeling of 

a biological system [1,2]. In bottom up systems biology [1,3], biological systems are modeled 
based on knowledge about, for instance, the genome, metabolic networks [4,5], or reaction 
kinetics [6,7]. Based on the integration of the behavior of the individual components, 
predictions regarding the behavior of the biological system are made.  

Top down systems biology models are developed based on the direct measurements of 
the response of the studied biological system to experimental conditions to which the 
biological system is subjected. Unlike bottom up systems biology, top down systems biology 
does not require mechanistic assumptions regarding the interactions of the studied 
biomolecules. The system wide response on different biological levels (e.g. transcriptomics, 
proteomics, or metabolomics) of the biological system to the applied experimental 
conditions is measured with advanced analytical techniques like, for instance, micro-arrays 
[8] or GC/LCMS [9,10] methods. Changes of the levels of the measured biomolecules in 
response to different experimental conditions are modeled with advanced data analysis 
methods. These data analysis methods search for trends in the behavior of the measured 
biomolecules related to a certain biological question following a ‘guilt by association’ 
approach. An example of a top down systems biology biological question is, for instance: the 
behavior of which biomolecules is associated with high and low biomass yield.  

Furthermore, middle-out systems biology was proposed [2] as a pragmatic approach 
in which depending on available data top down and bottom up systems biology approaches 
are combined to explore the biological system. An example of a method that integrates 
knowledge of pathway topology with the data analysis of transcriptomics data is network 
component analysis [11]. Furthermore, grey component analysis [12] could be suited for 
this purpose. 
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1.2 Advantages of top down systems biology 
Currently, most papers published on systems biology research are based on a bottom 

up systems biology approach. In our opinion, this does not do justice to the advantages of 
top down systems biology. First, the choice for experimental conditions in top down systems 
biology studies are not limited by model assumptions and therefore the experimental 
conditions can be selected to target the biological question as directly as possible. In 
contrast, bottom up systems biology models often require assumptions that limit the 
experimental conditions that can be studied. An example of such an assumption in the case 
of microbial flux balance models is the steady state assumption for the studied biological 
system; this assumption is rarely met for, e.g. batch or fed-batch based industrial 
microbiology processes.  

Second, there is no a priori focus on specific biomolecules that should be related to the 
biological question. This enables the discovery of previously unknown or unexpected 
relations between the behavior of the biomolecules and the biological question. This 
advantage applies as well to genome wide bottom up systems biology models. 

Third, whilst bottom up systems biology requires extensive knowledge of the studied 
organism, top down systems biology does not have this requirement. Hence top down 
systems biology is more generic in nature and can also be applied to relatively poor 
characterized strains, such as, recently discovered micro-organisms, or strains obtained after 
UV-mutagenesis. 

1.3 Top down systems biology challenges  
Top down systems biology studies typically involve the generation and analysis of large 

data sets. Consequently, the success rate of a top down systems biology study is highly 
dependent on the information richness of the data and therefore on the design and 
execution of the study. To successfully extract information relevant to the biological 
question, the experimental –omics data needs to contain information relevant to this 
question. Therefore, experimental conditions have to be carefully selected to induce the 
phenomena of interest and to capture these phenomena in the samples. Furthermore, the 
data analysis should be able (i) to extract information relevant to the biological question 
from the experimental data, and (ii) to statistically validate the extracted information. The 
information obtained in this way is used to address the biological question and to plan the 
next step in the study, e.g. biological validation. 

In a top down systems biology study, the three factors (i) biological question, (ii) 
experimental design, and (iii) data analysis represent three crucial strongly interdependent 
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aspects. In this Chapter, we discuss the importance of these different aspects and their 
mutual dependence as requirements for executing successful top down systems biology 
studies. We will illustrate our discussion using three different microbiological questions 
(Table 1).  

2 Crucial aspects of top down systems biology 
The three different aspects, biological question, experimental design, and data analysis 

together are the corner stones of top down systems biology. The relations between these 

Biological question Experimental design Data analysis method 
Case I   
What are the differences 
at the metabolic level 
between a wild type and 
an overproducing strain? 

Distinguish strain 
specific behavior from 
normal variation within a 
strain by independent 
repeated experiments 
with the wild type and 
the overproducing strain. 

Classification method 
Statistical validation targeted on 
reliability of metabolite 
contributions 

Case II   
Which biomolecules are 
associated with 
bioproduct formation? 

Environmental 
conditions that result in 
an evenly distributed 
range of bioproduct 
yields, titer, or 
productivity. 

Regression model that associates 
the behavior of the biomolecule 
yield with the -omics data. 
Statistical validation based on 
reliability of biomolecule 
contributions. 

Biological level 
(proteome, metabolome) 

Case III   
Which biomolecules are 
regulated by the same 
regulatory mechanisms? 

Select experimental 
conditions that induce 
the regulatory effects of 
interest. 

Select data analysis approach 
based on the behavior expected 
from biomolecules which are 
subjected to the same regulatory 
mechanism. Biological level 

(transcriptome, 
proteome, metabolome) 

Table 1 – Examples of biological questions in relation to experimental design and data analysis 
method considerations. Here, three cases of biological questions with a selection of their specific 
considerations for experimental design and data analysis method are presented.
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aspects are visualized in the top down systems biology research triangle (Figure 1). 
Analogous to systems biology, this research triangle is an interlinked network of which the 
individual factors are difficult to separate.  

2.1 The biological question 

2.1.1 Articulating essential aspects of the biological question 
The biological question is the start and the end of a top down systems biology study. It 

can be very specific: Which biomolecules are related to bioproduct formation (Table I, case 
II)?; or broad: How do regulatory effects manifest themselves in the behavior of 
biomolecules (Table I, case III)?. The original biological question, often stated in generic 
terms, has to be made operational and translated into an experimental design and a data 
analysis strategy. The biological question is made operational by articulating essential 
aspects of the research in the biological question and by preventing implicit assumptions 
about these essential aspects. Often experimental design and data analysis choices follow 
naturally from the articulation of these essential aspects. For instance, in case III (Table I, 
Which biomolecules are regulated by the same regulatory mechanisms?) the biological 
question can be made operational by (i) identifying under which experimental conditions 
the regulatory mechanisms become activated, i.e. by literature searches or screenings 
experiments, and (ii) how these regulatory mechanisms are expected to manifest themselves 
in the behavior of the measured biomolecules. The first will affect the choices for the 
experimental design, and the latter is important for the data analysis strategy. Making the 
biological question operational will facilitate the identification of key aspects for all factors 
of the top down systems biology research triangle. 

Biological question
- Define exact biological question
- Quantifiable phenotype

Experimental design
- Induce and capture variation 
relevant to the biological question 

Data analysis
- Information extraction
- Statistical validation

- Experimental conditions
- -Omics tool
- Sampling

- Uninduced/induced variation
- Sampling

- Biological vs data analyis question
- Expected behavior of biomolecules

Figure 1 – Top down systems biology research triangle. In top down systems biology three 
interlinked factors are crucial: (i) the biological question, (ii) experimental design, and (iii) 
data analysis. 
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2.1.2 Utilization of a quantifiable phenotype 
Often, it is possible to relate the biological question to a quantifiable phenotypic 

parameter. A quantifiable phenotypic parameter aids the selection of experimental 
conditions and helps to focus the data analysis, since variation in the behavior of the 
phenotypic parameter is directly related to the biological question. In case II, the 
quantifiable phenotype is bioproduct yield. Other quantifiable parameters which can be 
valuable are, for example, growth rate, or acid/base consumption for pH control. Also 
qualitative information like strain type, or morphology characteristics can be utilized 
-especially in the data analysis- by classifying this type of information and applying the class 
information in the study. 

2.2 Experimental design 
Top down systems biology is based on the statistical modeling with advanced data 

analysis tools of experimental –omics data. The goal of experimental design is therefore: to 
translate the biological question into an experimental procedure which results in –omics 
data containing information which can be accessed and validated with suited data analysis 
tools. Whereas statistical validation cannot replace biological validation, it is still very 
important to validate the performance of the data analysis methods (see section 2.3.2).  

Experimental design is not limited to designing traditional factorial designs [13-15] in 
which a set of experimental parameters is systematically varied, but it involves a range of 
choices which will be discussed below. 

2.2.1 Experimental conditions 
Determining the experimental conditions relevant for the biological question is based 

on biological knowledge from literature and prior knowledge. Sometimes it is unclear what 
experimental factors, such as nutrients or pH, are important for the induction of variation in 
the behavior of biomolecules relevant for the biological problem. Then, screenings 
experiments can be conducted to obtain more information regarding the importance of 
these experimental parameters. The availability of a quantifiable phenotypic parameter aids 
the selection of the experimental conditions as the experimental conditions should induce 
variation in this parameter.  

2.2.2 -omics tool 
For a top down systems biology study, the biological system can be measured on 

different levels in the cellular organization, e.g. the metabolome, proteome, or 
transcriptome. Selection of an –omics tool is therefore an important design consideration 
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and the choice depends heavily on which biochemical level the biological phenomena 
relevant for the biological question occur, or which biochemical level is studied. In case III, 
the selection of the -omics tool determines the regulatory mechanisms which can be 
identified, such as, transcriptional or allosteric regulation. The biological question for case 
III should therefore specify on what level or levels the relevant regulatory mechanisms 
should be studied.  

2.2.3 Sample collection 
The sampling procedure determines when and how (many) samples for the -omics 

analysis are taken. It should ensure that the biological phenomena relevant to the biological 
question, e.g. the onset of a regulation event, are captured in the collected samples and that 
degradation of the sample is prevented [16,17]. Furthermore, the number of samples 
influences the performance of data analysis methods [18]. Determining a sampling scheme 
for a certain biological question is finding a trade off between four aspects: (i) sample 
collection considerations to capture the relevant biological phenomena; (ii) balance between 
exploring new experimental conditions and firmly establishing a few experimental 
conditions; (iii) the increased performance of data analysis methods for increased number 
of samples; and (iv) the costs. 

2.2.3.1 Capturing the relevant biological phenomena 
Depending on the biological question and the selected –omics tool, it is not necessarily 

straightforward to capture the biological phenomena of interest in the samples. In the 
example of case II, it is beforehand unknown which phases during a batch fermentation 
process contain information related to the bioproduct yield at the end of the process. When 
this is not known from literature or screenings experiments, the sampling protocol should 
cover different growth phases and phase transitions. Here, other practical issues can play a 
role as well. For instance, the sampling volumes can limit the number of samples that can be 
collected, but also sample work up considerations can influence the sample collection.  

2.2.3.2 Exploring new conditions or firmly establishing the most 
important conditions? 

The importance of repeated measurements, or the establishment of the variability of 
the measured biomolecules in response to a certain experimental condition, depends on the 
biological question. For instance, in case I it is essential to distinguish differences in the 
behavior of relevant biomolecules between strains (induced biological variation, Figure 2) 
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from differences which can occur within repeated measurements of the same strain 
(uninduced biological variation, Figure 2). The characteristics of the uninduced variation is 
estimated from biologically independent repeated measurements and more repeated 
measurements increase the reliability of the estimation of the uninduced variation. On the 
other hand, for case II it could be more beneficial to include new experimental conditions 
possibly important for inducing variation in bioproduct formation over firmly establishing 
repeatability of a few variation inducing conditions. Generally speaking, it is good to keep in 
mind that the induced biological variation (Figure 2) is often larger than the uninduced 
biological variation and the technical variation [19]. This is mostly due to the selection of 
experimental conditions which induce variation in the behavior of the relevant 
biomolecules. 

2.2.3.3 Improved performance data analysis methods 
The performance of data analysis methods benefit from increased sample numbers. 

Increased sample numbers improve the reliability of the estimated contributions of the 
analyzed biomolecules to the modeled behavior. In case I, for example, more samples will 
improve the reliability of the estimation of the contributions of the measured metabolites to 
the differences between the wild type and the overproducing strain. While for univariate 
data analysis (i.e. considering the behavior in different samples of each biomolecule without 
taking into account interactions between biomolecules) different articles [20-23] are 

Figure 2 – Different levels of variation present in 
–omics data. The total variation in the behavior 
of a biomolecule in a top down systems biology 
data set is the sum of technical, uninduced 
biological, and induced biological variation. 
Technical variation originates from the technical 
procedure. Uninduced biological variation 
originates from biological variability between 
conditions. It can differ from biomolecule to 
biomolecule (biomolecule A from biomolecule B) 
as well as from condition to condition. Induced 
biological variation is the variation induced by 
the experimental design. Ideally, the induced 
biological variation of a biomolecule is much 
larger than its uninduced biological and technical 
variation. Biom
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published which discuss means to estimate sample sizes; for multivariate data analysis (i.e. 
the analysis of the behavior in samples of biomolecules in relation to the behavior of the 
other measured biomolecules) it is not yet clear how to determine sample size [18]. The 
more the better is currently the best recommendation [18]. 

2.3 Data analysis 
A data analysis strategy is based on (i) the biological question, (ii) properties of the 

data set (e.g. number of experiments/variables, time series, et cetera), and (iii) how 
information relevant to the biological question is expected to manifest itself in the data set. 
Furthermore, statistical validation of the data analysis will provide an indication of the 
significance of the identified effects. There are many data analysis methods available which 
are suited to address different biological questions (Table 1). For instance, for case I, 
classification methods such as partial least squares discriminant analysis (PLS-DA) [24] or 
principal component discriminant analysis (PCDA) [25] can build models based on the 
differences between the wild type and the overproducing strain. The data resulting from the 
experiments for case II can be analyzed with regression methods like PLS [26] or principal 
component regression (PCR) [27] that can relate the behavior of the measured biomolecules 
to the behavior of the phenotype parameter. 

2.3.1 Translation of the biological question into the expected 
behavior of biomolecules 

Different data analysis methods interpret the behavior of the measured biomolecules 
differently. It is therefore important to translate the biological question into the expected 
behavior of the biomolecules as perceived by the data analysis method. When factors like 
the abundance of a biomolecule or the magnitude of the fold change are not important for 
the biological question, it can be necessary to correct for the influence of these factors [19]. 
Data pretreatment methods can be applied to emphasize those aspects of the variation that 
are important for the specific biological question and for the specific properties of the 
selected data analysis method.  

2.3.2 Statistical validation of the data analysis 
An important part of the data analysis is the validation of the data analysis results. By 

validating the results, it can be assessed how well the obtained results compare to chance 
correlations, or if the found model is too optimistic due to overfitting. Overfitting means 
that besides induced biological variation also variation unrelated to the experimental design 
and thus the biological question, is captured in the model. As a result, overfitting reduces 
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the generic applicability of the top down systems biology model and hence should be 
prevented. Frequently applied data analysis validation strategies in top down systems 
biology are cross validation, permutation, jackknife, and bootstrapping [18,28-30]. The 
question what is to be validated determines the validation approach since validating 
contributions of individual biomolecules to a classification model is different from 
validating the classification performance of the same model.  

Statistical validation aids the interpretation of the data analysis results by providing 
indications of the limitations of the results of the applied data analysis tool. In this way, 
statistical validation can guide the selection of biomolecules important for the biological 
question. It cannot, however, replace biological validation of the leads to answering the 
biological question found with a top down systems biology approach. 

3 Conclusions 
Top down systems biology is a potentially suited research approach for many issues in 

biotechnology, such as, finding targets for strain improvement, medium optimization, or 
analyzing regulatory questions (e.g. protease induction [31]). Moreover, it does not require 
extensive knowledge regarding the studied organism; it is flexible with regard to the 
environmental conditions which can be studied (e.g. no steady state assumption); and the 
data analysis gives an open view on possible important biomolecules. 

Top down systems biology studies, however, require large information-rich data sets 
for the modeling of the biological systems and for providing answers to research questions. 
Therefore, it is essential to carefully consider the three corner points of the top down 
systems biology research triangle: biological question, experimental design, data analysis, 
and their interdependence. The impact of choices made within one of the three corner 
points is not limited to the respective corner point itself, but extends to the other points as 
well. 

In our opinion, parts of the top down systems biology research triangle are often 
neglected, which leads to –omics data sets without a clear biological question, or a clear 
underlying experimental design. Consequently, it is very difficult to extract biologically 
relevant information from these data sets and the conducted experiments in turn can be 
considered a loss of effort and resources. The framework of the top down systems biology 
research triangle can help improve the setup of top down systems biology studies and 
improve the success rate of top down systems biology research projects. 

In Chapters 2 to 6, different aspects of the relation between a biological question and a 
data analysis strategy, such as, data pretreatment and selection of the most suited data 
analysis method, are further explored. 
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2 Centering, scaling, and transformations: 
improving the biological information 
content of metabolomics data 
Robert A. van den Berg1*, Huub C. J. Hoefsloot2, Johan A. Westerhuis2, Age K. Smilde1,2 and 
Mariët J. van der Werf1 

Summary 
Extracting relevant biological information from large data sets is a major challenge in 

functional genomics research. Different aspects of the data hamper their biological 
interpretation. For instance, 5000-fold differences in concentration for different metabolites 
are present in a metabolomics data set, while these differences are not proportional to the 
biological relevance of these metabolites. However, data analysis methods are not able to 
make this distinction. Data pretreatment methods can correct for aspects that hinder the 
biological interpretation of metabolomics data sets by emphasizing the biological 
information in the data set and thus improving their biological interpretability.  

Different data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range 
scaling, vast scaling, log transformation, and power transformation, were tested on a real-life 
metabolomics data set. They were found to greatly affect the outcome of the data analysis 
and thus the rank of the, from a biological point of view, most important metabolites. 
Furthermore, the stability of the rank, the influence of technical errors on data analysis, and 
the preference of data analysis methods for selecting highly abundant metabolites were 
affected by the data pretreatment method used prior to data analysis.  

Different pretreatment methods emphasize different aspects of the data and each 
pretreatment method has its own merits and drawbacks. The choice for a pretreatment 
method depends on the biological question to be answered, the properties of the data set 
and the data analysis method selected. For the explorative analysis of the validation data set 
used in this study, autoscaling and range scaling performed better than the other 
pretreatment methods. That is, range scaling and autoscaling were able to remove the 
dependence of the rank of the metabolites on the average concentration and the magnitude 
of the fold changes and showed biologically sensible results after PCA (principal component 
analysis). In conclusion, selecting a proper data pretreatment method is an essential step in 
the analysis of metabolomics data and greatly affects the metabolites that are identified to be 
the most important. 

 
 

This chapter is published as R. A. van den Berg, H. C. J. Hoefsloot, J. A. Westerhuis, A. K. 
Smilde and M. J. van der Werf. BMC Genomics, 2006, 7 (142). 



Chapter 2 

1 Background 
Functional genomics approaches are increasingly being used for the elucidation of 

complex biological questions with applications that range from human health [1] to 
microbial strain improvement [2]. Functional genomics tools have in common that they aim 
to measure the complete biomolecule response of an organism to the environmental 
conditions of interest. While transcriptomics and proteomics aim to measure all mRNA and 
proteins, respectively, metabolomics aims to measure all metabolites [3,4]. 

In metabolomics research, there are several steps between the sampling of the 
biological condition under study and the biological interpretation of the results of the data 
analysis (Figure 1). First, the biological samples are extracted and prepared for analysis. 
Subsequently, different data preprocessing steps [3,5] are applied in order to generate ‘clean’ 
data in the form of normalized peak areas that reflect the (intracellular) metabolite 
concentrations. These clean data can be used as the input for data analysis. However, it is 
important to use an appropriate data pretreatment method before starting data analysis. 
Data pretreatment methods convert the clean data to a different scale (for instance, relative 
or logarithmic scale). Hereby, they aim to focus on the relevant (biological) information and 
to reduce the influence of disturbing factors such as 
measurement noise. Procedures that can be used for data 
pretreatment are scaling, centering and transformations. 

In this paper, we discuss different properties of 
metabolomics data, how pretreatment methods influence 
these properties, and how the effects of the data 
pretreatment methods can be analyzed. The effect of data 
pretreatment will be illustrated by the application of eight 
data pretreatment methods to a metabolomics data set of 
Pseudomonas putida S12 grown on four different carbon 
sources. 

Biological
experiment

Raw data 

Clean data 

Data fit for 
analysis 

Sample extraction 
GC-MS analysis 

Data preprocessing 

Data pretreatment 

Data analysis 

Rank of the 
most important

metabolites

1.1 Properties of metabolome data 
In metabolomics experiments, a snapshot of the 

metabolome is obtained that reflects the cellular state, or 
phenotype, under the experimental conditions studied [3]. 
The experiments that resulted in the data set used in this 
paper were conducted according to an experimental 
design. In an experimental design, the experimental 
conditions are purposely chosen to induce variation in the 

Figure 1 - The different steps 
between biological sampling 
and ranking of the most 
important metabolites. 
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area of interest. The resulting variation in the metabolome is called induced biological 
variation.  

However, other factors are also present in metabolomics data: 
1. Differences in orders of magnitude between measured metabolite concentrations; 

for example, the average concentration of a signal molecule is much lower than the 
average concentration of a highly abundant compound like ATP. However, from a 
biological point of view, metabolites present in high concentrations are not 
necessarily more important than those present at low concentrations.  

2. Differences in the fold changes in metabolite concentration due to the induced 
variation; the concentrations of metabolites in the central metabolism are generally 
relatively constant, while the concentrations of metabolites that are present in 
pathways of the secondary metabolism usually show much larger differences in 
concentration depending on the environmental conditions.  

3. Some metabolites show large fluctuations in concentration under identical 
experimental conditions. This is called uninduced biological variation.  

Besides these biological factors, other effects present in the data set are: 
4. Technical variation; this originates from, for instance, sampling, sample work-up 

and analytical errors. 
5. Heteroscedasticity; for data analysis, it is often assumed that the total uninduced 

variation resulting from biology, sampling, and analytical measurements is 
symmetric around zero with equal standard deviations. However, this assumption is 
generally not true. For instance, the standard deviation due to uninduced biological 
variation depends on the average value of the measurement. This is called 
heteroscedasticity, and it results in the introduction of additional structure in the 
data [6,7]. Heteroscedasticity occurs in uninduced biological variation as well as in 
technical variation. 

The variation in the data resulting from a metabolomics experiment is the sum of the 
induced variation and the total uninduced variation. The total uninduced variation is all the 
variation originating from uninduced biological variation, sampling, sample work-up, and 
analytical variation. Data pretreatment focuses on the biologically relevant information by 
emphasizing different aspects in the clean data, for instance, the metabolite concentration 
under a growth condition relative to the average concentration, or relative to the biological 
range of that metabolite. In metabolomics, data pretreatment relates the differences in 
metabolite concentrations in the different samples to differences in the phenotypes of the 
cells from which these samples were obtained [3]. 

1.2 Data pretreatment methods 
The choice for a data pretreatment method does not only depend on the biological 
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information to be obtained, but also on the data analysis method chosen since different data 
analysis methods focus on different aspects of the data. For example, a clustering method 
focuses on the analysis of (dis)similarities, whereas principal component analysis (PCA) 
attempts to explain as much variation as possible in as few components as possible. 
Changing data properties using data pretreatment may therefore enhance the results of a 
clustering method, while obscuring the results of a PCA analysis.  

In this paper, we discuss three classes of data pretreatment methods: (I) centering, (II) 
scaling and (III) transformations (Table 1).  

1.2.1 Class I: Centering 
Centering converts all the concentrations to fluctuations around zero instead of 

around the mean of the metabolite concentrations. Hereby, it adjusts for differences in the 
offset between high and low abundant metabolites. It is therefore used to focus on the 
fluctuating part of the data [8,9], and leaves only the relevant variation (being the variation 
between the samples) for analysis. Centering is applied in combination with all the methods 
described below. 

1.2.2 Class II: Scaling 
Scaling methods are data pretreatment approaches that divide each variable by a 

factor, the scaling factor, which is different for each variable. They aim to adjust for the 
differences in fold differences between the different metabolites by converting the data into 
differences in concentration relative to the scaling factor. This often results in the inflation 
of small values, which can have an undesirable side effect as the influence of the 
measurement error, that is usually relatively large for small values, is increased as well.  

There are two subclasses within scaling. The first class uses a measure of the data 
dispersion (such as, the standard deviation) as a scaling factor, while the second class uses a 
size measure (for instance, the mean).  

1.2.2.1 Scaling based on data dispersion 
Scaling methods tested that use a dispersion measure for scaling were autoscaling [9], 

pareto scaling [10], range scaling [11], and vast scaling [12] (Table 1). Autoscaling, also 
called unit, or unit variance scaling, is commonly applied and uses the standard deviation as 
the scaling factor [9]. After autoscaling, all metabolites have a standard deviation of one and 
therefore the data is analyzed on the basis of correlations instead of covariances, as is the 
case with centering.  

Pareto scaling [10] is very similar to autoscaling. However, instead of the standard 
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deviation, the square root of the standard deviation is used as the scaling factor. Now, large 
fold changes are decreased more than small fold changes, thus the large fold changes are less 
dominant compared to clean data. Furthermore, the data does not become dimensionless as 
after autoscaling (Table 1).  

Vast scaling [12] is an acronym of variable stability scaling and it is an extension of 
autoscaling. It focuses on stable variables, the variables that do not show strong variation, 
using the standard deviation and the so-called coefficient of variation (cv) as scaling factors 

(Table 1). The cv is defined as the ratio of the standard deviation and the mean:
i

i

x
s

. The use 

of the cv results in a higher importance for metabolites with a small relative standard 
deviation and a lower importance for metabolites with a large relative standard deviation. 
Vast scaling can be used unsupervised as well as supervised. When vast scaling is applied as 
a supervised method, group information about the samples is used to determine group 
specific cvs for scaling.  

The scaling methods described above use the standard deviation or an associated 
measure as scaling factor. The standard deviation is, within statistics, a commonly used 
entity to measure the data spread. In biology, however, a different measure for data spread 
might be useful as well, namely the biological range. The biological range is the difference 
between the minimal and the maximal concentration reached by a certain metabolite in a 
set of experiments. Range scaling [11] uses this biological range as the scaling factor 
(Table 1). A disadvantage of range scaling with regard to the other scaling methods tested is 
that only two values are used to estimate the biological range, while for the standard 
deviation all measurements are taken into account. This makes range scaling more sensitive 
to outliers. To increase the robustness of range scaling, the range could also be determined 
by using robust range estimators. 

1.2.2.2 Scaling based on average value 
Level scaling falls in the second subclass of scaling methods, which use a size measure 

instead of a spread measure for the scaling. Level scaling converts the changes in metabolite 
concentrations into changes relative to the average concentration of the metabolite by using 
the mean concentration as the scaling factor. The resulting values are changes in percentages 
compared to the mean concentration. As a more robust alternative, the median could be 
used. Level scaling can be used when large relative changes are of specific biological interest, 
for example, when stress responses are studied or when aiming to identify relatively 
abundant biomarkers. 
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1.2.3 Class III: Transformations 
Transformations are nonlinear conversions of the data like, for instance, the log 

transformation and the power transformation (Table 1). Transformations are generally 
applied to correct for heteroscedasticity [7], to convert multiplicative relations into additive 
relations, and to make skewed distributions (more) symmetric. In biology, relations between 
variables are not necessarily additive but can also be multiplicative [13]. A transformation is 
then necessary to identify such a relation with linear techniques.  

Since the log transformation and the power transformation reduce large values in the 
data set relatively more than the small values, the transformations have a pseudo scaling 
effect as differences between large and small values in the data are reduced. However, the 
pseudo scaling effect is not determined by the multiplication with a scaling factor as for a 
‘real’ scaling effect, but by the effect that these transformations have on the original values. 
This pseudo scaling effect is therefore rarely sufficient to fully adjust for magnitude 
differences. Hence, it can be useful to apply a scaling method after the transformation. 
However, it is not clear how the transformation and a scaling method influence each other 
with regard to the complex metabolomics data.  

A transformation that is often used is the log transformation (Table 1). A log 
transformation perfectly removes heteroscedasticity if the relative standard deviation is 
constant [7]. However, this is rarely the case in real life situations. A drawback of the log 
transformation is that it is unable to deal with the value zero. Furthermore, its effect on 
values with a large relative analytical standard deviation, usually the metabolites with a 
relatively low concentration, is problematic as these deviations are emphasized. These 
problems occur because the log transformation approaches minus infinity when the value to 
be transformed approaches zero.  

A transformation that does not show these problems and also has positive effects on 
heteroscedasticity is the power transformation (Table 1) [13]. The power transformation 
shows a similar transformation pattern as the log transformation. Hence, the power 
transformation can be used to obtain results similar as after the log transformation without 
the near zero artifacts, although the power transformation is not able to make multiplicative 
effects additive.  

2 Methods 
2.1 Background of the data set 

P. putida S12 [14] is maintained at TNO. Cultures of P. putida S12 were grown in batch 
fermentations at 30ºC in a Bioflow II (New Brunswick Scientific) bioreactor as previously 
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described by van der Werf [15]. Samples 
(250 ml) were taken from the bioreactor 
at an OD 600 of 10. Cells were 
immediately quenched at -45°C in 
methanol as described previously [16]. 
Prior to extracting the intracellular 
metabolites from the cells - by 
chloroform extraction at –45°C [17] - 
internal standards were added [18] and 
a sample was taken for biomass 
determination [19]. Subsequently, the 
samples were lyophilized. 

2.2 GC-MS analysis 
Lyophilized metabolome samples 

were derivatized using a solution of 
ethoxyamine hydrochloride in pyridine 
as the oximation reagent followed by 
silylation with N-trimethyl-N-
trimethylsilylacetamide as described by 
[18]. GC-MS-analysis of the derivatized 
samples was performed using 
temperature gradient from 70°C to 
320°C at a rate of 10°C/min on an 
Agilent 6890 N GC (Palo Alto, CA, 
USA) and an Agilent 5973 mass selective detector. 1 μl aliquots of the derivatized samples 
were injected in the splitless mode on a DB5-MS capillary column. Detection was 
performed using MS detection in electron impact mode (70 eV).  
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Gluconate  Data
matrix
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performed in triplicate  
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Figure 2 - Experimental design. The 
fermentations were performed in independent 
triplicates. Of the third glucose fermentation a 
sample was taken in duplicate and of G1, N1 
and S1 the samples were analyzed in duplicate 
by GC-MS. The samples of N3, S2 and S3 were 
not taken into account in this study. 

2.3 Data preprocessing 
The data from GC-MS analyses were deconvoluted using the AMDIS spectral 

deconvolution software package [18,20]. Zeros in the data set were replaced with small 
values equal to MS peak areas of 1 to allow for log transformations. The lowest peak areas in 
the rest of the data are in the order of 103. The output of the AMDIS analysis, in the form of 
peak identifiers and peak areas, was corrected for the recovery of internal standards and 
normalized with respect to biomass. The peaks resulting from a known compound were 
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combined. The samples N3, S2 and S3 were removed from the data set, as a different sample 
workup protocol was followed. Furthermore, metabolites detected only once in the 13 
remaining experiments were removed. This lead to a reduced data set consisting of 13 
experiments and 140 variables expressed as peak areas in arbitrary units (Figure 2). This 
data set was used as the clean data for data pretreatment. 

2.4 Data pretreatment 
Data pretreatment and PCA were performed using Matlab 7 [21], the PLS Toolbox 3.0 

[22], and home written m-files. Data pretreatment was applied according to the formulas in 
Table 1. The notation of the formulas is as follows: Matrices are presented in bold uppercase 

, vectors in bold lowercase , and scalars are given in lowercase italic  or 

uppercase italic in case of the end of a series 

)(X )(t )(a
Ii ...1= . The data is presented in a data 

matrix X (I x J) with I rows referring to the metabolites and J columns referring to the 
different conditions. Element xij therefore holds the measurement of metabolite i in 
experiment j. 

Vast scaling was applied unsupervised as the other data pretreatment methods were 
unsupervised as well. 

2.5 Data analysis 
PCA was applied for the analysis of the data. PCA decomposes the variation of matrix 

X into scores T, loadings P, and a residuals matrix E. P is an I x A matrix containing the A 
selected loadings and T is a J x A matrix containing the accompanying scores.  

ΕPTX += T , 

where , the identity matrix. TP P = I
The number of components used (A) in the PCA analysis was based on the scree plots 

and the score plots.  
For ranking of the metabolites according to importance for the A selected PCs, the 

contribution r of all the variables to the effects observed in the A PCs was calculated 

∑
=

⋅=
A

a
iaaAi pr

1

22λ  

Here, r is the contribution of variable i to A components, aλ  is the singular value for 

the ath PC and  is the value for the ith variable in the loading vector belonging to the ath 

PC. To allow for comparison between the different data pretreatment methods, the values 
for rA were sorted in descending order after which the comparisons were performed using 
the rank of the metabolite in the sorted list. 

iap



Table 1: Overview of the pretreatment methods used in this study. In the Unit column, the unit of the data after the data pretreatment is 

stated. O represents the original Unit, and (-) presents dimensionless data. The mean is estimated as:
1

1 J

i ijx
j

x
J =

= ∑ and the standard 

deviation is estimated as: 
1

)(
1

2

−

−
=

∑
=

J

xx
s

J

j
iij

i

. x~ and  represent the data after different pretreatment steps. x̂

Class Method Formula Unit Goal Advantages Disadvantages 

I Centering iijij xxx −=~  O 
Focus on the differences and 
not the similarities in the 
data  

Remove the offset 
from the data 

When data is heteroscedastic, 
the effect of this pretreatment 
method is not always sufficient 

Autoscaling 
i

iij
ij s

xx
x

−
=~  (-) Compare metabolites based 

on correlations 

All metabolites 
become equally 
important 

Inflation of the measurement 
errors 

Range 
scaling )(

~
minmax ii

iij
ij xx

xx
x

−

−
=  (-) 

Compare metabolites relative 
to the biological response 
range 

All metabolites 
become equally 
important. Scaling is 
related to biology 

Inflation of the measurement 
errors and sensitive to outliers 

Pareto 
scaling 

i

iij
ij s

xx
x

−
=~  √O 

Reduce the relative 
importance of large values, 
but keep data structure 
partially intact 

Stays closer to the 
original measurement 
than autoscaling 

Sensitive to large fold changes 

Vast scaling 
i

i

i

iij
ij s

x
s
xx

x ⋅
−

=
)(~  (-) Focus on the metabolites that 

show small fluctuations 

Aims for robustness, 
can use prior group 
knowledge 

Not suited for large induced 
variation without group 
structure 

II 

Level 
scaling 

i

iij
ij x

xx
x

−
=~  (-) Focus on relative response 

Suited for 
identification of e.g. 
biomarkers 

Inflation of the measurement 
errors 

Log 
transfor-
mation 

)log(~ 10
ijij xx =  

iijij xxx ~~ −=�  
Log O 

Correct for hetero-
scedasticity, pseudo scaling. 
Make multiplicative models 
additive 

Reduce hetero-
scedasticity, multipli-
cative effects become 
additive 

Difficulties with values with 
large relative standard deviation 
and zeros 

III 
Power 
transfor-
mation 

)(~
ijij xx =  

iijij xxx ~~ −=�
√O 

Correct for hetero-
scedasticity, pseudo scaling 

Reduce hetero-
scedasticity, no 
problems with small 
values 

Choice for square root is 
arbitrary. 
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The measurement errors were analyzed by estimation of the standard deviation from 
the biological, analytical, and sampling repeats. The standard deviations were binned by 
calculating the average variance per 10 metabolites ordered by mean value [23].  
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Figure 3 - Effect of data pretreatment on the original data. Original data of experiment G2 (A), 
and the data after centering (B), autoscaling (C), pareto scaling (D), range scaling (E), vast 
scaling (F), level scaling (G), log transformation (H), and power transformation (I). For units 
refer to Table 1. 
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The jackknife routine was performed according to the following setup. In round one 
experiments F1, G1, N1 were left out, in round two F2, G2, N1d were left out, and in round 
three F3, G3A, were left out. By selecting these experiments, the specific aspects of the 
experimental design were maintained. 

3 Results and discussion 
3.1 Properties of the clean data 

For any data set, the total variation is the sum of the contributions of all the different 
sources of variation. The sources of variation in the data set used in this study were the 
induced biological variation, the uninduced biological variation, the sample work-up 
variation, and the analytical variation. The variation resulting from the sample work-up and 
the analytical analysis together was called technical variation. The contributions of the 
different sources of variation were roughly estimated from the replicate measurements by 
calculating the sum of squares (SS) and the mean square (MS) (Table 2). In this data set, the 
largest contribution to the variation originated from the induced biological variation, 
followed by the uninduced biological variation. The analytical variation was the smallest 
source of variation (Table 2). 

3.2 The effect of pretreatment on the clean data 

Source of variation SS MS 

Analytical 0.0205 0.0102 
Technical* 0.0482 0.0482 
Uninduced biological 0.208 0.104 
Induced biological 0.952 0.317 
Total SS  1.23  

Table 2: Estimation of the sources of variation in 
the data set. The SS and the MS for the different 
sources of variation are given, based on the 
experimental design presented in Figure 2. *The 
technical source of variation consists of the 
analytical error and the sample work-up error. 

The application of different pretreatment methods on the clean data had a large effect 
on the resulting data used as input for 
data analysis, as is depicted for sample 
G2 in Figure 3. The different 
pretreatment methods resulted in 
different effects. For instance 
autoscaling (Figure 3C) showed many 
large peaks, while after pareto scaling 

(Figure 3D), only a few large peaks 
were present. It is evident that 
different results will be obtained when 
the in different ways pretreated data 
sets are used as the input for data 
analysis.  
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3.2.1 Heteroscedasticity 
 To determine the presence or absence of heteroscedasticity in the data set, the 

standard deviations of the metabolites of the analytical and the biological repeats were 
analyzed (Figure 4). Analysis of the analytical and the uninduced biological standard 
deviations showed that heteroscedasticity was present both in the analytical error and in the 
biological uninduced variation (Figure 4A and B). In contrast, the relative biological 
standard deviation (Figure 4C), and also the relative analytical standard deviation 
(unpublished results), showed the opposite effect. Thus, metabolites present in high 
concentrations were relatively influenced less by the disturbances resulting from the 
different sources of uninduced variation, and were therefore more reliable. 

The effect of the log and the power transformation on the data as a means to correct 
for heteroscedasticity is shown in Figure 5. Compared to the clean data (Figure 4B), the 
heteroscedasticity was reduced by the power transformation (Figure 5A), although the 
power transformation was not able to remove it completely. The results can possibly be 
improved further if a different power would be used (Box and Cox [24]). Also, the log 
transformation (Figure 5B) was able to remove heteroscedasticity, however only for the 
metabolites that are present in high concentrations. In contrast, the standard deviations of 
metabolites present in low concentrations were inflated after log transformation due to the 
large relative standard deviation of these low abundant metabolites. 

Scaling approaches influence the heteroscedasticity as well, since the variation, and 
thus the heteroscedasticity, is converted into relative values to the scaling factor. It is likely 
that this aspect reduces the effect of the heteroscedasticity on the results. 

3.3 The effect of data pretreatment on the data analysis results 
PCA [9,25] was applied to analyze the effect on the data analysis for the in different 

ways pretreated data. PCA was chosen as it is an explorative tool that is able to visualize how 
the data pretreatment methods are able to reveal different aspects of the data in the scores 
and the accompanying loadings. Furthermore, it allows for identification of the most 
important metabolites for the biological problem by analysis of the loadings.  

The score plots were judged on two aspects by visual inspection, namely the distance 
within the cluster of a specific carbon source and the distance between the clusters of 
different carbon sources. The loading plots show the contributions of the measured 
metabolites to the separation of the experiments in the score plots. As cellular metabolism is 
strongly interlinked (e.g. see [26,27]), it is expected that the concentrations of many 
metabolites are simultaneously affected when an organism is grown on a different carbon 
source. Therefore, the loadings are expected to show contributions of many different 
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metabolites. 
The data pretreatment methods used largely affected the outcome of PCA analysis 

(Figure 6). Three groups of data pretreatment methods could be identified in this way. After 
range scaling, a clear clustering of the samples was observed based on the carbon sources on 
which the sampled cells were grown (Figure 6A1). Furthermore, the loading plots (Figure 
6A2 and 6A3) indicate that many metabolites contributed to the effects in the score plots; 
which is in agreement with the biological expectation. Autoscaling, level scaling, and log 
transformation resulted in similar PCA results as after range scaling (unpublished results). 
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The application of centering lead to intermediate clustering results in the score plots (Figure 
6B1). The clusters were larger and less well-separated compared to the results for range 
scaling (Figure 6A1). The most striking results for centered data are visible in the loading 
plots (Figure 6B2 and 6B3). Only a few metabolites had very large contributions to the 
effects shown the score plot (Figure 6B1), which is in disagreement with the biological 
expectations. Power transformation and pareto scaling gave similar PCA results 
(unpublished results). 

In contrast to the other pretreatment methods, vast scaling of the clean data resulted 
in a very poor clustering of the samples (Figure 6C1). Overlapping clusters were observed, 
although the loading plots (Figure 6C2 and 6C3) show contributions of many metabolites. 

These results clearly demonstrate that the pretreatment method chosen dramatically 
influences the results of a PCA analysis. Consequently, these effects are also present in the 
rank of the metabolites.  

Ranking Centered Auto Range Level     Metabolite
1 2 8 17 6 mannitol
2 24 3 24 4 malate
3 1 25 15 45 glucose-6-phosphate
4 39 23 14 17 BAC-610-N1012 
5 21 36 9 28 gluconic acid lacton
6 13 38 20 27 BAC-629-N1028 
7 14 5 8 80 BAC-607-N1058 
8 45 6 3 57 isomaltose
9 37 26 19 30 sugar-phosphate
10 16 24 26 51 pyruvate
11 51 9 57 1 leucine    
12 71 11 1 38 glyceraldehyde-3-phosphate
13 12 63 12 37 BAC-629-N1037 
14 23 34 22 48 gluconic acid related
15 10 20 42 59 fructose-6-phosphate
16 69 15 27 21 oxalic acid
17 25 41 23 44 BAC-607-N1021 
18 15 10 32 76 uridinemonophosphate
19 73 7 2 55 BAC-607-N1044 
20 19 2 31 86 BAC-607-N1062 

Figure 7 - Rank of the most important metabolites. The rank was based on the cumulative 
contributions of the loadings of the first three PCs. Top 10 metabolites are given in white 
characters with a black background, the top 11 to 20 is given in white characters with dark gray 
background, the top 21 to 30 is given in black characters with a light gray background.  
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3.4 Ranking of the most important metabolites 
In functional genomics research, ranking of targets according to their relevance to the 

problem studied (for instance, strain improvement) is of great importance as it is time 
consuming and costly to validate the, in general, dozens or hundreds of leads that are 
generated in these studies[2]. As shown in Figure 6, the use of different pretreatment 
methods influenced the PCA analysis and the resulting loadings. For the different 
pretreatment methods, different metabolites were identified as the most important by 
studying the cumulative contributions of the loadings of the metabolites on PCs 1, 2 and 3 
(Figure 7). Glucose-6-phosphate, for instance, was identified as the most important 
metabolite when using centering as the pretreatment method, while 
glyceraldehyde-3-phosphate (GAP) was identified as the most important metabolite when 
applying range scaling. For centering, autoscaling, and level scaling, GAP was the 71st, 11th, 
or 38th most important metabolite, respectively. The pretreatment of the clean data thus 
directly affected the ranking of the metabolites as being the most relevant. 

The effect of a data pretreatment method on the rank of the metabolites is also 
apparent when studying the relation between the rank of the metabolites and the abundance 
(average peak area of a metabolite), or the fold change (standard deviation of the peak area 
over all experiments for a metabolite) (Figure 8). The effect of autoscaling (Figure 8B), and 
also range scaling (unpublished results), is in agreement with the expectation that the 
average concentration and the magnitude of the fold change are not a measure for the 
biological relevance of a metabolite. In contrast, with centering (Figure 8A), pareto scaling, 
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Figure 8: Relation between the abundance or the fold change of a metabolite and its rank after 
data pretreatment. The highest ranked metabolite after data pretreatment, based on its 
cumulative contributions on the loadings of the first three PCs, has position 1 on the X-axis. The 
metabolite that is ranked at position 1 on the Y-axis has either the highest fold change in 
concentration (largest standard deviation of the peak area over all the experiments in the clean 
data (O)); or is most abundant (largest mean concentration (☐ )) in the clean data.  
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level scaling, log transformation, and power transformation (unpublished results), a clear 
relation between the rank of the metabolites and the abundance, or the fold change, of a 
metabolite was observed. This relation was less obvious for vast scaling, however still 
present (unpublished results).  

3.5 Reliability of the rank of the metabolites 
While the rank of the metabolites provides valuable information, the robustness of this 

rank is just as important as it determines the limits of the reliable interpretation of the rank. 
To test the reliability of the rank of the metabolites, a jackknife routine was applied [28].  

The results for level scaling and range scaling are shown in Figure 9. The highest 
ranking metabolites (up to the eighth position) for both level scaled and range scaled data 
were relatively stable. For both methods, the fluctuations became larger for lower ranked 
metabolites, however, for the rank based on range scaled data the fluctuations in the rank 
increased faster than for the data resulting from level scaled data. 

This resampling approach showed that the reliability of the rank of the most important 
metabolites is also dependent on the data pretreatment method. The most stable data 
pretreatment methods were centering, level scaling (Figure 9), log transformation, power 
transformation, pareto scaling, and vast scaling (results not shown). Autoscaling was less 
stable (results not shown), while the least stable data pretreatment method was range 
scaling. Two factors affect the reliability of the rank of the metabolites. The first factor 
relates to the reliability with which the scaling factor can be determined. For instance, level 

Range scaling
All Round 1 Round 2 Round 3 Metabolite

1 2 1 6 2 BAC-607-N1044 
2 1 2 8 1 glyceraldehyde-3-phosphate
3 3 7 13 3 isomaltose
4 7 12 7 6 uridine
5 17 5 10 5 mannitol
6 15 9 5 9 glucose-6-phosphate
7 8 13 15 7 BAC-607-N1058 
8 5 23 1 16 disaccharide
9 6 4 30 11 disaccharide

10 9 29 3 18 gluconic acid lacton
11 19 26 2 14 sugar-phosphate
12 24 10 18 10 malate
13 16 30 4 17 heptulose-7-phosphate
14 13 14 17 27 disaccharide
15 10 17 33 12 disaccharide
16 4 3 36 30 BAC-647-N1012 
17 12 11 20 34 BAC-629-N1037 
18 23 6 22 28 BAC-607-N1021 
19 11 16 48 4 citric acid
20 18 21 11 37 sugar phosphate
21 20 40 9 25 BAC-629-N1028 
22 14 36 32 15 BAC-610-N1012 
23 21 50 21 8 ribose-5-phosphate
24 27 35 12 35 oxalic acid
25 22 33 29 29 gluconic acid related

Level scaling
All Round 1 Round 2 Round 3   Metabolite

1 1 5 5 3 leucine    
2 2 6 6 4 BAC-644-N1003 
3 8 1 1 11 BAC-647-N1009 
4 3 7 7 5 fumarate
5 7 2 2 12 BAC-647-N1003 
6 10 13 4 1 BAC-641-N1011 
7 4 11 9 6 malate
8 5 4 11 16 isoleucine
9 9 10 3 14 BAC-647-N1008 

10 11 3 16 8 BAC-610-N1027 
11 13 9 13 9 BAC-647-N1011 
12 6 14 10 15 mannitol
13 15 8 15 7 BAC-647-N1010 
14 12 17 8 13 BAC-641-N1010 
15 14 12 14 10 BAC-647-N1012 
16 17 19 18 17 BAC-610-N1012 
17 16 18 19 18 BAC-644-N1005 
18 21 20 20 20 oxalic acid
19 18 22 45 2 hexadecanoic acid
20 26 30 12 23 BAC-647-N1013 
21 24 29 22 26 disaccharide
22 22 21 23 36 BAC-629-N1038 
23 19 16 24 43 BAC-629-N1040 
24 23 25 25 30 dihydroxyacetonphosphate
25 20 15 26 45 degr glutamic acid

Figure 9: Stability of the rank of the most important metabolites. The order of the metabolites 
is based on the average rank. 
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scaling uses the mean as the scaling factor. As the mean is based on all the measurements, it 
is quite stable. On the other hand, range scaling uses the biological range observed in the 
data as a scaling factor, which is based on two values only. The second factor that influences 
the reliability of the rank relates to those data pretreatment methods whose subsequent data 
analysis results show a preference for the high abundant metabolites (Figure 8). With these 
pretreatment methods, the stability of the rank is predetermined by this character due to the 
low relative standard deviation of the uninduced biological variation of the high abundant 
metabolites (Figure 4B). 

It must be stressed that the pretreatment method that provides the most stable rank 
does not necessarily provides the most relevant biological answers. 

4 Conclusions 
This paper demonstrates that the data pretreatment method used is crucial to the 

outcome of the data analysis of functional genomics data. The selection of a data 
pretreatment method depends on three factors: (i) the biological question that has to be 
answered, (ii) the properties of the data set, and (iii) the data analysis method that will be 
used for the analysis of the functional genomics data. 

Notwithstanding these boundaries, autoscaling and range scaling seem to perform 
better than the other methods with regard to the biological expectations. That is, range 
scaling and autoscaling were able to remove the dependence of the rank of the metabolites 
on the average concentration and the magnitude of the fold changes and showed biologically 
sensible results after PCA analysis. Other methods showed a strong dependence on the 
average concentration or magnitude of the fold change (centering, log transformation, 
power transformation, level scaling, pareto scaling), or lead to PCA results that were poorly 
interpretable in relation to the experimental setup (vast scaling).  

Using a pretreatment method that is not suited for the biological question, the data, or 
the data analysis method, will lead to poor results with regard to, for instance, the rank of 
the most relevant metabolites for the biological question that is subject of study (Figure 7 
and 8). This will therefore result in a wrong biological interpretation of the results. 

In functional genomics data analysis, data pretreatment is often overlooked or is 
applied in an ad hoc way. For instance, in many software packages, such as Cluster [29] and 
the PLS toolbox [22], data pretreatment is integrated in the data analysis program and can 
be easily turned on or off. This can lead to a careless search through different pretreatment 
methods until the results best fit the expectations of the researcher. Therefore, we advise 
against method mining. With method mining, the best result translates to ‘which method 
fits the expectations the best’. This is poor practice, as results cannot be considered reliable 
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when the assumptions and limitations of a data pretreatment method are not taken into 
account. Furthermore, it is sometimes unknown what to expect, or the starting hypothesis is 
incorrect. 

As far as we are aware, this is the first time that the importance of selecting a proper 
data pretreatment method on the outcome of data analysis in relation to the identification of 
biologically important metabolites in metabolomics/functional genomics is clearly 
demonstrated. 
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3 Removing confounding effects from 
micro-array data 
Robert A. van den Berg, Machtelt Braaksma, Johan A. Westerhuis, Mariët J. van der Werf 
and Age K. Smilde 
 

Summary 
Confounding variation is variation that obscures the induced biological variation. 

Removal of the confounding variation can improve the interpretation of the data. In this 
paper we present a strategy to remove confounding variation based on an ANOVA 
approach, and to assess the impact of the removal on the interpretation of the variation 
induced by the experimental design. Our strategy is applied to an Aspergillus niger micro-
array data set in which the variation induced by the experimental design was obscured by 
confounding variation induced by the presence or absence of substrate. The confounding 
variation was successfully removed; however, variation induced by the experimental design 
was partially removed as well. This was due to correlation between the variation induced by 
the experimental design and the confounding variation. 
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1 Introduction 
In micro-array experiments the response of thousands of genes to the experimental 

conditions is measured. The experimental conditions are selected to study a certain 
biological phenomenon by inducing variation in processes relevant for the biological 
question [1,2]. Analysis of the resulting data aims to extract the variation relevant for the 
biological question from the total variation present in the data set. Sometimes, however, 
preliminary data analysis shows that variation relevant to the biological question is not the 
main source of variation in the data set. This can have different causes: (i) other sources of 
variation, for instance unexpected biological effects, obscure the variation of interest; (ii) the 
induced biological variation is very small compared to uninduced biological or technical 
variation; or (iii) the variation of interest is not present in the data set. 

Confounding variation is variation that obscures the induced biological variation. 
Furthermore, it originates from a certain structured source within the experimental setup. 
An example of a confounding effect from medical science could be an age or gender effect 
that influences the effectiveness of the medication. To improve the interpretation of the data, 
it is beneficial to remove this variation from the data set prior to data analysis.  

We use an analysis of variance (ANOVA) [3,4] approach to remove variation caused by 
confounding factors from a genomics data set. Furthermore, we analyze the impact of the 
removal of this variation and discuss the consequences for providing information relevant 
for the biological question. Our approach is illustrated by the application on A. niger micro-
array data in which an unwanted effect, related to substrate depletion, hampered the 
identification of effects related to the biological question. 

2 Theory 
2.1 Notation 

In section 2, we will provide the theoretical background of the method. For this, the 
following notations will be used.  

X (I x J) is the data matrix consisting of I experiments and J measured biomolecules. 
For simplicity, it is assumed that the variables in X are column mean centered.  

D (I x K) is a design matrix for K design factors coded with 0 and 1.  
U (I x L) is a matrix that consists of L dummy variables - also called confounders - that 

are used to encode the structure of the obscuring variation. u is a vector coded with -1 and 1 
if there are two groups; and a matrix U coded with 0 and 1 where 1 indicates group 
membership if there are more groups. 

F (I x [K+L]) is the concatenation of D and U.  
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B (K x J) and M (L x J) are weight matrices that describe the estimations of the 
contributions of each factor in respectively D and U to the J variables in X. The estimates of 

B and M are B and . In the sequential approach (see below) B becomes M B and B . 
R (K+L x J) is a weight matrix that describes the contribution of each factor in F to the 

J variables in X. The estimate of R is R . 

RD (K x J) and RU (L x J) are partitions of R, 
⎡ ⎤
⎢ ⎥
⎣ ⎦

D

U

R
R =

R
, that correspond to 

partitions D and U of F. Their estimates are DR and UR . 
E (I x J), G (I x J), Gsim (I x J)  and Gseq (I x J)  are matrices containing the residuals of 

the model. The expected mean of these matrices is zero. 

2.2 Variation in X 
In the ideal situation, the variation in X is fully attributable to the experimental design 

and can be estimated as follows: 
(1)  . EDBX +=
Sometimes, however, other sources of structural variation are present. This latter 

variation can be the result of co-occurring biological effects that are not directly, or only 
partially, related to the biological question. As a result of this structural extra variation, the 
confounding variation, the model has to be expanded to: 

(2)  = + +X DB UM G . 

2.3 Removal of the confounding variation in X 
An ANOVA approach is followed to estimate and remove the confounding variation. 

In this approach, the variation originating from UM is estimated and removed from X. In 
real life data, it is likely that there is correlation between D and U.  As a result it is not 
possible to fully distinguish between variation originating from D or U. We will discuss two 
approaches to remove the variation originating from U that deal differently with the 
correlation between D and U. The two approaches yield the same result when D and U are 
uncorrelated or orthogonal. 
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2.4 Simultaneous estimation of the variation originating from D 
and U 

The first option is to simultaneously estimate the variation resulting from U and D via 
a regression step: 

(3)  sim sim= + +X DB UM G = FR + G  

(4)  −= T 1 TR (F F) F X  
The variation originating from D and U is now divided over the weights in R. X* is 

estimated by removing the variation captured by URu.  

(5)  [ ]sim sim

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

D

U

R
FR + G = D U + G

R
 

(6)  − = + + −U D UX UR DR UR G URU  

  sim= +*
DX DR G  

2.5 Sequential estimation of the variation originating from D and 
U 

For the sequential estimation of the variation originating from U, the variation 
originating from D is not taken into account in the model. The model then becomes: 

(7)  ( )seq= + +X UM G DB  

  seq= +X UM G  

M can be estimated in the same way as in equation (4) by the following: R
−= T 1 TM (U U) U X  

The variation from UM can then be removed to yield: 

(8)  seq seq− = = +X UM G DB G  

seq= +*X DB G  

*= T -1 TB (D D) D X  

B can be estimated analogously to (4) and analyzed. The estimation of B  is not 
pursued here as the objective was to prepare the data for further multivariate analysis. 
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2.6 Comparison of the simultaneous and sequential approach 
The variation induced by the confounder is estimated to subsequently remove this 

variation from the data matrix. By removing  in the sequential approach, all the 
variation attributable to grouping structure of U is removed from X. This includes variation 
that could originate from the part of the design D which correlates with U. In the 
simultaneous approach, the variation resulting from correlating factors in D and U is 
divided over D and U. As a result, it is not possible to distinguish between the two sources of 
variation and it is therefore not possible to fully remove U from X. The interpretation of the 
variation remaining in X* is therefore in the sequential approach more straightforward since 
only variation that is solely attributable to D remains. We therefore chose the sequential 
approach. 

ˆUM

2.7 Design factors in D affected by the sequential removal of 
the confounders 

To assess which factors in D correlate with U, the part of D that correlates with U can 
be removed from D: 

 (9)  DUU)U(UDD T1T* −−=
When there is a strong correlation between some factors of D and U, large parts of the 

variation of the factors that correlate with U will be removed in D*. D* can show which 
sources of variation from the experimental design are affected by the removal of the 
confounders. Depending on how severe the factors of the experimental design are affected, 
the contributions of these factors to the variation in the data set X* should be treated with 
care.  

3 Results 
3.1 Aspergillus niger micro array data set 

The approach discussed in the previous section is applied to an A. niger micro-array 
data set originating from a study in which the proteolytic activity of A. niger was studied. A. 
niger is a filamentous fungus of which the genome sequence was made available recently [5]. 
Metabolomics [6] was applied to A. niger to understand the mechanisms that induce the 
proteolytic system in order to be able to reduce extracellular protease activity. The 
experimental design consisted of four environmental parameters: pH, carbon source, 
nitrogen source, and nitrogen concentration selected to induce variation in the extracellular 
protease activity. The four parameters were present on two levels. Samples were collected 
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from controlled batch fermentations and analyzed by metabolomics. Later, however, micro-
arrays became available and the transcription profile of these samples was also analyzed 
using the Affymetrix GeneChip platform.  

The onset of the proteolytic system generally occurs during the transition from the 
exponential growth phase to the stationary growth phase. This phase transition usually 
starts when the carbon source is depleted [7]. Different samples were obtained around this 
transition phase. For the transcriptomics analysis, 20 samples from the samples collected for 
the metabolomics study were selected based on the presence of proteolytic activity. After 
initial analysis of the micro-array data, it became clear that a strong effect was present in 
these data which seemed to be related to the presence or absence of substrate. The principal 
component analysis (PCA) [8,9] score plot of the first two principal components of the 
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Figure 1: PCA score plots of A. niger micro-array data before and after the removal of the 
confounding variation. (A) The original micro-array data with a clear presence of a 
confounding effect. The ovals indicate different groups. (B)  The confounding effect removed 
based on two confounding groups. The dotted line indicates the separation based on pH. (C) The 
confounding effect removed based on three confounding groups. The dotted line indicates 
separation based on nitrogen source. 
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range scaled [10] transcriptomics data showed a strong grouping of the experimental 
conditions (Figure 1A). The protease activity of these samples showed that the grouping of 
the experiments in the PCA score plots was not related to high or low protease activity. 
Closer inspection of the conditions in the fermentor at the time of sampling indicated that 
the grouping was based on the presence or depletion of the substrate. This effect is clearly 
visualized by samples obtained from the same fermentation, collected at different time 
points. The first samples 4G8xNH4-2a and 4G8xNH4-2b (a and b indicate technical 
duplicates for the array analysis) were taken when there was still substrate present, while 
4G8xNH4-3a and 4G8xNH4-3b were obtained when the substrate was depleted. The samples 
4G8xNH4-2a and 4G8xNH4-2b are grouped in a different cluster than the samples in 
4G8xNH4-3a and 4G8xNH4-3b (Figure 1A). As the variation induced by the depletion of the 
substrate was therefore the likely cause that obscured the variation relevant for the induction 
of the proteolytic activity, we removed the variation related to the depletion of the substrate 
from the data set.   

Experiment Two effects Three effects 
5G4xNO3 -1 1 0 0 

3.2 Removal of the 
confounding variation 

5X4xNO3 1 0 0 1 To remove the confounding 
variation, a confounder matrix U was 
defined. It was anticipated based on 
medium composition analysis that the 
effect was related to either two groups: 
presence or depletion of substrate; or three 
groups: substrate present, substrate 
depleted for two to five hours, substrate 
depleted for more than 13 hours. 
Beforehand it was not clear whether two 
or three groups were sufficient to fully 
describe the effect. For both cases, U is 
defined as shown in Table 1.  

4X8xNO3 -1 0 1 0 
4G8xNO3 1 0 0 1 
4X4xNO3 -1 0 1 0 
5G8xNO3 1 0 0 1 
5X4xNH4 1 0 0 1 
4G4xNO3-2 -1 0 1 0 
4G4xNO3-3 -1 0 1 0 
5G4xNH4 -1 1 0 0 
4G4xNH4 -1 0 1 0 
5X8xNO3 -1 0 1 0 
4X4xNH4 -1 0 1 0 
4X8xNH4 -1 0 1 0 
4G8xNH4-2a 1 0 0 1 
4G8xNH4-2b 1 0 0 1 

To assess the effect of the removal of 
the variation induced by the different 
groups, a PCA analysis was performed on 
the resulting X* (Figure 1B and 1C).  

4G8xNH4-3a -1 0 1 0 
4G8xNH4-3b -1 0 1 0 
5G8xNH4 1 0 0 1 
5X8xNH4 1 0 0 1 
Table 1 – Design of confounder effects 
(matrix U)
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3.2.1 Groups based on presence or depletion of substrate  
When two groups were defined (Figure 1B), the grouping in the score plots was no 

longer dominated by the presence or depletion of the substrate. Furthermore, it seemed that 
there was a mild separation based on the experimental design parameter pH. This could 
indicate that the variation resulting from parameters of the experimental design became 
dominant, instead of the variation resulting from the confounders. However, samples 
5G4xNO3 and 5G4xNH4 still stood out in the PCA score plots compared to the remainder of 
the samples (Figure 1B). These samples were obtained 2-5 hours after substrate depletion, 
and this could indicate that not all confounding variation was removed. The removal of the 
confounding variation based on two groups resulted in the removal of 52.5% of the sum of 
squares (SS) of the original centered data set.  

Removal of the confounding variation can affect the variation originating from the 
experimental design. To assess the influence of this effect, the confounding effects were also 
removed from the original design matrix. The SS that remained relative to the SS of the 
original design matrix is an indication how strong a design factor is affected. For the 
confounding effects based on two groups, the design parameters pH and nitrogen 
concentration were affected the most by the removal of the confounding design effect (Table 
2). Here, more than 10% of the variation of these parameters of the experimental design was 
removed. The experimental design parameters carbon and nitrogen source were only mildly 
affected, in these cases less than 1.5% of the variation was removed. Since the pH factor of 
the experimental design is affected by the removal of the confounder effects, it is remarkable 
and to a certain extent alarming that the PCA score plot indicate that a major part of the 
remaining variation in the data set is related to the pH parameter of the experimental design 
(Figure1B). This, together with the separation of samples 5G4xNO3 and 5G4xNH4 from the 
other samples could indicate that two groups are not sufficient to fully remove the 
confounding variation. 

3.2.2 Three groups 
Removal of the effects based on three groups seemed to fully remove the confounding 

effects based on absence or presence of the substrate (Figure 1C). There was no indication 
that grouping of experiments was related to the absence or presence of a substrate. 
Furthermore, there was a mild separation between the experiments based on the nitrogen 
source. The removal of the confounding variation removed 66.4% of the variation of the 
original centered data set. 
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Subtraction of the confounding effects from the design matrix leads to the removal of 
42.2% of the variation of the pH parameter of the experimental design. Furthermore, 19.2% 
of the nitrogen concentration parameter, and 8.9% of the carbon source parameter of the 
experimental design were removed. Only the effect based on the nitrogen source in the 
experimental design remained relatively unaffected as only 1.5% was removed. The 
variation induced by this experimental design parameter became a dominant source of 
variation in X* (Figure 1C). The importance of the nitrogen source as design parameter was 
also confirmed by an ANOVA analysis of protease activity (results not shown). This could 
indicate that three groups were better in removing the confounding variation than two 
groups, but may also throw away too much of the biological variation. 

4 Discussion 
Variation induced by confounding factors can hamper the interpretation of data sets 

resulting from omics experiments. In this paper, an ANOVA approach is used to remove 
confounding variation that was not related to extracellular protease activity, which was the 
main focus of this –omics study.  

Removal of the confounding variation comes at a cost since the variation originating 
from factors in the experimental design that correlate with the confounding factors is 
removed as well (Table 2). This can hamper the interpretation of the relation of 
experimental design parameter with the biological question. In the data set studied in this 
paper, the pH parameter of the experimental design was affected by the removal of the 
confounding variation with both estimates of the confounding factors. As a consequence, 
large parts of the variation that could result from the pH parameter of the experimental 
design were removed from the original data together with the confounding variation. By 
removing the confounders from the original design matrix, it is possible to estimate which 
design factors are affected by the removal of the confounders. 

The most important and also most difficult step for the removal of confounding 
variation is to define the confounder matrix as good as possible with regard to the biological 
question. The confounder matrix should be chosen based on expert knowledge of the nature 
of the effects that hamper the interpretation of the results. When the confounding 

Design factor Two groups (%) Three groups (%) 
pH 86.5 57.8 
Carbon source 99.8 91.1 
Nitrogen source 98.5 98.5 
Nitrogen concentration 89.7 80.8

Table 2 – SS remaining in design factors D after removal of confounding effects.
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parameter is not easily described as a discrete group structure, continuous measurements 
can directly be used as a parameter as well. Such an approach is called ANCOVA [4]. The 
choice for a certain confounder matrix can be validated by analyzing the removal of the 
confounding variation from the data matrix, for instance, by PCA. This, however, might not 
be sufficient to be confident that the correct confounding variation is removed.  

In this paper, the problems of selecting the proper confounders are illustrated by the 
results for the removal of these confounder effects. In the two group example, the pH factor 
of the experimental design is affected by the removal of the confounders while the PCA 
analysis (Figure 1B) indicated that the pH factor might have become an important source of 
variation of the experimental design. The three group example strongly affected the pH 
factor of the experimental design, and contribution of the pH factor is not obvious anymore 
in the PCA score plot (Figure 1C). This example illustrates that determining the 
confounding effects is both very important and difficult, as the results of the removal of the 
confounding effects are strongly influenced. 

The results of removing the confounding variation should ideally lead to the ability to 
extract the information relevant to the biological question under study. Depending on the 
biological question, and when it is unclear what the best confounder matrix is, different 
confounder effects can be tested empirically for better performance with regard to the 
biological question. For the data set analyzed in this paper, a strategy could be to validate the 
full model, the two group, and the three group model by the generation of PLS regression 
[11,12] models that model the relation between the gene expression data and protease 
activity, or another relevant phenotype parameter. This will most likely provide the best 
indication which approach gives the best results. This strategy is pursued in a follow up 
project.  
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4 Identifying connections between a 
metabolic pathway and its surrounding 
network from metabolomics data 
Robert A. van den Berg, Carina M. Rubingh, Johan A. Westerhuis, Mariët J. van der Werf 
and Age K. Smilde 

Summary 
In metabolomics it can be important to focus the data analysis to areas of specific 

interest within metabolism. For instance, the biological question under study can be related 
to a specific class of metabolites or a specific pathway. Supervised data analysis methods can 
bring this focus into data analysis and provide information on the behavior of the 
interesting metabolites in relation to the remainder of the metabolome. Here, we describe 
the application of consensus PCA (CPCA) and canonical correlation analysis (CCA) as a 
means to focus data analysis. CPCA searches for major trends in the behavior of metabolite 
concentrations common for the metabolites of interest and the remainder of the 
metabolome. CCA identifies the strongest correlations between these two subsets. 

CPCA and CCA were applied to two microbial metabolomics data sets. The first data 
set, derived from Pseudomonas putida, was relatively simple and contained metabolomes 
obtained under four environmental conditions only. The second data set, obtained from 
Escherichia coli, was complex and contained metabolomes from 28 different environmental 
conditions. For the first data set, CCA and CPCA gave similar results as the variation in the 
two subsets was similar. In contrast, CCA and CPCA yielded different results in case of the 
E. coli data set. With CPCA the trends in the metabolites of interest – the phenylalanine 
biosynthesis intermediates - dominated the results. These trends were related to high and 
low phenylalanine productivity, and important metabolites in the CPCA analysis were 
associated with amino acid metabolism and regulation of the phenylalanine biosynthesis 
route. 

With CCA neither subset dominated the data analysis. CCA described correlations 
between the subsets based on wild type and overproducing strain differences and different 
carbon sources. For the correlation based on strain differences, metabolites from the 
aromatic amino acid pathways were important.   

Both CCA and CPCA enable one to focus the data analysis of metabolomics data to 
groups of metabolites that are of specific interest. Depending on the nature of the data set, 
they provide different, complementary, views on the relation between the metabolites of 
interest and the remainder of the metabolome. 



Chapter 4 

1 Background 
Metabolomics research often requires statistical methods for the extraction of 

information from the large data sets generated. The statistical methods that are presently 
used vary from unsupervised methods, such as, PCA [1,2], or hierarchical clustering [3,4] to 
supervised approaches like PLS [5,6] or PCDA [7]. The difference between supervised and 
unsupervised methods is that for supervised approaches some form of prior knowledge is 
used to focus on or emphasize a specific biological effect of interest. For instance, class 
information is applied for discriminating between two groups, like treated and untreated 
patients; and the measurements of a phenotype parameter of interest, e.g. productivity, are 
modeled in regression analysis. Ideally, these analyses reveal which metabolites are the most 
relevant for the differences between the two classes, or for the behavior of the phenotype 
parameter. 

So far, data analysis methods that single out the behavior of groups of metabolites in 
relation to the behavior of other metabolites in the data set have not been applied. 
Consensus PCA-W (CPCA) [8], and canonical correlation analysis (CCA) [9] are methods 
that can perform such an analysis. CPCA searches for the largest common trends between 
behavior of the concentration of the metabolites of interest and the remaining metabolites. 
In CCA the strongest correlation between the behavior of the metabolites in the two data 
sets is determined. Both methods provide information on the relation between the 
metabolites of interest and the remaining metabolites; however the methods are based on 
different principles and give different views on the underlying biology, as will be explained 
in the next section. 

2 Theory 
In the following section we will discuss different properties of CPCA and CCA. The 

following notations will be used: X1 (I x J1) a matrix that contains the generic metabolome 
information, the matrix consists of I experiments and J1 metabolites; X2 (I x J2) a matrix that 
contains the measurements of specific interest, generally these measurements are not in X1; 
X (I x (J1 + J2)) the concatenated matrix of X1 and X2, i.e. X = [X1 X2]. The prior information 
in X2 depends on the biological question. For example, it could contain the measurements of 
the glycolysis intermediates, or it could contain the measurements of metabolites that 
belong to the same class, e.g. amino acids. 

2.1 CPCA 
CPCA [8] searches for common behavior in two data sets (Figure 1). As its name 

suggests, it is similar to a normal PCA analysis. It is, however, not straightforward to extract 
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X1 X2

CPCA CCA

CCA identifies metabolites 
that correlate the most 
within the two data sets, 
although it does not 
necessarily explain much 
variation

CCA is always based on 
X1 and X2.

CPCA identifies the major
trends in the concatenated
matrix of X1 and X2.

In the extreme case that X1
and X2 are completely 
unrelated, the CPCA solution
can be based on only X1 or
X2.

X1 X2

CPCA CCA

CPCA makes X1 and X2 equally 
important by equalizing the 
variation in both matrices. 

CCA is not influenced by 
size changes of X1 and X2.

The smallest matrix can dominate
because: (i) the variables explain 
more variation; (ii) the smallest
matrix is more homogeneous.

X1 is the same size as X2 

X1 is larger than X2 

A

B

Figure 1 - Comparison of 
CPCA and CCA. (A) 
Properties of CPCA and 
CCA when X1 and X2 are of 
equal size. (B) Properties of 
CPCA and CCA when X1 is 
larger than X2. The grey 
areas indicate the linear 
combinations of the different 
metabolite concentrations 
captured by CPCA or CCA. 
The different shades of grey 
are a measure of the 
homogeneity of the 
variation of the captured 
metabolites; increasingly 
darker shades mean that the 
variation is more 
homogeneous. 
common variation from two different PCA models. The variation in the behavior of the 
selected metabolites and the remainder of the metabolome can be modeled with two PCA 
models: 
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for X2.  
The symbols T1 (I x R1) and T2 (I x R2) represent the PCA scores and P1 (J1 x R1) and P2 

(J2 x R2) represent the PCA loadings with R1 and R2 selected components for X1 and X2, 
respectively. Here, the scores T1 and T2 are different because they describe different aspects 
of variation of the experimental conditions. Therefore, additional steps are required to find 
the consensus behavior and the weights for the individual metabolites to this consensus. 
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CPCA models the behavior X1 and X2 as follows: 
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The symbols Tsup (I x Rsup) represent the CPCA score and Psup1 (J1 x Rsup) and Psup2 (J2 x 
Rsup) represent the PCA loadings with Rsup selected components for X. In this model, the 
variation in behavior of the experiments is captured by the common scores Tsup. It is now 
straightforward to compare the weights of the different metabolites, as captured by the 
loadings Psup1 and Psup2, with each other. Furthermore, Tsup captures indeed the consensus 
behavior of X1 and X2. 

To ensure that X1 and X2 both contribute equally to the model, they can be weighted to 
equal SS. This is especially important when one data matrix contains more variables than 
the other. In this case, when it is assumed that every metabolite has on average the same 
variation, it is likely that the data matrix with the most metabolites will be dominant in the 
data analysis. When the data matrices contain a similar amount of metabolites, the effect of 
block scaling is likely to be minimal (Figure 1A). As a consequence of equalizing the SS for 
the two data matrices, the SS per metabolite is changed. If the total SS of X is 100% then 
after block scaling X1 and X2 both contain 50% of the SS. If X2 is smaller than X1, the SS is 
divided over less metabolites and consequently these metabolites individually become more 
important. As a result of this, the behavior of the concentrations of the metabolites in the 
smallest block can become leading in the search for common behavior of metabolite 
concentrations in X1 and X2 (Figure 1B). In this paper we are interested in equal importance 
of the data blocksm as we want to analyze the behavior of the group of metabolites in X2 in 
relation X1.  

There is also a second aspect that can increase the influence of the block containing 
the selected metabolites. The concentrations of the selected metabolites can have more 
homogeneous behavior than the concentrations of the metabolites in the remainder of the 
data set. This effect follows from the idea that the selected metabolites share a common 
biological background. For instance, they are chemically related or share the same 
regulation. This will make it easier for CPCA to identify main effects based on the selected 
block.  

As for a normal PCA, other data pretreatment [10] steps can be taken before block 
scaling to emphasize different aspects of the data. 
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2.2 CCA 
CCA searches for the largest correlation between X1 and X2 (Figure 1). It does this by 

maximizing r = corr(X1a,X2b). The vectors u= X1a and v= X2b are the so-called canonical 
variates, and describe the nature of the correlation. Besides this, the vectors a and b are the 
weights of the contributions of the different metabolites to the correlation detected. 

Searching for the largest correlation between two data matrices can result in trivial 
results. First, the largest correlation could be based on the correlation between only one 
metabolite in each set. While the correlation is very strong, it could be only a minor effect in 
comparison to the total variation in both matrices. Second, when the data sets consist of 
more metabolites than experimental conditions, it is always possible to find perfect 
correlations (r = 1 or -1), and therefore the solutions will be trivial. It is possible to 
circumvent these effects by using a dimension reduction technique such as PCA. By 
reducing the data sets to their main effects, the principal components (PCs), the effects of 
single metabolites are limited to contributions to these components. Furthermore, the 
dimensionality is controlled by the number of components deemed relevant. Therefore the 

CCA analysis as applied in this paper, becomes the maximization of * * * *
1 1 2 2corr( , )r = T a T b* . 

Here, *
1T and *

2T  are the selected PCs from the PCA decompositions (1) and (2). 
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* bPXaPX=r . Here and are the loadings from the selected PCs 
from (1) and (2). 
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2.3 Validation 
CPCA and CCA both provide information on the relative importance of every 

metabolite to the effects discovered by the analysis, namely the weights for each metabolite. 
These metabolite weights are the starting point for further exploration of the meaning of the 
results. It is therefore important that a certain degree of confidence of these metabolite 
weights can be obtained. For this, a validation scheme based on permutations is developed 
which is generic for CPCA and CCA.  

The significance of every metabolite for the end solution was determined by 
permuting the values of one metabolite at a time across its sample direction. After the 
permutation all data analysis steps were performed identical to the unpermuted analysis. 
The permuted models will be very similar to the unpermuted models, as only one 
metabolite per model is permuted. The weight obtained for the permuted metabolite in the 
permuted model is compared with the weight for the unpermuted model. A larger weight in 
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the permuted model indicates that the weight in 
the unpermuted model is not significant. The 
permutation is repeated 500 times to obtain a 
distribution of permuted weights per metabolite, 
hence in total 500x (J1 + J2) permutations were 
performed. If the unpermuted weight is in 90% 
of the permutations larger than the permuted 
weight, that weight is considered significant.  

Concentration 
(nmol/mg dry weight) 

Experiment 

6.3 4.17 
10.3 3.38 
2.2 3.19 

10.4 2.96 
6.2 2.91 
4.5 2.81 

10.2 2.71 
4.3 2.65 

The CCA also returns an association 
measure for the correlation between X1 and X2. 
This measure can also be validated by a 
permutation approach. In this case, the order of 
the experiments of one data matrix is permuted 
simultaneously for all its metabolites and the 
resulting association is compared with the 
association of the unpermuted data. Generally, 
an association is considered significant if it is in 
90% of the permutations larger than the 
association obtained with permuted data. 

1.4 2.62 
1.3 2.57 
7.4 2.35 
5.4 2.25 
7.3 1.86 
5.3 1.61 
6.1 1.43 
4.2 1.33 
1.2 1.08 
4.1 0.70 
3.3 0.63 
7.2 0.37 
1.1 0.28 

3 Results  
The use of CPCA and CCA was illustrated 

by their application on two different 
metabolomics data sets. The first data set 
consisted of metabolomes obtained from 
Pseudomonas putida S12 fermentations in which 
P. putida S12 was grown on four different carbon 
sources [10]. The X2 matrix (9 experiments, 19 
metabolites) contained the concentrations of the 
measured nucleotides and the X1 matrix (9 experiments, 142 metabolites) contained the 
metabolome minus the nucleotides. This data set proved to be a straight forward data set 
with large effects induced by the selected experimental conditions. The second data set 
consisted of Escherichia coli metabolomes obtained from cells cultivated under 28 different 
experimental conditions aimed at inducing variation in the phenylalanine production (Table 
1) [11]. X2 (28 experiments, 13 metabolites) contained all the measured intermediates of the 
phenylalanine biosynthesis pathway and X1 (28 experiments, 175 metabolites) contained the 

5.1 0.26 
10.1 0.23 
5.2 0.19 
9.4 0.093 
9.3 0.051 
9.1 0.015 
9.2 0.010 

Table 1 - Phenylalanine concentration 
in E. coli metabolomics samples. The 
phenylalanine concentrations are 
sorted in descending order. 
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remaining metabolome. This data set is a complex data set in which different effects play a 
role, like the environmental conditions and different growth phases in the batch process. 
None of concentrations of the metabolites were simultaneously in X1 and X2 to avoid trivial 
results. 

3.1 CPCA 
The CPCA analysis of the combined metabolome/nucleotide matrix from the P. putida 

S12 data set lead to a clear separation of the metabolomes resulting from growth on the four 
carbon sources on the first two PCs (Figure 2A). The metabolites that contribute to the first 
component were for X1 metabolites related to the carbon catabolism pathways and to central 
metabolism, such as, glyceraldehyde-3-phosphate, dihydroxyacetone phosphate, glucose-6-
phosphate, and pyruvate (Table 2). For X2 most metabolites contributed significantly. It is 
noteworthy to see that the mono-phosphate (xMPs) and di-phosphate (xDPs) nucleotides 
had a positive contribution, while the tri-phosphate nucleotides (xTP) had a negative 
contribution. This observation suggests that the differences between growth on glucose as 
the sole carbon source on one hand, and succinate and fructose as sole carbon source on the 
other hand (Figure 2A) resulted in differences in the distribution of energy carrying 
molecules like the nucleotides. The variation explained for each X sub matrix was compared 
with the maximal explained variation possible for that matrix (Figure 2B). Both X sub 
matrices are very close to the maximal explained variation for the first PC. This indicated 
that the first PC indeed described a common direction in X1 and X2. After the first PC, the 
variation in X2 remained maximally explained while the variation X1 was not maximally 
explained. This indicated that the variation in X2 became more important in the analysis, 
except for PC 4 where X1 became dominant after X2 was almost fully explained. 

For the more complex E. coli data set, the score plots of the first PC of the CPCA 
analysis (Figure 3A) showed an effect related to high and low phenylalanine productivity 
(Table 1) in the first PC. The most important metabolites relating to this effect were for X1 
phenyllactate, 3,5-dihydroxypentanoate (tentatively identified), a number of unidentified 
metabolites, and the amino acids valine and isoleucine (Table 3). For X2, the most important 
metabolites were phenylalanine and metabolites that are regularly important [12] in the 
phenylalanine biosynthesis route, such as, chorismate and erythrose-4-phosphate. The 
enzymes that convert these metabolites are subject to end product inhibition [12]. 

For the second PC there was not a clear explanation for the behavior of the 
experimental conditions. The most important metabolites for this PC, however, suggested 
that the PC was related to general amino acid metabolism. The most important metabolites 
were for X1 urea, aspartate, malate, and fumarate: these metabolites are part of the citric acid 
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cycle and the urea cycle. Also the amino acids isoleucine and valine were important for this 
PC as well as for the first PC. For X2, important metabolites were glutamate and 
ketoglutarate, used in amino group transfer reactions; tyrosine and tryptophan, end 
products of the other branch of the aromatic amino acid biosynthesis pathway; and 
phenylpyruvate, the precursor to phenylalanine. The third PC seemed to describe a time 
effect as is indicated with arrows for fermentations 4, 5, and 9 (Figure 3B). The most 
important metabolites for X1 consisted of unidentified metabolites, UDP-N-AAGDAA 
(UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate-D-alanyl-
D-alanine), N-acetylglutamate, the nucleotides CMP, CDP, and UMP and tymine. For X2 
prephenate and phosphoenolpyruvate were significant. UDP-N-AAGDAA and other 
metabolites in the top 20 of most important metabolites for PC 3 (UDP-N-AAGD (UDP-N-
acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate) and UDP-glucose) 
are part of the peptidoglycan biosynthesis pathway and thus related to cell wall synthesis, 
which is in line with the observed time effect in Figure 3B. The changes in the cell wall 
synthesis could be related to the shift from exponential growth phase to the stationary 
growth phase. 

The comparison of the explained variation per X block with the maximal explained 
variation for that X block showed that the CPCA analysis seemed to depend most on X2. 
The explained variance of X2 in the solution closely followed the maximal explained 
variation (Figure 3C), while this is not the case for X1. This can be caused by two effects; 
first, X2 contains much less metabolite concentrations than X1, and second, X2 is more 
homogeneous than X1 because the selected metabolites are part of the same pathway. 
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Figure 2 - CPCA results of the P. putida S12 data set.(A) The score plots of the super scores, 
the metabolome samples obtained from fermentations with the same carbon source are 
circled. N, S, G, and F refer respectively to gluconate, succinate, D-glucose, and D-fructose as 
sole carbon source in the fermentation. (B) The explained variation per data block (bars) and 
the maximal explained variance for that data block (lines).

 X1 X2 
 PC 1 PC 2 PC 1 PC 2 
 Weight Metabolite Weight Metabolite Weight Metabolite Weight Metabolite 
1 0.096 glyceraldehyde-

3-phosphate 
0.145 adenine 0.242 CMP 0.279 ADP 

2 0.091 BAC-607-N1058 0.14 putrescine 0.232 UMP 0.259 CDP 
3 0.091 isomaltose 0.136 BAC-607-

N1038 
-0.226 ATP 0.212 GDP 

4 0.087 uridine* 0.136 BAC-607-
N1021 

0.226 AMP -0.208 TMP 

5 0.087 dihydroxyacetone 
phosphate 

0.133 thymine -0.224 ITP 0.165 GTP 

6 0.085 uridine* 0.132 BAC-638-
N1003 

-0.216 UTP 0.126 UTP 

7 0.084 glucose-6-
phosphate 

-0.128 BAC-647-
N1012 

0.214 UMP -0.1 AMP 

8 0.096 glyceraldehyde-
3-phosphate 

-0.128 BAC-647-
N1013 

0.242 CMP -0.096 CMP 

9 0.091 BAC-607-N1058 0.122 ketogluconate 0.232 UMP 0.074 UDP 
10 0.091 isomaltose 0.116 BAC-607-

N1073 
-0.226 ATP 0.067 IMP 

 Table 2 – Metabolite contributions to P. putida S12 CPCA model. The top 10 most important 
metabolites are shown. The grey areas indicate contributions which are not significant after 
permutation. * Uridine occurs twice because it is measured with GC-MS and LC-MS. 
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 X1 
 PC 1 PC 2 PC 3 
 Weight Metabolite Weight Metabolite Weight Metabolite 
1 0.109 3-phenyl-lactate or 

isomer 
0.112 urea 0.144 spectrum not 

found7 
2 0.096 3,5-dihydroxy-

pentanoate 
0.103 aspartate -0.141 mixed spectrum5 

3 -0.094 mixed spectrum3 0.103 fumarate 0.134 UDP-N-AAGDAA 
4 -0.088 spectrum not 

complete6 
0.103 malate 0.13 spectrum not 

found5 
5 -0.08 sugar no oxim 0.099 2-hydroxy-

glutarate 
0.118 N-acetylglutamate 

6 0.075 isoleucine 0.098 2,3-dihydroxy-3-
methyl-butanoate 

0.116 thymine 

7 0.074 valine 0.097 pantoate 0.115 CMP 
8 0.072 unknown mass 304, 

319 and 406 0.096 unknown7 0.112 CDP 

9 -0.07 Disaccharide4 0.094 unknown28 0.111 spectrum not 
complete5 

10 -0.068 unknown8 0.094 organic acid with 
mass 261 

0.107 UMP 

 X2 
 PC 1 PC 2 PC 3 
 Weight Metabolite Weight Metabolite Weight Metabolite 
1 0.47 phenylalanine 0.452 glutamate 0.523 prephenate 
2 0.435 chorismate 0.363 ketoglutarate 0.369 phosphoenol-

pyruvate 
3 0.314 erythrose-4-

phosphate 
0.323 phenylpyruvate 0.157 shikimate 

4 0.304 phenylpyruvate -0.278 tyrosine 0.138 erythrose-4-
phosphate 

5 0.291 tyrosine -0.231 tryptophan -0.112 shikimate-3-
phosphate 

6 0.163 shikimate-3-
phosphate 

-0.197 phenylalanine -0.09 phenylpyruvate 

7 0.163 glutamate 0.168 shikimate 0.08 3-dehydroquinate 
8 0.135 ketoglutarate -0.113 erythrose-4-

phosphate 
0.059 tryptophan 

9 0.129 tryptophan 0.077 shikimate-3-
phosphate 

-0.056 ketoglutarate 

10 0.073 3-dehydroquinate 0.057 chorismate 0.052 chorismate 
 

Table 3 – Metabolite contributions to E. coli S12 CPCA model. The top 10 most 
important metabolites are shown. The grey areas indicate contributions which are not 
significant after permutation. 
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3.2 CCA 
CCA searches for the largest correlation between X1 and X2. For the P. putida S12 data 

set of both X1 and X2 the dimensions were reduced by PCA after range scaling. For X1 four 
and for X2 three PCs were used. The correlation between X1 and X2 was very large - all the 
experiments are on the diagonal line - and the significant association is 0.999 (Figure 4). 
This value for the association was significant after validation by permutation of the 
experimental conditions and repetition of the data analysis. The metabolites responsible for 
this large correlation were for X1 metabolites related to catabolic pathways, such as, 
glyceraldehyde-3-phosphate, dihydroxyacetone-phosphate, and glucose-6-phosphate (Table 
4). This was similar to the CPCA results. The responsible metabolites for X2 were the xMPs 
and the xTPs. Unlike the CPCA results, the xDPs were less important. For both data sets, the 
variation modeled by the correlation between the two matrices was close to the maximal 
explained variation for those matrices. This indicated that the behavior of the metabolite 
concentrations in X1 and X2 correlates very well and that the correlation is a major effect in 
the behavior of these concentrations. 

CCA on the E. coli data set identified a strong correlation between X1 and X2 with a 
significant  association of 0.981 (Figure 5A). The order of the experiments in the correlation 
plot for the first canonical variate seemed related to the difference between the wild type 
strain and the high producing strain. This effect was not as strong as for the CPCA analysis. 
For instance, condition 6.3, which led to the highest phenylalanine production (Table 1), 
was close to zero in Figure 5A, and thus not important for canonical variate 1. 
Unfortunately, the metabolites of X1 that contributed most to this correlation were 
unidentified; for X2 it were phenylalanine 3-dehydroquinate, tryptophan, and erythrose-4-
phosphate (Table 5). The second largest correlation between the two data sets was still large 
with a significant association of 0.966. Here the fermentations on succinate as a carbon 
source stood out (Figure 5B). In X1, the metabolites urea, isoleucine, malate, fumarate, and 
aspartate were important; this is similar to the results for the second PC in the CPCA 
analysis. However, slightly different metabolites in X2 were important, shikimate, 
phenylalanine, phosphoenolpyruvate, ketoglutarate, glutamate, and phenylpyruvate. The 
explained variance for the correlation was not following the maximal explained variance for 
both E. coli data matrices (Figure 5C) as closely as for the P. putida S12 data set. This means 
that for these two matrices the directions that correlate best were not the most dominant 
directions in the separate matrices. 
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Figure 4 - CCA results for the P. putida S12 data set. (A) The nature of the correlation of 
canonical variate 1. (B) The explained variation per data block (bars) and the maximal 
explained variation for that data block (lines). 

 X1 X2
 Variate 1 Variate 1 
 Weight Metabolite Weight Metabolite 
1 glyceraldehyde-3-

phosphate 0.175 0.351 CMP 

2 dihydroxyacetone 
phosphate 0.164 -0.307 GTP 

3 0.16 BAC-607-N1058 -0.284 UTP 
4 0.159 isomaltose 0.282 TMP 
5 0.153 uridine 0.282 AMP 
6 0.151 glucose-6-phosphate 0.265 AMP 
7 0.151 sugar phosphate 0.243 UMP 
8 0.149 gluconic acid lacton 0.242 UMP 
9 0.147 BAC-607-N1102 -0.242 ITP 
10 0.146 BAC-629-N1028 0.242 GMP 
 

Table 4 - Metabolite contributions to P. putida S12 CCA model. The top 10 most important 
metabolites are shown. The grey areas indicate contributions which are not significant after 
permutation. 
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 X1 X2 
 Variate 1 Variate 2 Variate 1 Variate 2 
 Weight Metabolite Weight Metabolite Weight Metabolite Weight Metabolite 
1 -0.182 unknown

8 
-0.188 urea 0.65 phenyl-

alanine 
0.622 shikimate 

2 
-0.171 

spectrum 
not 

found5 
-0.178 pantoate 0.391 

3-
dehydro-
quinate 

0.404 keto-
glutarate 

3 0.158 unknown
7 

0.17 isoleucine -0.353 trypto-
phan 

-0.369 phenyl-
alanine 

4 
0.154 unknown

32 
-0.168 

spectrum 
not 

specific 
-0.277 tyrosine -0.305 

phospho-
enolpyruvat

e 
5 

0.153 

unknown 
mass 304, 
319 and 

406 

-0.163 fumarate 0.274 
erythrose-

4-
phosphate 

0.286 
phenyl-
pyruvate 

6 0.152 ribulose 
(?) 

-0.159 adenosine -0.229 pre-
phenate 

0.22 glutamate 

7 
0.149 FMN -0.149 

sugar 
phosphate

4 
0.193 

shikimate-
3-

phosphate 
-0.212 shikimate-

3-phosphate 

8 
0.148 

spectrum 
not 

found3 
-0.147 malate 0.171 phenyl-

pyruvate 
0.143 chorismate 

9 

-0.147 

N-acetyl-
aspartate 

+ β-
phenyl-
pyruvate 

-0.145 
acetyl-
amino 
acid 

0.123 choris-
mate -0.101 prephenate 

10 0.145 3-phenyl-
lactate (?) 

-0.14 aspartate 0.1 glutamate 0.089 tryptophan 

 

Table 5 - Metabolite contributions to E. coli CCA model. The top 10 most important metabolites 
are shown. The grey areas indicate contributions which are not significant after permutation. (?) 
indicates a metabolite whose identification is not certain. 
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4 Discussion  
CPCA and CCA are valuable methods to emphasize specific areas of the metabolic 

network in data analysis of metabolomics data. They make it possible to focus on groups of 
metabolites be it functionally or chemically related metabolites as for the P. putida S12 data, 
or a metabolic pathway as for the E. coli data; both methods result in biologically 
meaningful results. 

CPCA and CCA address different biological and data analysis questions. CPCA 
searches for the direction that explains most of the variation in the weighted and 
concatenated matrices. When the variation within and between both data sets shows similar 
major trends, the variation described will closely resemble the maximal variation explained 
for both data sets, as was the case for the P. putida S12 data sets (Figure 2). On the other 
hand, when variation in the two data sets is not similar, CPCA will still identify the largest 
variation in the concatenated data set and this direction can be dominated by one matrix; as 
for the E. coli data set (Figure 3).  

CCA is not consensus based; it retains the nature of the matrices and identifies the 
largest correlation between the two data sets. Due to the PCA step performed before the 
CCA analysis, CCA will focus on large trends in variation in the matrices. The results of 
CCA for a data set with a simple structure and coherent behavior, like the P. putida S12 data 
set, will be similar to the CPCA analysis (Figure 4).  

The difference between the two methods becomes clear from the analysis of the E. coli 
data set. As a consequence of the complex nature of the data set, there is no common 
dominant variation in both X1 and X2 and the CPCA became dominated by X2 that 
contained the measured intermediates of the phenylalanine pathway (Figure 3C). In 
contrast, CCA identifies the largest correlation between X1 and X2 even though this 
direction is not dominant in either X1 or X2 (Figure 5C). 

Based on the biological question to be answered CPCA is better suited for identifying 
large common effects between the metabolome and the specified metabolites. CCA searches 
those trends in the two data sets that correlate the strongest, without compromising towards 
major trends.   

In this paper, we include knowledge of metabolic pathways and chemical relatedness 
to guide the focus of the data analysis. This opened up the possibility to study the behavior 
of these metabolites in more detail than with an unsupervised method. Besides applications 
in metabolomics, these methods can also be applied for the comparison of, for instance, 
metabolomics and transcriptomics, or proteomics data. 
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5 Methods 
5.1 Data 

The first data set consisted of P. putida S12 [13] metabolomes. Cultures of P. putida 
S12 were grown as previously described [14]. In short, samples were grown in triplicate on 
four carbon sources: D-fructose (sample F1, F2 and F3), D-glucose (sample G1, G2 and G3), 
gluconate (sample N1 and N2) and succinate (sample S1). Samples were analyzed by GC-MS 
[15] and LC-MS [16]. The GC-MS and LC-MS data set were fused together by 
concatenating the measurement tables [11]. The final data set was manually cleaned up, 
removing spurious and double entries and consisted of 9 experiments and 161 metabolites. 
The second data set consisted of E. coli metabolomics (E. coli NST 74, a phenylalanine 
overproducing strain, and E. coli W3110, the wild-type strain). The E. coli strains were 
grown under different experimental conditions as described elsewhere [11]. Samples were 
analyzed by GCMS [15] and LCMS [16] and fused together [11]. The final data set was 
manually cleaned up, removing spurious and double entries and consisted of 28 experiments 
and 188 metabolites. 

5.2 Data analysis 
CPCA [8] and CCA [9] were implemented in Matlab 7.3.0 [17]. In the data analysis, 

the data was range scaled [10]. The significance of the data analysis results were validated as 
described in the text. 
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5 Genetic algorithm based two-mode 
clustering of metabolomics data 
Jos A. Hageman, Robert A. van den Berg, Johan A. Westerhuis, Mariët J. van der Werf, and 
Age K. Smilde 

Summary 
Metabolomics and other omics tools are generally characterized by large data sets with 

many variables obtained under different environmental conditions. Clustering methods, and 
more specifically two-mode clustering methods, are excellent tools for analyzing this type of 
data. Two-mode clustering methods allow for analysis of the behavior of subsets of 
metabolites under different experimental conditions. In addition, the results are easily 
visualized. In this paper we introduce a two-mode clustering method based on a genetic 
algorithm that uses a criterion that searches for homogeneous clusters. Furthermore we 
introduce a cluster stability criterion to validate the clusters and we provide an extended 
knee plot to select the optimal number of clusters in both experimental and metabolite 
modes. 

The genetic algorithm-based two-mode clustering gave biologically relevant results 
when it was applied to two real life metabolomics data sets. It was, for instance, able to 
identify a catabolic pathway for growth on several of the carbon sources. 
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Chapter 5 

1 Introduction 
Functional genomics approaches have been applied in many different areas for the 

unraveling of complex biological questions. A functional genomics approach aims to obtain 
a complete overview of a certain biological response, for instance, gene expression levels or 
metabolite concentrations, in relation to the experimental conditions of interest. Obtaining 
a complete overview of the biological response enables the identification of interesting 
effects that would not be noticed if a subset of the genes or metabolites is analyzed. 

Within functional genomics, metabolomics focuses on the analysis of the metabolome, 
the complete set of small organic molecules in, or outside, a cell. The metabolome is the 
most direct reflection of the phenotype of the organism under study, as regulatory effects, 
like post-transcriptional processing, or post-translational modification, do not hamper its 
interpretation [1]. In a metabolomics experiment, metabolome samples of an organism are 
generated under conditions that result in (large) variations of the metabolome composition.  

The resulting variations are often analyzed with latent variable techniques or 
clustering methods. Latent variable techniques, such as PCA [2], PCDA [3], reduce the 
dimensions of the data to make interpretation easier. Clustering methods, on the other 
hand, order the data in groups that are similar according to a particular similarity measure, 
such as the Euclidean distance, or the correlation coefficient [4,5]. The popularity of 
clustering methods results from their visualization and clear interpretation. 

Clustering methods can be divided in two groups. The first group clusters the data set 
in either experiment or metabolite clusters; this is called one mode clustering. Here, the 
experiments or the metabolites are clustered based on the similarity of the behavior of all 
metabolite concentrations under an experimental condition or on the similarity of behavior 
of the concentration of a metabolite under all experimental conditions, respectively. The 
second group simultaneously creates experiment and metabolite clusters, which is called 
two-mode clustering or biclustering [6,7]. Here the metabolites and experiments are 
clustered simultaneously to obtain groups of experiments and metabolites that behave as 
similar as possible. It is possible to apply a one-mode clustering method (e.g. hierarchical 
clustering, or k-means clustering) first to the metabolite mode and subsequently to the 
experiment mode, or vice versa. However, this will not result in identical results as by using 
two-mode clustering, as the clusters are not optimized for homogeneity in both the 
experimental and the metabolite mode. Therefore, two-mode clusters obtained by one-
mode clustering methods are sub-optimal and the interpretation of these results will be 
hampered. 

Two-mode clustering algorithms aim to find the best partitioning of the data in 
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clusters. We define the best partitioning as the cluster assignment which results in the 
minimal difference between the model of the data and the original data. Different two-mode 
clustering algorithms exist, of which some algorithms are based on global optimization 
approaches, such as Simulated Annealing (SA) and Tabu Search (TS) [6,8]. The main 
advantage of global optimization methods is that they are able to find the global solution 
and not a locally optimal solution; something that is likely to happen with local optimization 
methods like steepest descent.  

In this paper we introduce two-mode clustering of metabolomics data based on a 
Genetic Algorithm (GA). As GA’s work on a group of solutions it can take large steps in the 
solution space and it is less likely to get stuck in local optima compared to SA and TS. The 
GA approach used in this paper is based on a cluster homogeneity criterion and not on 
distances between clusters. This means that clusters are based on metabolites that behave as 
similar as possible for a group of experimental conditions. Furthermore, quite some 
attention is paid to assess the cluster stability using a leave one out resampling of the two-
mode clustering results. The selection of the number of clusters in both experimental and 
metabolite modes is performed using a generalized knee plot. Most two-mode clustering 
methods are specifically designed for gene expression data, but we apply our new two-mode 
clustering approach to metabolomics data which improves their interpretation considerably. 
Two different metabolomics data sets with different complexity are analyzed to show the 
generality and usefulness of the new method. 

2 Methods and Materials 
2.1 Data 

The first data set (Pseudomonas putida S12) is maintained at TNO (Zeist, the 
Netherlands). Cultures of P. putida S12 [9] were grown in batch fermentations at 30ºC in a 
Bioflow II (New Brunswick Scientific) bioreactor as previously described [10]. In short, 
samples were grown in triplicate on four carbon sources: D-fructose (sample F1, F2 and F3), 
D-glucose (sample G1, G2 and G3), gluconate (sample N1 and N2) and succinate (sample 
S1). Samples were analyzed by GC-MS and LC-MS. A detailed description is given 
elsewhere [11-13]. The GC-MS and LC-MS data set were fused together by concatenating 
the measurement tables [14]. The final data set was manually cleaned up, removing spurious 
and double entries and consisted of 9 experiments and 162 metabolites. 

    The second data set (Escherichia coli NST 74, a phenylalanine overproducing strain, 
and E. coli W3110, the wild-type strain) were grown at 30ºC in a bioreactor containing 2 
liters of a medium with 30  g/l glucose as carbon source. A constant pH (pH 6.5) and oxygen 
tension (30 %) was maintained. Samples were taken from the bioreactor after 16, 24, 40, 48 

 67



Chapter 5 

hours, and immediately quenched. Variations in this standard fermentation protocol were 
introduced by changing one of the default conditions, resulting in a screening experiment. 
Samples were analyzed by GC-MS and LC-MS and fused together. A detailed description of 
this data set is given elsewhere [14]. The final data set was manually cleaned up, removing 
spurious and double entries and consisted of 28 experiments and 188 metabolites. 

2.2 Genetic Algorithms 
GAs are a special class of global optimizers based on the theory of evolution. A GA 

minimizes a function F(x), where x represents a parameter vector, by searching the 
parameter space of x for the optimal solution. In the case of two-mode clustering, GAs will 
search for the optimal partitioning of objects and variables by minimizing the residuals. The 
residuals are the difference between the model of the data and the original data matrix. 
Several steps in a GA are identical for all GAs and will be explained shortly in the following. 

1. Initialization: GAs operate on a group of solutions, called a population. At the start 
of the GA, all solutions, also called strings or chromosomes, are set to random 
values.  

2. Evaluation: All strings in the population are evaluated by an evaluation function 
(see Section 2.3.1). 

3. Stop: A stop criterion is checked.  
4. Selection: A percentage of the best strings in a population is selected to form the 

next generation. 
5. Recombination: To form the new population, new solutions are created by 

combining two selected existing solutions (parents) to yield two different ones 
(children). This is called crossover. 

6. Mutation: Parts of a string in the new population are selected randomly and 
modified. To prevent the search from random behavior, the probability of mutation 
is usually chosen to be quite low.  

Several parameters, such as the rate of crossover and mutation, regulate the 
performance of the GA.  Each specific optimization problem has its own specific set of 
parameters for which the GA performs at its optimum. This so-called meta-optimization of 
the GA parameters can be tedious and can be considered a disadvantage of GAs in general.  
For more information regarding GAs, we refer to [15]. 
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2.3 Two-mode clustering 

2.3.1 The model 
The goal of two-mode clustering is to simultaneously find the optimal partitioning 

between objects and variables of data matrix X, as depicted in Figure 1. For two-mode 
clustering, data matrix X is approximated by 

(1)      E  UYV  X T +=
Where 
X (M x N): data matrix of M rows and N columns. 
U (M x P): membership matrix for M rows (metabolites) of matrix X allowing for P 
row clusters. This matrix contains on each row (P-1) zeros and a single 1. The location 
of this 1 indicates the cluster membership. 
Y (P x Q): matrix containing the clusters averages for P row and Q column clusters. 
V (N x Q): membership matrix for N columns (experiments) of matrix X allowing Q 
column clusters. The structure of this matrix is similar to that of matrix U. 
E (M x N): matrix containing the difference between each measurement and the 
average of the cluster it belongs to. 
A schematic representation of this decomposition is given in Figure 2.  
Pretreatment of the data is an important aspect of data analysis that can dramatically 

influence the results of data analysis [11]. In this paper, range scaling was applied to 
accentuate the biological information content of the metabolomics data set by converting 
the concentrations to values relative to the biological range of a metabolite. The biological 
range is defined as the difference between the minimum and maximum concentration 
measured for a metabolite in the data set. In this way, high or low metabolite concentrations 
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Figure 1 - Schematic representation 
of two-mode partitioning 

Figure 2 - Schematic representation of the 
decomposition of matrix X. See text for details. 
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and the way in which the concentrations of metabolites are affected by different 
environmental conditions are seen within the context of the natural variation of the 
concentration (dynamic range) of those metabolites. 

2.3.2 Evaluation function 
For the evaluation function, the partitioning information on the string is used to 

construct membership matrices U and V. Matrix Y is obtained in two steps. In the first step, 
the sums of all metabolites in a cluster are obtained: 

(2a) XVUY T=~    
In the second step, all elements are divided by the number of members in that cluster 

to obtain cluster averages in Y. 

(2b)  
qp

qp
qp vu

y
y

⋅
= ,

,

~
   

Here yp,q is the average value of a two-mode cluster (p,q),  up and vq indicate the 
number of metabolites and experiments respectively for two-mode cluster (p,q) 

The residual matrix E is then given by: 

(3)     TUYV- XE =
Matrix UYVT is the approximation of X and contains for each metabolite a value equal 

to its cluster average. For an optimal two-mode clustering result, the GA minimizes the sum 
of squares (SS) of the elements of E. The smaller the values in E, the tighter the 
corresponding clusters are. 

2.3.3 Software 
The two-mode genetic algorithm clustering method was programmed in Matlab 7.1 

[16] using the Genetic Algorithm and Direct Search (GADS) [17]. A special integer type 
coding scheme was written for use with this toolbox. This scheme encodes the cluster 
number for each M metabolites and N experiments, so each string in the GA population has 
length M+N.  The cluster number is an integer between 1 and the maximum number of 
clusters. The mutation operator replaces, with a certain probability, a value from the string 
with a random number between 1 and the maximum number of clusters. The settings used 
for the GA are listed in Table 1.  

All GA runs were executed in five-fold with different random seeds to exclude any 
(un)lucky starting positions. The results from the five runs should be similar, and the best 
solution is chosen. The evaluation function was optimized for speed using the profile 
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Description of GA-parameters Value 
Data Type Integer 
Population Size 200 
Mutation rate 0.005 
Number of Generations 4000 
Crossover Rate 0.8 
Table 1 – Settings of the genetic algorithm 

function of Matlab, resulting in run-times 
of five minutes for five replicate runs for 
the P. putida S12 data set and run-times of 
ten minutes for the E. coli data set. Since 
two-mode k-means is a local optimizer 
and is known to get easily stuck in local 
optima, the two-mode k-means was 
restarted 50 times for each solution and the best solution out a possible 50 was kept. All 
calculations were performed on an AMD Athlon XP 2400+ 2.00 GHz 512 MB RAM PC 
running Windows XP. The GA two-mode clustering routines applied in this paper are 
available at http://www.bdagroup.nl. 

2.4 Number of clusters 
Partitioning clustering algorithms require a predefined number of clusters. There are a 

number of methods for finding the most suited number of clusters in the data, such as, the 
Bayesian Information Criterion (BIC) [18] the GAP statistic [19] and the knee or ‘L’ 
method[20].  

We chose the knee method which finds the knee or ‘L’ in a plot of the number-of-
clusters versus the SS of the residuals. The assumption of this method is that an additional 
cluster gives a sharp decrease in the SS of the residuals as long as the optimal number of 
clusters is not reached. When more than the optimal number of clusters is chosen, the 
decrease in SS of the residuals is less sharp and more or less equal for each additional cluster. 

The knee method can be generalized to two-mode clustering. In this case, the curve of 
the number-of-clusters versus the sum of squared residuals plot is a contour plot. In this plot 
there is a combination of cluster numbers for the experiments and metabolites for which an 
additional cluster no longer sharply decreases the SS of the residuals. 

2.5 Validation 
The two-mode clustering method was validated by leaving one experiment out (LOO) 

of the data set, clustering this data set again and comparing the obtained results with the 
clustering of the full data set. In this way, the dependence of the clustering on one single 
experiment can be assessed. A stable clustering will less likely be influenced by leaving one 
experiment out. For the P. putida S12 data set, at least one experiment per group remained 
in the data set to maintain the structure of the experimental design. All LOO-data sets were 
pretreated and clustered.  When comparing the content of a cluster obtained with the LOO 
procedure, it was made sure that it was compared with the correct cluster obtained with the 
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Figure 3 - The number-of-clusters versus the sum of squared residuals plot for the metabolome 
data set of P. putida S12. Point ‘4 experimental’ and ‘4 metabolite’ clusters is the combination 
of clusters where an increase in the number of clusters no longer sharply decreases the sum of 
squared residuals.
complete data by first establishing which clusters have to most overlap and linking them 
together. The LOO validating scheme only validates the effect of the experiments on the 
metabolite clustering. If desired, it is possible to validate the effect of the metabolites on the 
experiment clustering in a similar way. 

In order to analyze the spread within clusters, the cluster variances are used as a 
diagnostic tool: 
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Here, indicates the cluster element n of cluster k for a total of Nk elements and yk is 

the mean of the cluster k. The variances of the different clusters can be compared; a 
relatively low variance indicates small and compact clusters. In contrast, a relatively high 
variance indicates large and/or heterogeneous clusters and this could be a sign of, for 
instance, outliers. 

The cluster variances are a natural diagnostic of the cluster quality as they are directly 
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linked to the evaluation function. The variances of each two-mode cluster can be combined 
to give the pooled variance: 

(6)  

∑

∑
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The evaluation function (Eq. 3) and the pooled variance are identical up to a scaling 
factor as is proven in Appendix A.   

3 Results 
3.1 Estimation of the number of clusters 

3.1.1 P. putida data 
The generalized knee method is used to obtain an estimate of the number of clusters 

in the partitioning. The rate of decrease for the residuals became smaller after four 
experimental clusters and four/five metabolite clusters (Figure 3). Obtaining four 
experiment clusters may seem trivial, however, it is possible that some of the experiments 
are rather similar and end up in the same cluster. For the metabolite clusters, both the four 
and five cluster solutions were analyzed and the five cluster choice was found to be more 
meaningful.  

When comparing the results from the two-mode clustering with two single k-means 
clustering on the metabolites and the experiments (results not shown), the sum of squared 
residuals was 7.8% lower when applying two-mode clustering. The data set was also 
subjected to a classical non-GA based two-mode k-means method with the same evaluation 
function as the GA two-mode algorithm [21,22]. Figure 4 shows the comparison of the 
resulting sum-of-squares. For a larger number of clusters, GA tends to give better results 
than two-mode k-means. In the cases that two-mode k-means has a lower sum-of-squares it 
is usually only lower by a small amount, indicating that both algorithms have reached the 
same global minimum but with different precisions. 

3.1.2 E. coli data 
A similar analysis was performed for the E. coli data showing seven experimental 

clusters and six metabolite clusters was optimal. The performance of GA against k-means 
was again tested (see Figure 4) and showed that relatively quickly the GA outperforms the 
two-mode k-means solution. 
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Figure 4 - Comparison of GA two-mode clustering and two-mode k-means clustering results. 
P. putida (left) and E. coli (right). The black area shows when GA two-mode clustering gave better 
results in terms of the evaluation criterion for a certain metabolite/experiment cluster 
combination. The white area shows when two-mode k-means gave the best results. 
 
Figure 5 (page 75) - Two-mode clustering results for the metabolome data set of P. putida S12 
grown on four different carbon sources. The roman numerals I to V, and F, G, N and S, are used to 
refer to the corresponding clusters throughout the text. The black/white bar indicates the number 
of cluster swaps a certain metabolite has made during the loo validation. Some metabolites were 
analyzed by GC-MS and LC-MS but their identity is not known, or were only identified as part of 
a class of metabolites, e.g. disaccharides. These metabolites were given a number behind the 
metabolite name to be able to distinguish between them during validation. For some metabolites 
there is uncertainty about the identification. These metabolites were given a question mark. 
 
Figure 8 (page 76) - Two-mode clustering results for the metabolome data set of E. coli. The 
numerals I–VI, and characters A–G are used to refer to the corresponding clusters throughout the 
text. The black/white bar indicates the number of cluster swaps a certain metabolite has made 
during the loo validation. Some metabolites were analyzed by GC-MS and LC-MS but their 
identity is not known, or were only identified as part of a class of metabolites, e.g. disaccharides. 
These metabolites were given a number behind the metabolite name to be able to distinguish 
between them during validation. For some metabolites there is uncertainty about the 
identification. These metabolites were given a question mark. 
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3.2 Two-mode clustering 

3.2.1 P. putida data 
The two-mode cluster result is presented in Figure 5. The different patterns of the 

metabolites under the different growth conditions are clearly visible. For example, the 
behavior of the metabolites in D-fructose and D-glucose grown cells was most different for 
the metabolites in clusters II and V. The stability of the clustered metabolites was tested with 
a leave-one-out validation strategy (see Section 1.4). The gray scale shows how often 
metabolites switch to another cluster during LOO validation. Only a few metabolites switch 
often, so the results are stable. 

The visualization of the two-mode clustering result allows for the instant detection of 
outliers, as the color of an outlying variable is different from the consensus color of a cluster. 
In cluster FV, for instance, BAC-607-N1102 in experiment F2 is bright red, while most of 
the cluster is green, just as the results for F1 and F3 (Figure 5). This indicates that BAC-607-
N1102 is a deviating point in the result of F2. 

It is important to know whether the estimated cluster average is a suitable estimate of a 
cluster. By calculating the variance of a cluster, a measure for the homogeneity of the cluster 
is obtained. The variances for the two-mode clustering are presented in Figure 6. Most of the 
variances are comparable. FIII is the most homogeneous clusters found, while SII and GIII 
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contain the most variance. Analysis of the cluster variance can thus be applied as a quick 
assessment of the capability of the cluster to summarize the containing data. 

When the resulting clusters are studied in more detail, several clusters contain 
interesting information. For instance, cluster V contains dihydroxyacetonephosphate1 
(DHAP), pyruvate, glucose-6-phosphate (G6P), 3-phosphoglycerate (3PGA), 
glyceraldehyde-3-phosphate (GAP) and gluconic-acid-lactone (GLN). These metabolites are 
catabolic intermediates of the degradation pathway of D-fructose, gluconate and D-glucose 
(Figure 7).  

On the other hand, fructose-6-phosphate (F6P) is member of cluster III, even though 
it is also an intermediate of the catabolic pathway of D-fructose, gluconate, and D-glucose. 
F6P connects the degradation pathways of D-fructose, gluconate, and D-glucose with the 
pentose phosphate pathway (PPP) (Figure 7). It is possible that the switch between the PPP 
and the degradation pathway explains why F6P was assigned a different cluster. The lack of 
6-phosphofructokinase in Pseudomonas [23] probably contributes to this behavior as well. 
This result shows that two-mode clustering can find clusters that are informative from a 
biological point of view. 

3.2.2 E. coli data 
The two-mode clustering results of the E. coli data is shown in Figure 8. This data set is 

more complicated than the P. putida data because more perturbations were performed and 
longitudinal measurements were analyzed. The leave-one-out results are again shown as a 
gray scale bar (see Figure 8). The complexity of the data set is reflected in these results since 
the clustering is less stable compared to the P. putida data. Yet, biological meaningful results 
were obtained with respect to both the clustering of the metabolites and the samples. For 
instance, most nucleotides cluster together (cluster III) and the ketoglutarate/glutamate and 
malate/fumarate/aspartate pairs that are converted into each other by one enzymatic 
reaction, cluster together. On the other hand, with the clustering of the samples it was 
observed that the samples taken at the earlier time points cluster together, but also the 
samples of the wild-type strain, and samples collected from fermentations using succinate as 
the carbon source, cluster together. 

4 Concluding remarks 
Genetic algorithm based two-mode clustering is a valuable tool for the identification 

of biologically meaningful clusters in metabolomics data. Furthermore, it visualizes which 
subset of metabolites responds to which experimental condition. The results are validated by 
the use of a leave-one-out validation scheme that allows for the identification of metabolites 
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that have an unstable clustering. A second validation measure is the analysis of the cluster 
variance. This gives insight in the homogeneity of the clusters and thus how well the clusters 
fit the data. Application of the newly developed approach to metabolomics data results in 
the identification of biologically relevant clusters.  

   The algorithm compares favorably to other approaches (e.g. two-mode k-means and 
single one-mode clustering). Hence, the genetic algorithm based two-mode clustering, 
together with an extensive validation of the results, is a valuable addition to the omics data 
analysis toolbox, as it provides a detailed overview of the data. 
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7 Appendix 
Appendix A – Proof that the evaluation function and the pooled variance are identical up to a 
scaling factor. 
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6 Discovery of functional modules in 
metabolomics data: regulation of cellular 
metabolite concentrations 
Robert A. van den Berg, Age K. Smilde, Jos A. Hageman, Uwe Thissen, Johan A. Westerhuis, 
and Mariët J. van der Werf 

Summary 
In metabolism, functional modules can be defined as groups of metabolites that have a 

related function. Functional modules can be determined on different levels within the 
cellular organization. In response to normal, not stressful conditions, global regulatory 
effects will control the major physiological processes. These global regulatory effects are 
characterized by metabolites whose concentrations show a similar behavior in response to 
varying environmental conditions. Changes in environmental conditions that perturb 
specific areas in the metabolism will provoke local regulatory effects. Metabolites whose 
concentration responds similar to such local perturbations will be part of the same local 
functional module. In this paper we identified both local and global functional modules 
based on two real-life microbial metabolomics data sets using a top-down systems biology 
approach. Furthermore we discuss the nature of homeostasis, as is reflected by the 
regulation of metabolite concentrations. 

Local functional modules were identified in microbial metabolomics data sets 
originating from Escherichia coli and Pseudomonas putida S12 by a two-mode clustering 
approach. Their identification proved strongly dependent on the variation in environmental 
conditions under which the metabolome data were obtained. For instance, a local functional 
module containing citric acid cycle and redox-related metabolites was identified when E. 
coli was grown on succinate instead of D-glucose. The global functional modules were 
discovered by a correlation network analysis. Here, modules related to amino acid 
biosynthesis and the central metabolism were found. Comparison of the metabolite 
composition of local and global functional modules revealed that metabolites which are 
member of the same global functional module are not necessarily member of the same local 
functional module, and vice versa. 

Regulation of metabolite concentrations was found to occur on different hierarchical 
levels. Whether these different hierarchical regulation levels could be identified in the 
metabolomics data set depended strongly on the environmental conditions – and thus the 
experimental design behind the data sets - and how these conditions perturb the 
metabolism. By the application of two different data analysis methods both local and global 
functional modules could be identified. 

 



Chapter 6 

1 Background 
Functional modules are components of a system that have a specific function. For 

example, a computer consists of a mother board, hard disk, monitor, and video card. These 
different components all have a specific functionality and are therefore considered as 
functional modules. Functional modules depend on the level of detail in which a system is 
studied. The video card of the computer, for instance, consists of different functional 
modules as well, such as, the connector to the mother board, cooler, memory, and processor. 
In cell biology, functional modules in the broadest sense relate to specific metabolic 
processes like carbon metabolism, stress response, or redox/energy balance. These broad 
definitions include all layers of cellular organization; genes, proteins, and metabolites [1]. 
Functional modules can be subdivided down to the level of a single metabolic pathway, or a 
part of a pathway, or a single operon. Generally, functional modules are considered on 
distinct biochemical layers within the cellular organization, for instance, gene regulons [2], 
protein interaction networks [3], or the energy/redox metabolite pools [4]. As functional 
modules relate to biological function, their behavior and regulation can provide information 
on the physiological state of an organism and thus reflect its response to environmental 
conditions. 

To grow and to maintain themselves, cells attempt to regulate their important 
processes within certain boundaries. Even after (extreme) changes in environmental 
conditions, the cells try to maintain these boundaries. This regulatory phenomenon is called 
homeostasis.  

For metabolomics data, homeostasis refers to cellular metabolite concentrations. The 
concentrations of metabolites in a cell are influenced by different factors: (i) enzyme activity, 
which is regulated via several mechanisms, such as enzyme concentration and allosteric 
regulation; (ii) the concentrations of metabolites connected in the metabolic network as 
these determine the thermodynamic push or pull in a certain direction for the biochemical 
reactions; (iii) the possibilities of the organism to control the influx and efflux of 
metabolites, for instance, it can be very difficult to control the influx of organic acids, as 
organic acids in undissociated form can travel freely over the cell membrane [5,6]. This 
factor is also related to (ii).  

Cellular regulation of homeostasis is often hierarchically organized; global regulatory 
effects coordinate central metabolism in an organism cultivated under normal, not stressful 
conditions (base-level homeostasis), while increasingly smaller-scale sub-processes are 
controlled to respond to specific changes in environmental conditions (Figure 1). In other 
words, global regulation mechanisms are dominant when the organism is cultivated under 
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Figure 1 - Schematic overview of the regulation of homeostasis in the cell. Global regulatory 
effects control ‘important’ processes under normal, not stressful conditions. Local regulatory 
effects become visible due to specific changes in the environmental conditions. 

conditions that generally are not stressful.  
In contrast, local regulatory mechanisms become dominant when the processes they 

control become perturbed beyond the boundaries of this base-level homeostasis. Such a 
perturbation could result in a new homeostatic state, or in the inability of the cells to grow 
and maintain themselves and thus in loss of homeostasis. In the example of the organic 
acids, the production of these compounds by fermentative micro-organisms results in the 
accumulation of toxic concentrations of these organic acids [5,6] disrupting the membrane 
potential and thus cellular homeostasis. Pieterse and co-workers [6] discovered that 
Lactobacillus plantarum redirects its metabolism towards other fermentation end products 
in response to this disruption. This can be considered a local response to the specific 
perturbation of the cell. 

The layout of cellular regulation implies that at the extremes two types of functional 
modules can be discerned: (i) functional modules on the level of global regulation, and (ii) 
functional modules on the level of local organization. Identifying functional modules 
between these two extremes in metabolomics data sets will require different strategies. Local 
regulatory effects will manifest themselves in response to specific perturbations of that area 
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in the metabolic network that they control, while the global regulatory effects will be 
reflected by metabolites whose concentration behaves similar under a wide range of 
environmental conditions. 

Until recently, the study of functional modules in experimental metabolite data was 
limited by the poor detection of large numbers of metabolites. Therefore, the study of 
functional modules in metabolism was limited to in silico analysis based on the topology of 
the metabolic network [7-9]. These are bottom up systems biology approaches in which the 
study of the functional modules is based on the modeling of existing knowledge about the 
metabolism [10]. These models model flux distributions under steady state assumptions, 
and they are often not able to fully capture concentration-based regulation mechanisms 
[11]. Here we describe a top down systems biology approach to identify functional modules. 
Instead of analyzing flux distributions, we analyze metabolite concentrations. This is now 
possible due to the advancements in the field of metabolomics [12,13] that allows the 
measurement of the (relative) concentrations of several hundreds of metabolites [13]. In this 
paper we identify both global and local functional modules in two different microbial 
metabolomics data sets. 

2 Results 
For the purpose of this study, two different metabolomics data sets were used. The first 

data set was a metabolomics data set in which P. putida S12 was grown on four different 
carbon sources as the sole carbon source [14]. The second data set consisted of 
metabolomes of E. coli grown under 28 distinct conditions with regard to strain, 
environmental conditions, and time point of harvesting [15].  

2.1 Homeostasis of metabolites 
Homeostasis refers to the desire of a cell to maintain important processes within 

certain boundaries in order to grow and maintain itself. In order to study whether 
homeostasis could be identified in a microbial metabolome data set, we determined the 
behavior of the relative concentration of the average metabolite in the E. coli data set (Figure 
2). To this end, the concentrations of all the individual metabolites were converted into 
relative concentrations with respect to the maximal concentration for that metabolite in on 
of the samples. Subsequently, the relative concentrations of every metabolite were sorted 
(ranked) from low to high. Next, the concentration profile of an average concentration was 
established by averaging the relative concentrations of all the metabolites per rank.  

There was a large difference between the average relative metabolite concentration and 
the maximal relative concentration achieved for a metabolite in the E. coli data set (Figure 
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2). The average relative concentration, estimated by the median as a robust estimator, was 
13.8% of the total relative range (100%). This observation is an indication that some of the 
28 distinct environmental conditions studied in this experiment perturbed the homeostasis 
of the average metabolite. Furthermore, this perturbation seemed to have induced local 
regulatory phenomena. A more linear behavior would have suggested that global regulation 
is dominant, as the metabolite concentrations are left free or are maintained within certain 
boundaries (Figure 1). 

Studying the metabolite concentration profiles of individual metabolites could provide 
further insight in the nature of homeostasis and of (specific) regulatory processes 
controlling its concentration. Therefore, the ordered relative concentration profiles for all 
metabolites in the E. coli data set were plotted and visually inspected. En large, we could 
discriminate six different concentration profiles, and possibly regulation patterns. Figure 3A 
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Figure 2 - Relative concentration profile of an average metabolite. The metabolite 
concentrations of the E. coli data set were per metabolite sorted from low concentration to 
high concentration. Furthermore, the concentrations were per metabolite normalized relative 
to the highest concentration reached for that metabolite. The sorted and normalized 
metabolite concentrations were averaged per sort position using the mean as a robust 
estimator. This means that over all metabolites the lowest relative concentration was averaged. 
Next the second lowest concentration was averaged. This was continued until the highest 
relative concentration was averaged. This resulted in the relative concentration profile of an 
average metabolite in the E. coli data set sorted in ascending order. The shaded area is the 
median +/- the median absolute deviation (MAD). The shaded area is a robust indication for 
the dispersion around the median relative concentration in the 28 experiments in the E. coli 
data set. The error bars represent the standard error (n=188). 
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shows the pattern of a metabolite that matched the average pattern (Figure 2); the average 
concentration was low compared to the maximally attained concentration. This could 
indicate that the last four experimental conditions somehow strongly perturbed the 
concentration of phenylpyruvate. The profiles of the metabolites in Figure 3B and 3C did 
not show extreme relative concentrations, that is, the concentrations were evenly distributed 
between the maximal and the minimal concentration. This could point to at least two 
possible situations: (i) the metabolites were controlled within the ‘normal’ boundaries of 
homeostasis; (ii) the concentrations of these metabolites were not regularly controlled. The 
profile in Figure 3C described a smaller relative concentration range than Figure 3B, 30-
100% for Figure 3C and 5-100% for Figure 3B respectively. This could be an indication that 
the metabolite in profile B was not under strong regulation, while FMN, the metabolite in 
Figure 3C was regulated at a base level. Figure 3D is an example of a metabolite, aspartate, 
showing extreme differences between a base level homeostasis and deviations from it. In E. 
coli, the metabolites fumarate and malate can be interconverted from aspartate via simple 
enzymatic conversions by generally highly active enzymes. We therefore expected that 
fumarate and malate would show a similar concentration profile, which was indeed the case 
(Supplemental data I). For all three metabolites the extreme concentrations were observed 
when the cells were cultivated on succinate. Figure 3E displays the pattern of a metabolite 
whose concentration is below the detection limit under half of the environmental conditions 
and is detectable in the other half.  

There are three possible explanations for this behavior: (i) either the flux through the 
enzyme that converts this metabolite is very high; (ii) the metabolite was not produced 
under those experimental conditions; or (iii) a concentration profile similar to the other 
profiles is present, although not detectable with the used equipment. The last profile (Figure 
3F) demonstrates the pattern of a metabolite that suggests that there can be different 
regulation levels or homeostatic states at which the concentration of a metabolite can be. 
There is a low concentration state, a mid range concentration state, and a very high 
concentration state. These metabolite profiles indicate that different local and global 
regulatory mechanisms are indeed present in the E. coli data set. 
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2.2 Identification of functional modules 2.2 Identification of functional modules 

2.2.1 Global functional modules 2.2.1 Global functional modules 
Global functional modules are based on the similarity in behavior of a group of 

metabolites under the full range of experiments in the data set (Figure 4). Therefore, as a 
measure of similarity, the pair wise correlation between metabolite concentrations was 
calculated [16]. Correlation analysis as a means to identify regulatory effects in 
metabolomics is also discussed in a recent paper by Müller-Linow and co-workers [17]. 
Calculating correlations on a small number of measurements will likely result in unreliable 
results due to the amount of false positives that can be expected. Since the P. putida data set 
consisted of metabolomes obtained from three biological replicates of four different 
environmental conditions, we refrained from correlation analysis with the P. putida S12 data 
set.  

Global functional modules are based on the similarity in behavior of a group of 
metabolites under the full range of experiments in the data set (Figure 4). Therefore, as a 
measure of similarity, the pair wise correlation between metabolite concentrations was 
calculated [16]. Correlation analysis as a means to identify regulatory effects in 
metabolomics is also discussed in a recent paper by Müller-Linow and co-workers [17]. 
Calculating correlations on a small number of measurements will likely result in unreliable 
results due to the amount of false positives that can be expected. Since the P. putida data set 
consisted of metabolomes obtained from three biological replicates of four different 
environmental conditions, we refrained from correlation analysis with the P. putida S12 data 
set.  

The correlation networks of the E. coli data set were studied for different cut-off values 
for the correlation coefficient (Figure 5, additional results not shown). Three global 
functional modules were present at all cut-off values and grew in size when a lower 
correlation coefficient was selected as cut-off (Figure 5). These global functional modules 

The correlation networks of the E. coli data set were studied for different cut-off values 
for the correlation coefficient (Figure 5, additional results not shown). Three global 
functional modules were present at all cut-off values and grew in size when a lower 
correlation coefficient was selected as cut-off (Figure 5). These global functional modules 
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Figure 4 - Principle behind correlation analysis and two-mode clustering for the identification 
of global and local functional modules. In a correlation analysis, the behavior of the 
concentrations of metabolite A and B is compared over all environmental conditions. The 
highest correlation coefficient is obtained when the concentrations of the compared 
metabolites behaves the same under all experimental conditions. In contrast, two-mode 
clustering clusters metabolites that behave most similar within subsets of the environmental 
conditions [23]. The two-mode clustering method simultaneously partitions the normalized 
[25] metabolite concentration data by searching for those partitions of metabolite 
concentrations and experimental conditions that result in the most homogeneous partitions. 
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were based on metabolites related to (i) Nucleotides, energy and cell wall intermediates, (ii) 
amino acids, the pentose phosphate pathway, nucleotide bases, and (iii) a module that is 
strongly interconnected but consisted initially of unknowns. At rho = 0.725 (Figure 5B) 
citrate, fumarate, malate, glycerate, 3-dehydroquinate, 2-hydroxyglutarate, and FMN have 
joined this module as well.  

The large global functional modules (more than six members) in Figure 5B contain 
metabolites that are close to each other in the metabolic network as well as metabolites that 
are further way. For instance, the amino acid/PPP global functional module contains many 
intermediates from the aromatic amino acid biosynthesis pathway, e.g. erythrose-4P, 
chorismate, phenylpyruvate, tyrosine, tryptophan, and phenylalanine. However, metabolites 
that are further away in the metabolic network, e.g. the amino acids valine and isoleucine; 
the nucleotide bases thymine, guanine, and uracil; are part of this module as well. This 
global functional module could be the result of regulation of amino acid concentrations and 
regulation of the distribution of PPP intermediates towards (i) C5-sugars (building blocks 
for nucleotides) and (ii) the aromatic amino acid biosynthesis pathway (erythrose-4P).  

Another example of a global functional module, with closely related as well as more 
distinct metabolites, is the nucleotides/energy/cell wall global functional module. In this 
module, many of the nucleotides are present, but also acetyl CoA, fructose-1,6-bisphosphate 
(FBP), and phosphoenolpyruvate. Moreover, notable missing nucleotides are GTP and ATP, 
that both cluster with CoA (Figure B, red module labeled “Energy transfer”); and AMP that 
clusters with a disaccharide.  

The finding that the identified global functional modules did not comply to the 
distance in the metabolic network is in line with the work of Notebaart and co-workers [18], 
who showed for flux analysis that closeness in the metabolic network is not a good indicator 
for flux predictions; and with the work of Steuer and co-workers [19]. 
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Figure 6 (page 93) - Local functional modules in P. putida S12 data set using two-mode 
clustering. The characters F, G, N, and S refer to respectively D-fructose, D-glucose, gluconate, 
and succinate, the carbon source on which P. putida S12 was grown. The colors refer to the 
metabolite concentrations relative to their biological range. The BAC codes refer to unidentified 
metabolites, and the (?) refers to metabolites whose identification is uncertain. 

 
Figure 7 (page 94) - Local functional modules in E. coli data set using two-mode clustering. The 
numbers below the x axis refer to the experimental conditions. The colors refer to the metabolite 
concentrations relative to their biological range. The (?) refers to metabolites whose 
identification is uncertain. 
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Global functional module Metabolites involved (total 
metabolites in module) 

Nucleotides, energy, cell wall 10 (17) 
Unknown, aromatic amino acids, 
citric acid cycle 

3 (21) 

Energy transfer 3 (3) 
Amino acids, PPP 2 (29) 
Amino group transfer 1 (2) 
Fermentation 1 (7) 

 
Table 1 - Global functional module membership for metabolites involved in the core reactions 
of E. coli. From the global functional modules identified at rho = 0.725, 20 metabolites were 
involved in the core reactions of E. coli. 

The global functional modules in Figure 5B were compared with the metabolic core of E. 
coli as identified by flux-balance analysis [20]. According to Almaas and co-workers [20], 
the fluxes of the metabolic core reactions were highly correlated under the 30 000 tested 
simulation environments. In 44 of the 90 reactions of the metabolic core, 20 metabolites (of 
a total of 96) from Figure 5B were involved in one or more reactions. ATP was involved in 
22 of these 44 reactions, whereas ADP was involved 11 times. The measured concentration 
profiles of the metabolites involved in the core reactions of E. coli are not as strongly 
correlated as the fluxes [20], since the metabolites are divided over six global functional 
modules (Table 1), instead of one functional module. However, it is remarkable that from 
the 20 metabolites involved in the core reactions, 10 metabolites were member of the 
nucleotides/energy/cell wall global functional module (Table 1).  

2.2.2 Local functional modules 
Local regulatory mechanisms become active when certain processes in the central 

metabolisms are (temporarily) perturbed in order to (i) maintain homeostasis by reaching 
another local homeostatic level; (ii) to be able to return to homeostasis; (iii) or as a sign that 
the cell is out of homeostasis (Figure 1). Local functional modules are groups of metabolites 
that behave similar in the conditions that overrule the global regulatory effects, or that 
behave similarly in that subset of the experimental conditions that only perturb specific 
processes of the metabolism. In order to identify local functional modules in real life 
metabolomics data sets, the data analysis tool two-mode clustering was applied. Two-mode 
clustering searches for groups of metabolites that behave the same for subsets of 
experimental conditions (Figure 4) [21,22]. 
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In the P. putida S12 data, five local functional modules were identified after two-mode 
clustering (Figure 6). For instance, a part of the catabolic pathway for D-fructose, gluconate 
and D-glucose was recovered in local functional module V [23]. The clustering of these 
metabolites seemed primarily determined by the behavior of the metabolites under growth 
on D-glucose and D-fructose. Here, the highest and lowest relative metabolite 
concentrations were detected. As the two-mode clustering method searches for clusters that 
are as homogenous as possible, clustering extreme values in data with this type of 
concentration profiles (Figure 2) correctly is more important than clustering average values 
correctly, since wrongly clustering extreme values will generally have a larger impact on 
cluster homogeneity than wrongly clustering average values. The behavior of these 
metabolites under growth on D-glucose and D-fructose was especially interesting as the 
preferred carbon sources for P. putida S12 are organic acids [24]. These results suggested 
that this functional module was specifically perturbed by these sub-optimal carbon sources, 
D-glucose and D-fructose, and that this functional module was locally regulated in order to 
maintain homeostasis.  

For the E. coli data set six local functional modules were identified [23] (Figure 7). The 
number of local functional modules in the E. coli data set could not be determined with 
certainty as the large number of experimental conditions made it difficult to establish an 
optimal number of clusters, and thus local functional modules in this data set [23]. The 
clustering lead to functional modules which were biologically relevant, for instance, 
ketoglutarate, glutamate, malate, fumarate, aspartate, and NADH, all citric acid cycle and 
redox related metabolites, were part of the same local functional module (Figure 7, V). The 
local functional module seemed to be perturbed the most when E. coli was grown on 
succinate instead of D-glucose (Figure 7, E). This provided an explanation for the joint 
behavior of these metabolites as growth on succinate as sole carbon source requires 
gluconeogenesis, which results in a lower energy yield compared to growth on D-glucose. 
The lactate and pyruvate metabolite pair were part of another functional module (Figure 7, 
VI) that had extreme concentrations when E. coli was cultivated under oxygen limited 
conditions (Figure 7, C). As lactate is a major fermentation end product of E. coli produced 
from pyruvate under fermentative conditions, this is another example of a biologically 
meaningful local functional module in this data set. These results demonstrate that the 
behavior of these metabolites closely related to, or part of the citric acid cycle behave 
differently after specific perturbations.  
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2.2.3 Global versus local functional modules 
Identifying functional modules on either the local or the global level means exploring 

different views on metabolism (Figure 1). Comparing these regulation levels will therefore 
reveal more information about the relation between them. The composition of the global 
functional modules (rho = 0.725) of E. coli (Figure 5) was compared with the identified local 
functional modules (Figure) and the comparison is presented in Table 2. Although the 
global functional modules analyzed often contain metabolites which are for a majority 
member of one local functional module, it is clear that there is no direct correspondence 
between the composition of the global and the local functional modules. The metabolites 
that are part of the same global functional modules are frequently divided over several local 
functional modules. Examples of this are the global functional modules “Unknown/citric 
acid cycle/aromatic amino acid pathway” and “Amino acid/PPP”, which contain metabolites 
that are member of respectively four and five local functional modules. In addition, the 
metabolites in local functional modules are spread over different global functional modules. 
For instance, metabolites in local functional module VI are divided over five different global 
functional modules, among which are the global functional modules “Unknown/citric acid 
cycle/aromatic amino acid pathway”, “Amino acid/PPP”, and “Fermentation”. Local 
functional module VI was perturbed the most under low oxygen conditions. The results 
presented in Table 2 illustrate the differences between global and local functional modules. 
It shows that metabolites that are part of the same global functional module can be part of 
different local functional modules due to different responses to local perturbations and vice 
versa. 

3 Discussion 
In this paper we have identified functional modules in two real life microbial 

metabolomics data sets. Using two different data analysis tools, we were able to identify 
functional modules based on global (Figure 5) and local (Figure 7,8) regulatory effects in 
two data sets of a very different nature.  

These results provide insight in the mechanisms of homeostasis, where local 
perturbations of metabolism by specific environmental conditions lead to local responses in 
the metabolic network in order to maintain homeostasis. This is demonstrated by the 
average metabolite profile in the E. coli data set (Figure 2).  

Moreover, differences in local behavior of the concentrations of metabolites that were 
member of the same global functional module were identified. While the metabolites were 
part of the same global functional module, they belonged to different local functional 
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modules in response to specific changes in the environmental conditions (Figure 6 and 7). 
The nature of the two data sets had a strong influence on the ability to identify local 

and global functional modules. The P. putida S12 experimental design consisted of only four 
different experimental conditions, while the E. coli experimental design had a broad range 
of different experimental conditions with regard to environmental conditions, strains, and 
time points at which the samples were taken. The number of different experimental 
conditions and the impact of the changes in environmental conditions (e.g. low oxygen 
versus normal oxygen levels, or D-glucose versus succinate as carbon source) made the E. 
coli data set better suited for the identification of local functional modules, as many different 
local perturbations were present. In contrast, the P. putida S12 data set is more suited for the 
discovery of global functional modules as the global regulatory mechanisms are perturbed 
only by the different carbon sources. However the small number of samples prohibited us to 
perform this analysis reliably.  

Generally, we anticipate that the nature and type of functional modules that can be 
identified with the methods presented in this paper depend highly on the experimental 
design. This means that the functional modules discovered vary between data sets and are 
not static as parts of a jigsaw puzzle. For instance, different environmental conditions, such 
as carbon source, pH, nitrogen source, will induce different local perturbations. 
Furthermore, experimental designs based on different and strong perturbations will favor 
the discovery of local functional modules, while experimental designs with no or only 
mildly varying environmental conditions will favor the identification of global functional 

Global functional module Number of metabolites of global functional 
module found in local functional module 

Unknown, citric acid cycle, 
aromatic amino acid pathway 

Module II (1), Module III (2), Module V (12), 
Module VI (6), Total (21) 

Nucleotides, energy, cell wall Module II (4), Module III (13), Total (17) 
Energy transfer Module III (3), Total (3) 
Amino group transfer Module V (2), Total (2) 

Module I (7), Module II (5), Module IV (10), 
Module V (3), Module VI (4), Total (29) 

Amino acid, PPP 

Fermentation Module VI (7), Total (7) 
Table 2 – Comparison module membership for global and local functional modules. The 
cluster composition of the global functional modules at rho = 0.725 was compared with the 
local functional modules. Between brackets, the number of metabolites from the global 
functional module present in the local functional module is given. Also the total number of 
metabolites in the global functional module is given.
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modules. Therefore, to study global or local metabolic regulation, the experimental setup 
should be designed in such a way that these regulatory effects are present in the data. 

Besides the influence of the experimental design on the discovery of global and local 
functional modules, the settings of the data analysis methods influence the results as well, as 
discussed in Chapter 5  for two-mode clustering [23]. Varying the cut-off value for the 
correlation coefficient will provide different views on the global networks from loosely 
related to strongly related functional modules. There is no straightforward answer to which 
settings are the right or best ones. The different settings will provide different views on the 
data; selecting more functional modules for two-mode clustering will allow a more refined 
view on local effects, limited by the resolution or information present in the data. Biological 
interpretation, combined with rigorous statistical validation will therefore provide the most 
relevant views. 

To our knowledge, this is the first time that metabolic regulation on the level of global 
and local functional modules has been identified in real life microbial metabolomics data 
sets. This work could therefore provide a basis for future work on metabolic homeostasis 
and regulation of metabolite concentrations in micro organisms. 

4 Methods 
4.1 Data set 

The P. putida S12 data set was generated by cultivating P. putida S12 in independent 
triplicate controlled fermentations on D-fructose, D-glucose, gluconate, and succinate [25]. 
Metabolome samples were taken, quenched, extracted, and analyzed by GC-MS [26] and 
LC-MS [27]. The resulting data was normalized and manually curated as described 
previously [25], metabolites that were not detected in more than 80% of the experiments 
were removed from the data set. The data set consisted of 162 metabolite measurements. 

The E. coli data set was generated by cultivating E. coli NST74, a phenylalanine 
overproducing strain, in controlled batch fermentations in which one environmental 
parameter compared to a reference condition was varied [15]. One fermentation was 
performed with the wild type strain W3110, instead of the NST74 strain. Metabolome 
samples were taken at different time points during the fermentations, quenched, extracted, 
and analyzed by GC-MS and LC-MS. The resulting data was normalized and manually 
curated as described previously[23], metabolites that were not detected in more than 80% of 
the experiments were removed from the data set. The data set consisted of 188 metabolite 
measurements. 
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4.2 Global functional modules 
The pairwise correlation between each metabolite pair was determined based on 

Spearman rank correlation, as this correlation measure is robust with regard to outliers and 
non-linear behavior [28]. Metabolite pairs with an absolute correlation coefficient (ρ) larger 
than 0.7 were considered relevant for interpretation (p-value for every correlation with |ρ| 
>= 0.7 and 28 observations (E. coli data set) is equal or smaller than 5.1·10-5). The absolute 
correlation takes into account positive as well as negative correlations between metabolite 
pairs. Correlation coefficients lower than 0.7 were not further analyzed, as the correlation 
between two metabolites then explains less than roughly 49% (ρ2 = 0.49) of the variation of 
the metabolite pair. Additional testing by permutation tests (1000 runs) confirmed their 
significance. The significant correlations were visualized for different cut-off values (Figure 
5, additional results not shown) with the software program Cytoscape [29].  

4.3 Local functional modules 
For the discovery of the local functional modules a genetic algorithm based two-mode 

clustering method was applied [23]. The two-mode clustering method searched for clusters 
of experimental conditions and metabolites that were as homogeneous as possible. Before 
the two-mode clustering was applied the data was range scaled [25] in order to search for 
functional modules based on the behavior of metabolites relative to their biological range. 
The optimal number of clusters in the metabolite and experiment mode was based on the 
generalized knee method and the biological interpretation of the clustering results [23]. To 
decrease the chance of identifying a local minimum, five different start solutions were 
chosen and the best solution was used in further analysis. 

4.4 Computations 
The computations were performed on personal computers running Windows XP, 

Matlab [30], the statistics toolbox, the genetic algorithm and direct search toolbox, both 
from Mathworks, and home-made scripts.  
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Chapter 7 

1 Important factors in a top down systems biology study 
In top down systems biology, the answer to a certain biological question is sought in 

the systems wide response of a biological system to the chosen experimental conditions. The 
response of the biological system is measured with –omics tools, such as, transcriptomics or 
metabolomics, and advanced data analysis tools are applied to extract biologically relevant 
information from the measurements. The success of a top down systems biology approach is 
highly dependent on the information richness of the data obtained from the –omics 
measurements. Therefore, it is essential for a successful top down systems biology study to 
balance the three key factors: (i) biological question, (ii) experimental design, and (iii) data 
analysis. In Chapter 1, we discuss these three key factors, their interdependence, and their 
significance for successful top down systems biology. In Chapters 2 to 6, different aspects of 
the relation between a biological question and a data analysis strategy, such as, data 
pretreatment and selection of the most suited data analysis method, are further explored. 

2 Data pretreatment 
2.1 Translation of a biological question into the expected 
behavior of relevant biomolecules 

Extracting relevant biological information from large data sets is a major challenge in 
functional genomics research. Different aspects of the data hamper their biological 
interpretation. For instance, 5000-fold differences in concentration for different metabolites 
are present in a metabolomics data set, while these differences are not proportional to the 
biological relevance of these metabolites. However, data analysis methods are not able to 
make this distinction. Data pretreatment methods can correct for aspects that hinder the 
biological interpretation of metabolomics data sets by emphasizing the biological 
information in the data set and thus improving their biological interpretability.  

In Chapter 2, different data pretreatment methods i.e. centering, autoscaling, pareto 
scaling, range scaling, vast scaling, log transformation, and power transformation, were 
tested on a real-life metabolomics data set. They were found to greatly affect the outcome of 
the data analysis and thus the ranking of the, from a biological point of view, most 
important metabolites. Furthermore, the stability of the ranking, the influence of technical 
errors on data analysis, and the preference of data analysis methods for selecting highly 
abundant metabolites were affected by the data pretreatment method used prior to data 
analysis. 

We found that different pretreatment methods emphasize different aspects of the data 
and each pretreatment method has its own merits and drawbacks. The choice for a 
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pretreatment method depends on the biological question to be answered, the properties of 
the data set and the data analysis method selected. For the explorative analysis of the 
validation data set used in this study, autoscaling and range scaling performed better than 
the other pretreatment methods. That is, range scaling and autoscaling were able to remove 
the dependence of the ranking of the metabolites on the average concentration and the 
magnitude of the fold changes and showed biologically sensible results after PCA (principal 
component analysis). In conclusion, selecting a proper data pretreatment method is an 
essential step in the analysis of metabolomics data and greatly affects the metabolites that 
are identified to be the most important. 

2.2 Removal of confounding variation from micro-array data 
Confounding variation is variation that obscures the induced biological variation. 

Removal of the confounding variation can improve the interpretation of the data. In 
Chapter 3, we present a strategy to remove confounding variation based on an ANOVA 
approach, and to assess the impact of the removal on the interpretation of the variation 
induced by the experimental design. Our strategy is applied to an Aspergillus niger micro-
array data set in which the variation induced by the experimental design was obscured by 
variation induced by the presence or absence of substrate. It was possible to remove the 
confounding variation; however, variation induced by the experimental design was partially 
removed as well. This was due to correlation between the variation induced by the 
experimental design and the confounding variation. 

3 Conversion of a biological question into a data analysis 
question 
3.1 The relation of a class of metabolites and its surrounding 
metabolic network 

In metabolomics research it can be important to focus the data analysis to areas of 
specific interest within metabolism. For instance, the biological question under study can be 
related to a specific class of metabolites or a specific pathway. Supervised data analysis 
methods can bring this focus into data analysis and provide information on the behavior of 
the interesting metabolites in relation to the remainder of the metabolome. In Chapter 4, we 
describe the application of consensus PCA (CPCA) and canonical correlation analysis 
(CCA) as a means to focus data analysis. CPCA searches for major trends in the behavior of 
metabolite concentrations common for the metabolites of interest and the remainder of the 
metabolome. CCA identifies the strongest correlations between these two subsets. 

CPCA and CCA were applied to two microbial metabolomics data sets. The first data 
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set, derived from Pseudomonas putida, was relatively simple and contained metabolomes 
obtained under four environmental conditions only. The second data set, obtained from 
Escherichia coli, was complex and contained metabolomes from 28 different environmental 
conditions. For the first data set, CCA and CPCA gave similar results as the variation in the 
two subsets was similar. In contrast, CCA and CPCA yielded different results in case of the 
E. coli data set. With CPCA the trends in the metabolites of interest – the phenylalanine 
biosynthesis intermediates - dominated the results. These trends were related to high and 
low phenylalanine productivity, and important metabolites were associated with amino acid 
metabolism and regulation of the phenylalanine biosynthesis route. 

With CCA neither subset dominated the data analysis. CCA described correlations 
between the subsets based on wild type and overproducing strain differences and different 
carbon sources. For the strain differences, metabolites from the aromatic amino acid 
pathways were important.   

Both CCA and CPCA enable to focus the data analysis of metabolomics data to groups 
of metabolites that are of specific interest. Depending on the nature of the data set, they 
provide different, complementary, views on the relation between the metabolites of interest 
and the remainder of the metabolome. 

3.2 Analysis of the behavior of subsets of metabolites under 
different environmental conditions 

Metabolomics and other omics tools are generally characterized by large data sets with 
many variables and obtained under different environmental conditions. Clustering methods 
and more specifically two-mode clustering methods are excellent tools for analyzing this 
type of data. Two-mode clustering methods allow for analysis of the behavior of subsets of 
metabolites under different experimental conditions. In addition, the results are easily 
visualized. In Chapter 5 we introduce a two-mode clustering method based on a genetic 
algorithm that uses a criterion that searches for homogeneous clusters. Furthermore we 
introduce a cluster stability criterion to validate the clusters and we provide an extended 
knee plot to select the optimal number of clusters in both experimental and metabolite 
modes. 

The genetic algorithm-based two-mode clustering gave biological relevant results 
when it was applied to two real life metabolomics data sets. It was, for instance, able to 
identify a catabolic pathway for growth on several of the carbon sources. 
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3.3 Discovery of functional modules in metabolomics data: 
regulation of cellular metabolite concentrations 

In metabolism, functional modules can be defined as groups of metabolites that have a 
related function. Functional modules can be determined on different levels within the 
cellular organization. In response to normal, not stressful conditions, global regulatory 
effects will control the major physiological processes. These global regulatory effects are 
characterized by metabolites whose concentrations show a similar behavior in response to 
different environmental conditions. Changes in environmental conditions that perturb 
specific areas in the metabolism will provoke local regulatory effects. Metabolites whose 
concentration responds similar in response to such local perturbations will be part of the 
same local functional module. In Chapter 6, we identified both local and global functional 
modules based on two real-life microbial metabolomics data sets. Furthermore we discuss 
the nature of homeostasis, as is reflected by the regulation of metabolite concentrations. 

Local functional modules were identified in two microbial metabolomics data sets 
originating from Escherichia coli and Pseudomonas putida S12 by a two-mode clustering 
approach. Their identification proved strongly dependent on the variation in environmental 
conditions under which the metabolome data were obtained. For instance, a local functional 
module containing citric acid cycle and redox-related metabolites was identified when E. 
coli was grown on succinate instead of D-glucose. The global functional modules were 
discovered by a correlation network analysis. Here, modules related to amino acid 
biosynthesis and the central metabolism were found. Comparison of the metabolite 
composition of local and global functional modules revealed that metabolites which are 
member of the same global functional module are not necessarily member of the same local 
functional module, and vice versa. 

Regulation of metabolite concentrations was found to occur on different hierarchical 
levels. Whether these different hierarchical regulation levels could be identified in the 
metabolomics data set depended strongly on the environmental conditions – and thus the 
experimental design of the data sets - and how the selected conditions perturb the 
metabolism. By the application of two different data analysis methods both local and global 
functional modules could be identified. 

4 Outlook further research 
The results presented in this thesis offer several leads for further research both 

biologically as well as data analysis oriented. The previous chapters of this thesis were 
inspired by the translation of a biological question into a data analysis strategy. Although the 
research was illustrated by real life data sets, the final step, that is, validation of the findings 
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in the laboratory was not made. Therefore, following up leads found in the previous 
chapters would be the proof of the pudding for the proposed approaches. Nevertheless, 
there remain more generic topics for research as well. 

4.1 Functional modules 
The search for functional modules in metabolomics data in Chapter 6 was a step 

towards a better understanding of the regulation of metabolite concentrations. The next step 
would be to set up a top down systems biology study in which the properties of global as 
well as local regulatory mechanisms are further explored. Ideally, such study would be 
developed for a well studied and relatively simple organism, for instance Escherichia coli or 
Bacillus subtilis. The study should be designed around (parts of) the central metabolism and 
around more condition dependent modules, e.g. amino acid biosynthesis. In this way, the 
regulatory differences with regard to global and local regulation between constitutive and 
inducible areas of the metabolism can be analyzed. While it is difficult, if not impossible, to 
establish a clear distinction [1] between local and global functional modules; studying the 
differences between, for instance, the response of the central metabolism and more 
condition dependent modules to certain perturbations in the experimental design can teach 
us more about this hierarchical distinction. 

The intriguing global functional module found in Chapter 6 (Chapter 6, Figure 5) 
which consists for a large part of unidentified metabolites illustrates an important problem 
within metabolomics: the identification of unknown metabolites. In mass spectrometry, 
unknown compounds often remain unidentified due to the absence of reference 
compounds. It would therefore be useful for biologists and analytical chemists to try to 
relate the masses and hence possible chemical structures of the unidentified compounds to 
the behavior displayed by these unidentified compounds under the measured experimental 
conditions. The behavior of these unidentified compounds could reduce the number of 
possible chemical structures and provide additional information regarding their possible 
identity. 

4.2 Integration of information from other sources 
The application of the data analysis methods discussed in Chapter 4 can be extended 

to combine biologically relevant information obtained on different levels, such as, 
transcriptomics, proteomics and metabolomics, in the cellular organization in a broad top 
down systems biology fashion. Depending on the biological question, it is possible to 
emphasize the synergy, or to search for distinctive behavior between the different 
biochemical layers.  
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4.2.1 Potential data sources 
The data that can be combined and utilized in a data analysis strategy does not have to 

be restricted to -omics measurements; other data sources can also be integrated. For 
instance, process parameters like nutrient consumption rates, pH control data, or biomass 
formation rates can be a valuable data source for the data analysis. They can help explain the 
behavior of the measured biomolecules. Also “soft” data like technicians observations, i.e. 
foam production or color changes, could be utilized to help extract information relevant to 
the biological question from the data. In addition, the data can be qualitative, e.g. color of 
the culture, and does not have to be limited to quantitative data.  

For two data blocks, we briefly discussed weighting options, such as, every variable 
equally important, or each data block equally important (for P. putida metabolome and 
nucleotides; for E. coli metabolome and phenylalanine pathway) (Chapter 4). These 
weighting schemes can be extended to different weighting schemes for different data blocks 
depending on the nature of the data blocks, e.g. the reliability of the measurements in the 
different data blocks. Also subjective criteria, such as, the confidence researchers have in the 
different data blocks, could be applied as a weighting factor. 

The examples of data sources discussed above are all directly linked to the conducted 
experiments and therefore share the experimental mode of the data. However, the data 
analysis could also benefit from information unrelated to the specific experiments, but 
related to, for example, literature knowledge regarding regulation mechanisms of 
metabolites/proteins/genes. An example of linking this type of information to gene 
expression is the use of DNA sequence information for the prediction of gene expression 
[2]. Specifically for metabolomics, linking the knowledge obtained from genome wide 
bottom up systems biology analyses (e.g. [3,4]) to metabolomics analysis could be very 
useful, for instance, in an experiment in which metabolomics samples are taken in short 
time intervals analogously to traditional flux analyses. 

4.2.2 Challenges for data integration 
It is not straightforward to utilize and balance the different sources of probably 

heterogeneous data mentioned in the previous section in a data analysis method. There are 
different strategies to utilize the additional data and these strategies depend on various 
factors: (i) the type and nature of data offered; (ii) the type and nature of the data with 
which the offered data should be combined; (iii) the biological question, et cetera. The 
examples provided below will therefore be limited to general ideas. For instance, the 
additional data could provide better estimates of starting positions for methods like two-
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mode clustering (Chapter 5). In this way, the influence of the added information is fairly 
mild as the starting position of the algorithm does not give guarantees regarding the end 
solution. An example of this could be to use transcription factor binding site information as 
a starting point for the two-mode clustering of gene expression data. In another analysis, the 
additional data could be fused with the measured data and be fully part of the data analysis 
(e.g. merging process data with metabolomics data in a CPCA setting), or the information 
could be used to compare behavior between different measurements (e.g. metabolomics 
data with simulation results from metabolic models in a CCA setting). 

4.3 The performance of multivariate data analysis methods in 
systems biology 

Combining different data sources can result in new biological knowledge. However, 
especially in the case of linking different types of –omics data sets, the reliable estimation of 
model parameters (i.e. PCA loadings) becomes more difficult due to addition of many extra 
biomolecules. Due to the additional biomolecules, it becomes increasingly more difficult to 
determine the specific contribution of one biomolecule to the data analysis model 
(collinearity). Since it is still not clear how severe this problem is, and how many 
experiments are required to be able to make reliable estimates of model parameters (see also 
Chapter 1), studying the performance of multivariate data analysis tools in –omics data 
analysis is still an important topic. An analysis of this problem could benefit from the 
different databases containing microarray expression data from many different 
experimental conditions and many different organisms. These micro-array databases could 
form a basis for studies of the dependence of the performance of data analysis methods on 
the number of samples. The micro-arrays selected for such a study should be of decent 
quality, e.g. with regard to reproducibility, and there should be some coherence in the 
experimental conditions of which samples were taken for the micro-array measurements.  

5 Conclusion 
This thesis discussed essential aspects of top down systems biology and focused on the 

relation between biological question and data analysis strategy. This thesis clearly 
demonstrates the interdependence of a biological question and a data analysis strategy. 
Depending on the articulation of the biological question, different choices within the data 
analysis strategy were made. For instance in Chapter 4 focusing on major trends or strongest 
correlation of a group of metabolites between its surrounding network determined the 
choice between CPCA and CCA; and in Chapter 6 different data analysis strategies were 
developed for the identification of global and local functional modules.  
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The interdependence of the different factors of the top down systems biology research 
triangle (Chapter 1) underlines the multidisciplinary nature of top down systems biology. To 
be able to make the best choices for a particular top down systems biology study, the 
collaboration of experts in biology, data analysis, and – depending on the studied biological 
level (transcriptome, proteome, or metabolome) – analytical chemistry is required. These 
multidisciplinary areas are, in my opinion, the most exiting areas as there are possibilities to 
generate synergy between the constituent fields. It seems that especially data integration 
offers these possibilities, and therefore I hope to be able to contribute to this area in further 
studies. 
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1 Belangrijke factoren bij een top down systeembiologie 
studie 

In top down systeembiologie wordt het antwoord op een bepaalde biologische vraag 
gezocht in de reactie van een biologisch systeem op de gekozen experimentele condities. De 
reactie van het biologische systeem wordt gemeten met –omics methodes, zoals 
transcriptomics en metabolomics. Geavanceerde data-analysemethodes worden gebruikt 
om biologisch relevante informatie uit de meetgegevens te extraheren. Of een top down 
systeembiologieonderzoek succesvol is hangt sterk af van de informatierijkdom van de 
gegevens die met de –omics methodes zijn verkregen. Voor een succesvol 
systeembiologieonderzoek is het daarom essentieel dat er een balans wordt gevonden tussen 
drie sleutelfactoren: (i) de biologische vraag, (ii) de studieopzet, (iii) de data-analyse. In 
hoofdstuk 1 bespreken we deze drie sleutelfactoren, hun onderlinge afhankelijkheid, en hun 
belang voor succesvol systeembiologieonderzoek. In hoofdstukken 2 tot en met 6 worden 
verschillende aspecten van de relatie tussen de biologische vraag en de data-analysestrategie, 
zoals datavoorbewerking en de keuze voor de meest geschikte data-analysemethode verder 
onderzocht. 

2 Datavoorbewerking 
2.1 Het vertalen van een biologische vraag in het verwachtte 
gedrag van relevante biomoleculen 

Het extraheren van biologisch relevante informatie uit grote datasets is binnen 
functional genomics onderzoek een van de grote uitdagingen. Verschillende aspecten van de 
data verstoren de biologische interpretatie van deze data. Het is bijvoorbeeld mogelijk dat de 
concentraties van verschillende metabolieten in een metabolomics dataset een factor 5000 
verschillen, terwijl deze verschillen niet in verhouding staan tot de biologische relevantie 
van deze metabolieten. Data-analysemethodes kunnen dit onderscheid echter niet altijd 
maken. Datavoorbewerkingsmethodes zijn in staat om te corrigeren voor deze factoren die 
de biologische interpretatie van metabolomics datasets bemoeilijken. Er wordt gecorrigeerd 
door de biologische informatie in de dataset te benadrukken en hierdoor de biologische 
interpretatie te verbeteren. 

In hoofdstuk 2 worden de prestaties van verschillende datavoorbewerkingsmethodes, 
zoals centreren, autoschalen, paretoschalen, rangeschalen, vastschalen, logtransformeren, en 
machtverheffen, met elkaar vergeleken door ze toe te passen op een metabolomics dataset. 
De datavoorbewerkingsmethodes hadden een zeer grote invloed op de data-
analyseresultaten en dus de rangorde van de, vanuit een biologisch oogpunt, belangrijkste 
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metabolieten. Bovendien had de keuze voor een bepaalde datavoorbewerkingsmethode 
invloed op (i) de stabiliteit van rangorde; (ii) de invloed van technische fouten op de data-
analyse; en (iii) de voorkeur van data-analysemethodes om metabolieten te selecteren die in 
hoge concentraties voorkomen. 

Uit ons onderzoek bleek dat verschillende datavoorbewerkingsmethodes andere 
aspecten van de data benadrukken en dat elke datavoorbewerkingsmethode zo zijn eigen 
voor- en nadelen heeft. De keuze voor een bepaalde data-analysemethode hangt af van de 
biologische vraag, de eigenschappen van de dataset, en de gekozen data-analysemethode. 
Voor de verkennende analyse van de dataset die in deze studie is gebruikt, presteerden 
autoschalen en rangeschalen beter dan de andere datavoorbewerkingsmethodes. Dat wil 
zeggen, rangeschalen en autoschalen waren in staat om de rangorde van de metabolieten 
onafhankelijkheid te laten zijn van de gemiddelde concentratie en van de grootte van de 
gemiddelde spreiding van deze metabolieten. Dit leidde tot biologisch zinvolle resultaten na 
PCA (principale componenten analyse). Wij concluderen dat het kiezen van een geschikte 
datavoorbewerkingsmethode een essentiële stap is in de analyse van metabolomics data en 
dat deze keuze een grote invloed heeft op identificatie van de rangorde van de meest 
belangrijke metabolieten. 

2.2 Het verwijderen van storende variatie van micro-array data 
De geïnduceerde biologische variatie in een micro-array dataset kan worden 

overschaduwd door storende variatie. Het verwijderen van deze storende variatie kan de 
interpretatie van de micro-array data verbeteren. In hoofdstuk 3 presenteren wij een 
strategie gebaseerd op ANOVA om deze storende variatie te verwijderen, en om de impact 
van deze verwijdering op de interpretatie van de door het experimenteel ontwerp 
geïnduceerde variatie te analyseren. Deze strategie is toegepast op een Aspergillus niger 
micro-array dataset. In deze dataset werd de variatie geïnduceerd door het experimentele 
ontwerp overschaduwd door variatie geïnduceerd door de aan- of afwezigheid van 
substraat. Het was mogelijk om de storende variatie te verwijderen. Echter, een deel van de 
geïnduceerde variatie werd hierdoor ook verwijderd. Dit effect werd veroorzaakt doordat 
een deel van de geïnduceerde variatie correleerde met de storende variatie. 

3 Het vertalen van een biologische vraag in een data-
analysevraag 
3.1 De relatie van een klasse van metabolieten en het 
omringende metabole netwerk 

Het kan binnen metabolomics onderzoek van belang zijn om de data-analyse te 
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richten op specifieke belangrijke gebieden binnen het metabolisme. De biologische vraag 
kan bijvoorbeeld betrekking hebben op een specifieke klasse van metabolieten of een 
specifieke metabole route. Zogenaamde supervised data-analysemethodes kunnen de data-
analyse hierop richten en zo informatie geven over het gedrag van de belangrijke 
metabolieten in relatie tot het omringende metabole netwerk. In hoofstuk 4 bediscussieren 
we de toepassing van consensus PCA (CPCA) en canonische correlatie analyse (CCA) om 
data-analyse te richten. CPCA zoek voor hoofdtrends in het gedrag van de 
metabolietconcentraties gemeenschappelijk zowel voor de belangrijke metabolieten als voor 
de rest van het metabolisme. CCA zoekt naar de sterkste correlaties tussen deze twee 
subgroepen. 

CPCA en CCA zijn toegepast op twee microbiologische metabolomics datasets. De 
eerste dataset, verkregen met experimenten met Pseudomonas putida, was relatief simpel en 
bevatte metabolomes die verkregen waren onder slechts vier condities. De tweede dataset, 
verkregen met experimenten met Escherichia coli, was complex en bevatte metabolomes van 
28 verschillende condities. Bij de eerste dataset gaven CCA en CPCA vergelijkbare 
resultaten omdat de variate in de twee subgroepen sterk vergelijkbaar was. Daarentegen 
leidde CCA en CPCA tot verschillende resultaten voor de E. coli dataset. Met CPCA 
domineerden de trends in de belangrijke metabolieten – de fenylalanine biosyntheseroute – 
de resultaten. Deze trends hadden betrekking op hoge en lage fenylalanineproductie. De 
voor deze trends belangrijke metabolieten waren onderdeel van het aminozuurmetabolisme 
en betrokken bij de regulatie van de fenylalanine biosyntheseroute. 

Geen van de subgroepen domineerden de CCA. CCA beschreef de correlaties tussen 
de subgroepen die gebaseerd waren op verschillen tussen de wildtype en de 
overproducerende stammen, en verschillende koolstofbronnen. Belangrijk voor de 
verschillen tussen de stammen waren metabolieten van de aromatische 
aminozuurbiosyntheseroutes  . 

Zowel CCA als CPCA kunnen de data-analyse richten op groepen metabolieten met 
een specifiek belang. Afhankelijk van de eigenschappen van de dataset, kunnen deze 
methodes verschillende complementaire visies geven op de relatie van de belangrijke 
metabolieten en de rest van het metabole netwerk. 

Analyse van het gedrag van subgroepen van metabolieten bij 
subgroepen van experimentele omstandigheden 

Metabolomics en andere –omics tools resulteren in de regel in grote datasets met zeer 
veel variabelen welke gemeten zijn onder verschillende omstandigheden. Clustermethodes 
en in het bijzonder two-mode clustermethodes zijn uitstekende methodes om dit type data 
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te analyseren. Zij kunnen het gedrag van subgroepen van metabolieten onder verschillende 
experimentele condities analyseren. Bovendien kunnen de resultaten gemakkelijk worden 
gevisualiseerd. In hoofdstuk 5 introduceren we een two-mode clustermethode gebaseerd op 
een genetisch algoritme dat zoekt naar homogene clusters. Bovendien presenteren we een 
clusterstabiliteitscriterium om de gevonden clusters te valideren, en een uitbreiding van de 
knieplot welke help bij de identificatie van het optimale aantal clusters. 

De op genetische algoritmes gebaseerde two-mode clustermethode gaf biologisch 
relevante resultaten nadat het op twee metabolomics datasets was toegepast. De methode 
kon bijvoorbeeld een katabole metabole route identificeren betrokken bij de groei op een 
aantal van de gebruikte koostofbronnen. 

3.3 Identificatie van functionele modules in metabolomics data: 
regulatie van cellulaire metabolietconcentraties 

Binnen het metabolisme kunnen functionele modules worden gedefinieerd als 
groepen van metabolieten die een gerelateerde functie hebben. Functionele modules 
kunnen worden gevonden op verschillende niveaus binnen de cellulaire organisatie. Globale 
regulatiemechanismes zullen de belangrijkste fysiologische processen controleren als reactie 
op normale, niet stressvolle condities. Deze globale regulatiemechanismes worden 
gekarakteriseerd doordat de concentraties van bepaalde metabolieten hetzelfde gedrag 
vertonen als reactie op verschillende condities. Veranderingen in de condities die specifieke 
gebieden binnen het metabolisme verstoren zullen lokale regulatiemechanismes activeren. 
Metabolieten zullen onderdeel zijn van hetzelfde lokale functionele module wanneer de 
concentraties vergelijkbaar reageren in reactie op een verandering binnen een specifiek 
gebied van het metabolisme. In hoofdstuk 6 hebben we zowel lokale als globale functionele 
modules geïdentificeerd in twee microbiële metabolomics datasets. We bespreken hiernaast 
homeostase zoals dat wordt gereflecteerd in de regulatie van metabolietconcentraties. 

Lokale functionele modules werden geïdentificeerd door middel van een two-mode 
clusteringmethode in twee microbiële metabolomics datasets afkomstig van E. coli en 
P. putida S12. De identificatie van lokale functionele modules bleek sterk afhankelijk van de 
variatie in de experimentele condities waaronder de metabolomes werden verkregen. Zo 
werd bijvoorbeeld een lokale functionele module gevonden die metabolieten uit de 
citroenzuurcyclus en redoxbalans gerelateerde metabolieten bevatte onder condities waar 
E. coli op succinaat werd gekweekt in plaats van D-glucose. De globale functionele modules 
werden ontdekt door middel van een correlatienetwerkanalyse. Hier werden modules 
gerelateerd aan aminozuurbiosynthese en het centraal metabolisme gevonden. Een 
vergelijking van de compositie van lokale en globale functionele modules liet zien dat 
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metabolieten die lid zijn van hetzelfde globale module niet noodzakelijk lid zijn van 
hetzelfde lokale functionele module, en vice versa. 

De regulatie van metabolietconcentraties vind plaats op verschillende hiërarchische 
niveaus. De identificatie van deze regulatieniveaus hing sterk af van de experimentele 
condities, en dus het experimentele ontwerp waarmee deze datasets zijn gegenereerd, en hoe 
deze condities het metabolisme verstoren. Door twee verschillende data-analysemethodes 
toe te passen konden zowel lokale als globale functionele modules worden gevonden. 

4 Conclusie 
Dit proefschrift bediscussieert essentiële aspecten van top down systeembiologie en 

richt zich op de relatie tussen de biologische vraag en de data-analysestrategie. De 
hoofdstukken van dit proefschrif illustreren de onderlinge afhankelijkheid van een 
biologische vraag en een data-analysestrategie. Afhankelijk van het benadrukken van 
verschillende aspecten van de biologische vraag werden andere keuzes binnen de data-
analysestrategie gemaakt. In hoofdstuk 4 bijvoorbeeld bepaalde de focus op hoofdtrends of 
sterkste correlaties tussen een groep metabolieten en het omringende metabole netwerk de 
keuze tussen CPCA en CCA. In hoofdstuk 6 werden verschillende data-analysestrategieën 
ontwikkeld voor het identificeren van globale of lokale functionele modules. 

De onderlinge afhankelijkheid van de verschillende factoren van de top down 
systeembiologiedriehoek (hoofstuk 1) onderstreept het multidisciplinaire karakter van top 
down systeembiologie. Om de beste keuzes te maken voor een bepaald top down 
systeembiologieonderzoek, is de samenwerking van experts binnen biologie, data-analyse, 
- en voor metabolomics en proteomics - analytische chemie vereist. Ik denk dat deze 
multidisciplinaire gebieden de interessantste onderzoeksgebieden zijn, omdat hier 
mogelijkheden zijn om synergie te genereren tussen deze onderzoeksvelden. 



Nawoord 
Met de afronding van dit proefschrift is er een einde gekomen aan mijn academische 

opleidingstraject die in 1997 aan de Landbouw Universiteit Wageningen begon. In de eerste 
fase van dit traject ben ik opgeleid tot labmicrobioloog, en in de tweede fase lijk ik het lab 
achter me gelaten te hebben om me verder te specialiseren in een veld waarvan ik in een 
kroeg het nut voor moleculair biologen nog weleens heb betwijfeld. Bij deze koerswijziging 
hebben Age, Mariët en Johan me met veel enthousiasme en veel discussies begeleid.  

Mariët, bedankt voor de begeleiding bij zowel mijn afstudeervak als mijn 
promotieonderzoek. Ik ben erg blij voor je begeleiding met je openheid en je kritische en 
positieve blik. Ook waardeer ik de tijd die je zonder morren vrijmaakte en de snelheid 
waarmee je mijn stukken nakeek. Age, ook jij bedankt voor je kritische blik en je 
enthousiasme. Ik vind het heel prettig om met iemand te hebben samengewerkt die zo 
gemotiveerd is om continue te blijven leren. Ook ben ik blij met je bijdrage en deelname aan 
de studiereis naar Canada. Johan, bedankt voor de spoedcursus multivariate data-analyse 
die je me hebt gegeven en het geduld waarmee je mijn vragen hebt beantwoord. Ook 
bedankt voor je belangstelling en je toegankelijkheid. Het kluyver centre for genomics of 
industrial fermentations wil ik bedanken voor de financiering van mijn project. 

Machtelt en Suzanne, mijn paranimfen. Ik vond jullie hele bijzondere collega’s met een 
originele kijk op dingen. Machtelt, ik vond het heel gezellig met je op de kamer, op de fiets, 
en met etentjes en borrels in de stad. Suzanne, het was mede dankzij jou heel gezellig in 
Amsterdam. Ik vond het erg leuk met je bij te kletsen en zeker ook om de Canadareis met 
jou en Jos te organiseren. 

Jos, jou wil ik bedanken voor de leuke samenwerking bij inmiddels twee en 
binnenkort drie artikelen. Het was leuk om met jou op te trekken, of dit nu op de kamer, 
cursus of congres was.  

Erik en Henk-Jan, ik vond het erg gezellig bij jullie op de kamer, de discussies en 
verhalen waren interessant en vaak heel grappig. 

Bart, jij hebt mijn keuze voor dit aioproject “gekatalyseerd” door mij nog eens op te 
bellen en over deze aioplaats te praten. Hierdoor zat ik onverwacht met Age en Mariët te 
praten over dit project en de invulling hiervan. Ook was het carpolen, borrelen en waren de 
etentjes heel gezellig en interessant. 

Roelie, bedankt voor de gezelligheid op de kamer en in de auto. 
Rolf, bedankt voor de gezelligheid en de lol op kamer. Ik hoop dat jij ook zo snel 

mogelijk je boekje af krijgt. Succes met de laatste loodjes. 
Hennie, bedankt voor de leuke gesprekken, je belangstelling en je hartelijkheid. 

119 



Nawoord 
 

 120

Douwe, bedankt voor je vriendschap, en inmiddels dan ook eindelijk een 
samenwerking. 

Ook wil ik mijn overige kamergenoten bedanken, waarmee ik wat minder intensief, 
maar niet minder leuk mee op de kamer heb gezeten, Olja, Ewoud, Helen, Amandine, en 
Rob. En collega’s met wie ik heb samengewerkt of waarmee ik leuke gesprekken mee heb 
gevoerd. Van TNO: Martien, Norbert, Jan, Rob Leer, Karin, Nicole, Mieke, Sabina, Sabine, 
Carina, Bianca, Marian, Cora, Renger, Uwe, Bas, Leon, Eddy, Maud. En van Amsterdam: 
Huub, Daniël, Maikel, Hans, Susanna, Jeroen, Janko, en Tunahan. De collega’s die ik niet 
met naam heb genoemd wil ik bedanken voor de leuke sfeer in Zeist en Amsterdam. Ook 
wil ik de facilitaire diensten van de UvA en van TNO bedanken voor de ondersteuning. 

Rens, ik vond het superleuk om jou te begeleiden bij je stage. Ik heb heel veel van je 
geleerd, en je enthousiasme was erg motiverend. 

Mijn vrienden, familie en schoonfamilie wil ik bedanken voor de belangstelling voor 
zowel de enthousiaste verhalen als mijn frustraties. 

Pap, Ramona, en Miranda; bedankt voor jullie belangstelling en liefde. 
Annelieke, bedankt voor je liefde, enthousiasme, steun, en geduld. Ik kijk uit naar de 

stappen die we samen nog gaan zetten. 



List of publications 
 

List of publications 
J. A. Hageman, R. A. van den Berg, J. A. Westerhuis, M. J. van der Werf, and A. K. 

Smilde. 2008. Genetic algorithm based two-mode clustering of metabolomics data. 
Metabolomics 4: 141-149. 

 
J. A. Hageman, R. A. van den Berg, J. A. Westerhuis, H. C. J. Hoefsloot, and A. K. 

Smilde. 2006. Bagged K-Means Clustering of Metabolome Data. Critical Reviews in 
Analytical Chemistry 36: 211-220. 

 
R. A. van den Berg, H. C. J. Hoefsloot, J. A. Westerhuis, A. K. Smilde, and M. J. van der 

Werf. 2006. Centering, scaling, and transformations: improving the biological information 
content of metabolomics data. BMC Genomics 7: 142. 

 
R. A. van den Berg, A. K. Smilde, J. A. Hageman, U. Thissen, J. A. Westerhuis, and 

M. J. van der Werf. Discovery of functional modules in metabolomics data: regulation of 
cellular metabolite concentrations. Submitted. 

 
R. A. van den Berg, C. M. Rubingh, J. A. Westerhuis, M. J. van der Werf and A. K. 

Smilde. Identifying connections between a metabolic pathway and its surrounding network 
from metabolomics data. In preparation. 

 
R.A. van den Berg, A.K. Smilde, J.A. Westerhuis, M.J. van der Werf. Key factors for 

successful top down systems biology in biotechnology. In preparation. 

 121



 122

 



Curriculum vitae 
 

Curriculum vitae 
Robert van den Berg werd op 15 December 1978 te Woerden geboren. Hij heeft VWO 

gedaan op het Kalsbeek College in Woerden. In 2003 voltooide hij zijn studie 
Bioprocestechnologie aan de Wageningen Universiteit met afstudeervakken in de richtingen 
Microbiologie en Moleculaire genetica van industriële micro-organismen. In dit jaar werd 
ook begonnen met het promotieonderzoek wat is beschreven in dit proefschrift. Het 
onderzoek werd uitgevoerd voor het Kluyver centre for genomics of industrial 
fermentations bij TNO Kwaliteit van Leven te Zeist en bij de Universiteit van Amsterdam. 
Het onderzoek werd begeleid door prof. Dr. A. K. Smilde, Dr. Ir. M. J. van der Werf en Dr. J. 
A. Westerhuis. Vanaf 2008 is hij werkzaam als post-doc bij de Research Group of 
Quantitative Psychology and Individual Differences aan de Katholieke Universiteit Leuven, 
te Leuven. 

 123


	kaftvoor.pdf
	20080809proefschrift final
	Front matter
	Table of contents
	Chapter I
	1 Introduction
	1 Introduction
	1.1 Systems biology philosophies
	1.2 Advantages of top down systems biology
	1.3 Top down systems biology challenges 

	2 Crucial aspects of top down systems biology
	2.1 The biological question
	2.1.1 Articulating essential aspects of the biological question
	2.1.2 Utilization of a quantifiable phenotype

	2.2 Experimental design
	2.2.1 Experimental conditions
	2.2.2 -omics tool
	2.2.3 Sample collection
	2.2.3.1 Capturing the relevant biological phenomena
	2.2.3.2 Exploring new conditions or firmly establishing the most important conditions?
	2.2.3.3 Improved performance data analysis methods


	2.3 Data analysis
	2.3.1 Translation of the biological question into the expected behavior of biomolecules
	2.3.2 Statistical validation of the data analysis


	3 Conclusions
	4 References


	Chapter II
	2 Centering, scaling, and transformations: improving the biological information content of metabolomics data
	1 Background
	1.1 Properties of metabolome data
	1.2 Data pretreatment methods
	1.2.1 Class I: Centering
	1.2.2 Class II: Scaling
	1.2.2.1 Scaling based on data dispersion
	1.2.2.2 Scaling based on average value
	1.2.3 Class III: Transformations


	2 Methods
	2.1 Background of the data set
	2.2 GC-MS analysis
	2.3 Data preprocessing
	2.4 Data pretreatment
	2.5 Data analysis

	3 Results and discussion
	3.1 Properties of the clean data
	3.2 The effect of pretreatment on the clean data
	3.2.1 Heteroscedasticity

	3.3 The effect of data pretreatment on the data analysis results
	3.4 Ranking of the most important metabolites
	3.5 Reliability of the rank of the metabolites

	4 Conclusions
	5 Acknowledgements
	6 References


	Chapter III
	3 Removing confounding effects from micro-array data
	1 Introduction
	2 Theory
	2.1 Notation
	2.2 Variation in X
	2.3 Removal of the confounding variation in X
	2.4 Simultaneous estimation of the variation originating from D and U
	2.5 Sequential estimation of the variation originating from D and U
	2.6 Comparison of the simultaneous and sequential approach
	2.7 Design factors in D affected by the sequential removal of the confounders


	3 Results
	3.1 Aspergillus niger micro array data set
	3.2 Removal of the confounding variation
	3.2.1 Groups based on presence or depletion of substrate 
	3.2.2 Three groups


	4 Discussion
	5 References


	Chapter IV
	4 Identifying connections between a metabolic pathway and its surrounding network from metabolomics data
	1 Background
	2 Theory
	2.1 CPCA
	2.2 CCA
	2.3 Validation

	3 Results 
	3.1 CPCA
	3.2 CCA

	4 Discussion 
	5 Methods
	5.1 Data
	5.2 Data analysis

	6 Acknowledgements 
	7 References


	Chapter V
	5 Genetic algorithm based two-mode clustering of metabolomics data
	1 Introduction
	2 Methods and Materials
	2.1 Data
	2.2 Genetic Algorithms
	2.3 Two-mode clustering
	2.3.1 The model
	2.3.2 Evaluation function
	2.3.3 Software

	2.4 Number of clusters
	2.5 Validation

	3 Results
	3.1 Estimation of the number of clusters
	3.1.1 P. putida data
	3.1.2 E. coli data

	3.2 Two-mode clustering
	3.2.1 P. putida data
	3.2.2 E. coli data


	4 Concluding remarks
	5 Acknowledgements
	6 References
	7 Appendix


	Chapter VI
	6 Discovery of functional modules in metabolomics data: regulation of cellular metabolite concentrations
	1 Background
	2 Results
	2.1 Homeostasis of metabolites
	2.2 Identification of functional modules
	2.2.1 Global functional modules
	2.2.2 Local functional modules
	2.2.3 Global versus local functional modules


	3 Discussion
	4 Methods
	4.1 Data set
	4.2 Global functional modules
	4.3 Local functional modules
	4.4 Computations

	5 Authors’ contributions
	6 Acknowledgements
	7 References


	Chapter VII
	7 Summary and outlook
	1 Important factors in a top down systems biology study
	2 Data pretreatment
	2.1 Translation of a biological question into the expected behavior of relevant biomolecules
	2.2 Removal of confounding variation from micro-array data

	3 Conversion of a biological question into a data analysis question
	3.1 The relation of a class of metabolites and its surrounding metabolic network
	3.2 Analysis of the behavior of subsets of metabolites under different environmental conditions
	3.3 Discovery of functional modules in metabolomics data: regulation of cellular metabolite concentrations

	4 Outlook further research
	4.1 Functional modules
	4.2 Integration of information from other sources
	4.2.1 Potential data sources
	4.2.2 Challenges for data integration

	4.3 The performance of multivariate data analysis methods in systems biology

	5 Conclusion
	6 References


	Samenvatting
	Samenvatting
	1 Belangrijke factoren bij een top down systeembiologie studie
	2 Datavoorbewerking
	2.1 Het vertalen van een biologische vraag in het verwachtte gedrag van relevante biomoleculen
	2.2 Het verwijderen van storende variatie van micro-array data

	3 Het vertalen van een biologische vraag in een data-analysevraag
	3.1 De relatie van een klasse van metabolieten en het omringende metabole netwerk
	Analyse van het gedrag van subgroepen van metabolieten bij subgroepen van experimentele omstandigheden
	3.3 Identificatie van functionele modules in metabolomics data: regulatie van cellulaire metabolietconcentraties

	4 Conclusie


	Nawoord
	List of publications
	Curriculum vitae


