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Abstract

One of the new expanding areas in functional genomics is metabolomics: measuring the metabolome of an organism. Data
being generated in metabolomics studies are very diverse in nature depending on the design underlying the experiment.
Traditionally, variation in measurements is conceptually broken down in systematic variation and noise where the latter
contains, e.g. technical variation. There is increasing evidence that this distinction does not hold (or is too simple) for
metabolomics data. A more useful distinction is in terms of informative and non-informative variation where informative
relates to the problem being studied. In most common methods for analyzing metabolomics (or any other high-
dimensional x-omics) data this distinction is ignored thereby severely hampering the results of the analysis. This leads to
poorly interpretable models and may even obscure the relevant biological information. We developed a framework from
first data analysis principles by explicitly formulating the problem of analyzing metabolomics data in terms of informative
and non-informative parts. This framework allows for flexible interactions with the biologists involved in formulating prior
knowledge of underlying structures. The basic idea is that the informative parts of the complex metabolomics data are
approximated by simple components with a biological meaning, e.g. in terms of metabolic pathways or their regulation.
Hence, we termed the framework ‘simplivariate models’ which constitutes a new way of looking at metabolomics data. The
framework is given in its full generality and exemplified with two methods, IDR analysis and plaid modeling, that fit into the
framework. Using this strategy of ‘divide and conquer’, we show that meaningful simplivariate models can be obtained
using a real-life microbial metabolomics data set. For instance, one of the simple components contained all the measured
intermediates of the Krebs cycle of E. coli. Moreover, these simplivariate models were able to uncover regulatory
mechanisms present in the phenylalanine biosynthesis route of E. coli.
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Introduction

Modern instrumental methods have been generating a signif-

icant advancement in biology research. Especially in the field of

functional genomics, transcriptomics and proteomics measure-

ments have provided fundamental insight in many biological

processes. The missing link between these measurements and the

phenotype is called metabolomics [1]. This new field concerns the

measurement of small biomolecules in body fluids, cells, tissues,

etc. The type of data being generated in metabolomics studies is

characterized by a very broad acquisition of semi-quantitative data

of a large number of metabolites [1–4]. This results in data sets of

a very complex nature. Not only are these data sets high-

dimensional, they also exhibit mixtures of types of variation

introduced by the specific experimental setup [5].

Traditionally, a set of measurements is analyzed by postulating a

model describing systematic variation and assuming the left-overs

(residuals) as being random. Due to the complexity of metabolomics

data, this concept breaks down. There are many sources of variation

in the data non-informative for the underlying biological question. An

example of this type of variation are metabolites which are not under

tight regulatory control and are thus allowed to vary almost

independently across the experiments [6]. Such non-informative

variation affects the data in a structured way and infiltrates the

systematic or modeled part of the data. This results in poor

interpretability and the failure to unearth subtle informative variation.

In this paper, we propose a new conceptual framework for analyzing

metabolomics data based on the idea to separate informative from

non-informative variation. The informative variation should de-

scribe the systematic biological variation in relevant metabolites

induced by underlying biological phenomena. What we are

ultimately aiming for is to discover these biological phenomena.

Our assumption is that the studied biological phenomena are

not represented by all measured metabolites, but that simple

structures (subsets of related metabolites) in (parts of) the data exist,

each simple structure or component describing an underlying

biological phenomenon. In the development of our discovery tool

we are aiming for a method that fulfills the following requirements:

i) being able to identify simple structures, in which just a limited

number of metabolites are represented by the structure; ii)

representing each simple structure by a model, the type of model

depending on the data collected and driven by a priori biological

knowledge; iii) assuming that a (large) part of the data will most

probably not be informative. The last assumption is reasonable
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given the holistic nature of metabolomics, where the aim is to

measure all metabolites present.

We have called this new approach simplivariate models since they

are in-between univariate and multivariate models and use simple

building blocks (see Figure 1). Univariate models look at one-

metabolite-at-a-time; they are easy to interpret but lack an overall

view on the data since no correlations between metabolite values

are used. On the other extreme are multivariate models; they

provide a full view but often lack good interpretation especially in

high-dimensional data cases. Simplivariate models try to have the

best of both worlds: simplicity, comprehensiveness and correlation.

Although the simplivariate framework is general and can be

used in exploratory analysis, regression analysis and discriminant

analysis, in this paper we will focus on explorative methods.

Usually in exploratory data analysis for metabolomics data, use is

made of either of two types of techniques: projection (dimension

reduction) methods or clustering methods. The first type of

techniques (with Principal Components Analysis (PCA) as an

example) searches for structures consisting of highly co-varying

metabolites to construct new representations of the data [7].

Clustering techniques can roughly be divided into two categories:

hierarchical clustering (based on linking objects or variables on

dissimilarity measures), leading to a set of nested clusterings, and

partitioning algorithms, where the result is just one partitioning,

and a model is defined to represent the clusters. Both types of

techniques do not fulfill the criteria i) to iii) of simplivariate models

explained above, e.g., both PCA and hierarchical clustering do not

look for components using a limited set of metabolites.

First, the simplivariate modeling framework will be presented in

its full generality. Next, two techniques that fit into that framework

will be discussed using real-life metabolomics data. Finally,

shortcomings of these methods will be discussed and suggestions

of improvement will be given.

Materials and Methods

Simplivariate models
A flexible framework is built by defining a simplivariate model

that describes the partitioning of a data matrix X (I objects (e.g.

experiments)6J variables (e.g. metabolites)) in components

containing subsets of related variables (e.g. metabolites):

xij~
XK

k~1

Qijkzeij ð1Þ

In which every element xij of matrix X can be written as a sum of

contributions from different components. These components Qijk

describe the informative parts of the data and can be very diverse in

nature. The variation of xij that is not included in factors Qijk- non-

informative variation - is indicated by eij. Although the symbol eij is

commonly used to indicate random variation, it has a very different

meaning here. The non-informative part is certainly non-random in

the strict senses of randomness. To introduce the concept of

simplicity not all variables are included in the factors Qijk.

xij ~
XK

k~1

Qijkdjkcik z eij ð2Þ

Here djk indicates the presence of variable j in component k and

cik indicates the presence of an object i in component k (djk = 1 if

variable j is present in group k, 0 otherwise and cik = 1 if object i is

present in group k, 0 otherwise).

For simplicity we have used the same symbol Qijk in equations (1)

and (2), but their difference is clear from those equations.

When decomposing X into simple components, the idea is that

interpretation will be easier, since not all original variables are

included in those components. Only variables that are closely

related will be used. In the case of metabolomics data, metabolites

that are functionally related (e.g. part of the same pathway) may

form a simple model.

Simple structures
The components Qijk can be very diverse in nature, and

represent the relations between objects and variables in each of the

Figure 1. Graphical representation of the three different approaches to the analysis of multivariate data. From left to right: the
univariate, simplivariate and multivariate approach.
doi:10.1371/journal.pone.0003259.g001
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subsets. Three examples of such component Qijk are:

Qij~mk ð3Þ

representing simple component k by a constant. If this would be an

exhaustive partitioning of all variables and objects this would

resemble two-mode clustering [8]. Another simple model is

Qijk~aikzbjk ð4Þ

which is a purely additive model for simple component k, that

resembles a two-way ANOVA decomposition of a data matrix [8].

The next model to consider is

Qijk~tikrjk ð5Þ

which is a purely multiplicative simple component k, equivalent to

a rank-one component PCA decomposition of a data matrix.

Combinations of representations Eq. 4 and 5 are also possible

resulting in mixed models:

Qijk~aikzbjkztikrjk ð6Þ

The choice for one of these types of models should be based on

information on the structure of the data and on a priori biological

knowledge.

In equation (2) djk and cik indicate the presence of element Qijk in

factor k. For illustrative purposes, for the moment we will assume

that all objects are present in every factor k, so cik is always 1:

xij~
XK

k~1

Qijkdjkzeij ð7Þ

Influence of preprocessing
The type of preprocessing applied to the data is influencing the

outcome of an analysis [5,9]. In the case of only searching for

structures in the variables (so all objects are a member of all

substructures, as is the case in for instance PCA), it is well-known

[9] that the mixed models as mentioned in equation (6) can be

treated as pure multiplicative models by first removing any sample

or variable means by column or row centering. Apart from

centring the data, also scaling can be applied to assure that less

abundant metabolites (variables) have the same a priori chance to

be important in the final model as more abundant metabolites. In

our case, we do not partition in the sample direction. Hence,

centering across the samples and scaling each variable to standard

deviation one seems reasonable.

Existing algorithms for simple models
There are several algorithms described in literature that can create

simple models according to our definition in the previous sections. In

this paper, we have chosen two algorithms, both representing both

the multiplicative and additive model classes. In the following

section, a short explanation of both methods will be given.

Interpretable dimension reduction (IDR)
IDR [10] uses the PCA solution as starting point for creating

simple models. By reducing and summarizing the number of non-

zero elements of the loading vector, the loadings are simpler to

interpret. IDR uses two constraints for obtaining simpler loadings of

which the homogeneity constraint is used and discussed in this paper.

This homogeneity constraint is applied to a loading that is obtained

by PCA. Each loading value is rounded off to the nearest 61. To

increase the interpretability, zeros are introduced into the loadings,

starting by replacing the absolute smallest loading values with zeros

and continuing until the largest loading value is left over. Modified

loadings are normalized. Each time after introducing another zero in

the loadings, the angle to the original loadings is determined. The

optimal number of inserted zeros is given by the lowest angle to the

original variables and this one will be chosen. This method can either

be used on a complete set of (PCA) loadings or in an iterative way

simplifying one loading at a time. We use this method in a iterative

way, deflating one simple component before starting with the next

one. Step 1 to 8 of IDR with the homogeneity is as follows:

1. Set the k values of PCA loading vector a to +1ffiffi
k
p , matching the

sign with the original value.

2. Look for the absolute lowest non zero value of a, and set it to

zero.

3. Calculate the inner product the original loadings vector a and

the simplified a.

4. Convert the inner product to an angle with the inverse cosine.

5. Repeat steps 2–5 until only the largest absolute value is left

over.

6. The simplified a that has the lowest angle is the optimal new

IDR component.

7. Calculate scores (ett) with optimal IDR component (epp):ett~Xepp eppTeppð Þ{1
Subtract the IDR component from the original

data: Xresidual~X{etteppT

8. Repeat this procedure of all IDR components.

The final IDR model has the form:

xij~
XK

k~1

tikpjkzeij ð8Þ

Here tik are the scores and pjk the loadings originating from PCA

for component k. Many values of pjk are zero. This can be made

explicit by writing

xij ~
XK

k~1

tikpjkdjk z eij ð9Þ

where the symbol djk is the same as before and the nonzero values

of pjk are either 1 or 21. Clearly, eq (9) is a special case of eqns (2)

and (5) showing that IDR fits into the simplivariate framework.

Plaid models
Plaid [11–13] is a form of two mode clustering that allows for

overlapping clusters. By iteratively searching the data, plaid tries to

find patches in the data that can be modeled by an ANOVA[7]

decomposition. Objects or variables can be in more than one

cluster or in no cluster at all. Plaid has originally been devised for

micro-array data, but can be extended to other types of data.

The plaid model consists of a series of additive layers intended

to capture the underlying structure of matrix X. The plaid model

also includes the possibility of a background layer containing all

variables and objects. Plaid models each cluster with standard 2-

way Anova decomposition for each layer k:

Qk ~ mk z aik z bjk ð10Þ

Simplivariate Models
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where a mk is introduced to serve as a general mean (model (4) is

essentially the same as model (10) [8]). This gives Eq. 11: the

decomposition of matrix X into K+1 plaid models assuming that

all samples contribute to the plaid (as before):

xij ~ Qij0 z
XK

k~1

Qijkdjk z eij ~ m0 z ai0 z bj0

� �
z

XK

k~1

mk z aik z bjk

� �
djk z eij

ð11Þ

Here, Qijk is the plaid contribution for element xij from plaid model

k and Qij0 is the background layer model for entire the entire data

matrix X (I6J). It can be seen that Eq. (11) is a special case of

Eq. (7). The background layer is especially important when dealing

with micro-array data and can be used to model the background

signal. This layer will be omitted from our analysis, because it has no

meaning for metabolomics data. Instead the proper preprocessing

will be used to correct for offsets and scale differences. An

algorithmic overview of the plaid algorithm is shown below:

1. Choose starting values for c0
j and d0

j (indicating cluster

membership)

Table 1. Settings for the plaid algorithm.

Setting Value

Maximum iterations 50

Number of permutation in significant testing 25

Backfitting one step

Maximum number of layers 6

Prunefraction* 0.7

*Minimum of proportional reduction in residual sum of squares required for
cluster membership.

doi:10.1371/journal.pone.0003259.t001

Figure 2. Concentration ranges for 10 metabolites before (top figure) and after (lower figure) autoscaling. Data is taken from E. Coli
data as used in the remained of this paper. The whiskers indicate the total concentration range for each of the 10 metabolites. Each metabolite is
represented three times. The left black lines for each metabolite are the actual concentrations. The middle red line indicates the fit/model with an
additive model. The right blue lines indicate the fit/model with a blue multiplicative model.
doi:10.1371/journal.pone.0003259.g002
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2. Update layer effects using plaid cluster estimate Xk using

ANOVA decomposition. s indicates iteration number.

ms
k~X k

as
ik~

X:jk{ms
k

0

V j : ds{1
j ~1

otherwise

(

bs
jk~

Xi:k{ms
k

0

V i : cs{1
i ~1

otherwise

(

3. Update cluster membership

cs
i ~

1
P

i xij{ds{1
i ms

kzas
ikzbs

jk

� �h i2

v

P
i x2

ij

0 otherwise

8<:
ds

j ~
1
P

i xij{cs{1
j ms

kzas
ikzbs

jk

� �h i2

v

P
j x2

ij

0 otherwise

8<:
4. repeat step 2–3 for s iterations

5. Compute final layer effects as in step 2

6. Prune plaid cluster to remove ill fitting metabolites.

7. Test Xk for significance, stop procedure if Xk is not significant

otherwise accept

8. Subtract Xk from X

9. Apply backfitting for each obtained plaid cluster

10. Apply pruning to remove ill fitting metabolites and continue

at step 2

The above algorithm is the original Plaid algorithm. We used it

with some adaptations to our circumstances:

a) we did not apply significance testing but selected 6 plaids for

illustration.

b) we applied a one step backfitting procedure

c) we did used cj = 1 throughout and, hence, did not have to

optimize those values.

When residuals of selected metabolites after the plaid fit are

larger than the prune fraction (0.70, see Table 1), metabolites will

be excluded from that plaid cluster. This mechanism ensures small

and tight clusters in which the feature of the plaid cluster is clear in

all members of the plaid cluster [12].

Background of the dataset
E. coli NST 74, a phenylalanine overproducing strain and E. coli

W3110, a wild type strain were grown in batch fermentations at

30uC in a Bioflow II (New Brunswick Scientific) bioreactor as

previously described [14]. In short, samples were grown on MMT12

medium with glucose as carbon source, a constant pH and a constant

oxygen tension of 30%. Samples were taken at 16, 24, 40 and

48 hours and analyzed by GC-MS and LC-MS. Peaks related to the

substrates used for growth (glucose and succinate) were removed

from the data. Deliberate variations in the default protocol resulted

in the experimental design that can be found in [14]. The resulting

data set consisted of 28 measurements and 188 metabolites.

Extensive details on experimental setup, GC-MS and LC-MS

analysis and subsequent preprocessing can be found in [14].

Plaid and IDR were programmed in Matlab 7.1 [15] and are

available on the internet at http://www.bdagroup.nl/downloads/

Figure 3. Percentage explained of original dataset given a certain number of components. Solid line represents IDR components, dotted
line represents PCA components. See text for explanation.
doi:10.1371/journal.pone.0003259.g003
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Figure 4. PCA solution. The values of the loadings are indicated by a grayscale color as indicated by the colorbar. The grouping of metabolites is
identical to the grouping of the plaid solution for clarity.
doi:10.1371/journal.pone.0003259.g004
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bda_downloads.html. All computations were performed on an

Intel Xeon 3.4 GHz computer with 3.25 GB of memory.

Results and Discussion

Metabolomics data is highly dynamic in range. Metabolites can

have very different and very large concentration ranges. Some

metabolites will be zero since their concentrations will be too low

to detect under some experimental conditions. This indicates that

metabolomics data is not pure multiplicative in nature and can

benefit from removing column means.

For illustrative purposes, some metabolite measurements are

plotted in Figure 2. The upper part of Figure 2 shows the

concentration range of 10 metabolites (dotted black line; left)

together with an additive fit (red line; middle) and the

multiplicative fit (dashed blue line; right) for this set of 10

metabolites. The lower part of Figure 2 shows the same fit, but

after auto scaling the data. It can be seen from Figure 2 that the

range of an additive fit is the same for all metabolites and is given

by the range of the ai’s values. It is clear that an additive model has

large difficulties modeling data with highly varying ranges for the

metabolites. This justifies scaling of the data. The offsets of these

ranges are determined by the values of the bj’s. The range of a

multiplicative fit can be more dynamic since it is determined by a

multiplication of the values ai’s and bj’s. Additive and multipli-

cative simple components have clearly a different behavior.

Figure 3 shows the percentage of the original data set captured

by PCA and IDR components. As expected, the PCA components

explain a larger part of the data, since IDR components are

constrained PCA components and thus explain less variance. IDR

components .18 explain more than the original PCA compo-

nents. This is easily explained, since the first 18 PCA components

have almost explained the total variation in the data set, while the

IDR components still capture variance that was left out by earlier

IDR components. For the remainder of this paper we will focus on

the first six components. They describe the largest effects in the

data set and give us a clear understanding of IDR and plaid.

Figure 4 shows the loadings of the PCA solution for six

components in a gray-scale fashion. This figure clearly shows the

problem of PCA for interpreting the solution: all components have

contributions from all metabolites. This point exactly illustrates the

reason for developing simplivariate models.

Figure 5 shows the determination of the optimal number of

zeros in the first IDR simple component loading. The minimum is

indicated by the dotted line and an asterisk. Each IDR component

has a different number of zeros that results in a minimal angle

between simple IDR component and original loadings. For the

first IDR component, the optimal angle is 26.4 degrees and a total

of 110 zeros is introduced in this simple component loading, while

78 loadings are non-zero.

Figure 6 shows the IDR simple loading vectors for the first six

loadings. There is a clear distinct pattern of metabolite concentra-

tions entering the loading (either 1 or 21, indicated by black and

grey and metabolite concentrations not entering the loading (being

zero, indicated by white). Figure 7 shows the first six plaid models. In

Figure 4, 6 and 7 all metabolites have been ordered in such a way

that metabolites are grouped as much as possible according to the

different plaid clusters. Since the plaid models are only created in the

variable mode (which is always the case for IDR), the object mode is

not shown. One difference between plaid clusters and IDR

components is striking: plaid clusters contain less metabolites and

are easier to interpret. The intrinsic mechanism to lower the number

of selected metabolites in IDR is automatic and cannot be intervened

with. The number of zeros introduced in IDR is regulated by the

optimization criterion (see step 6 of IDR algorithm) and artificially

lowering the number of metabolites would yield a threshold PCA,

which basically cuts of loadings values above a certain value. Hence,

the interpretability can therefore not be increased. Initially, plaid also

selects (too) many metabolites, however the pruning mechanism

(present in the original algorithm; see Materials and Methods) is able

to remove ill-fitting metabolites (see Table 1 for the settings that have

been used in the plaid algorithm).

Although IDR and plaid have different underlying models,

multiplicative or additive, there are similarities between the IDR

components in Figure 6 and the plaid models in Figure 7. Many of

the metabolites that are selected by IDR are also selected by the plaid

models. One phenomenon is strikingly present in Figures 6 and 7. In

plaid component 1, only metabolites are present that have a positive

IDR value (black in Figure 7). In plaid component 2 only metabolites

are present that show an IDR value of 21 in IDR component 2.

Plaid components 3 and 4 are even more illustrative, since they are

both represented by IDR component 3: plaid component 3

corresponds to IDR values of 21 and plaid component 4

corresponds to IDR values of +1. The reason for this phenomenon

is that the additive plaid models can only represent positively

correlated metabolites, missing an important part of the relationships

in the data. This idea is illustrated by Figure 8 where the correlations

are shown between the metabolites in IDR component 1 and

between the metabolites in plaid cluster 1. What we clearly see, also

in the distributions of the correlation coefficients, is that the plaid

cluster contains (almost) no negatively correlated metabolites, while

metabolites in IDR component 1 can be positively and negatively

correlated. The differences between IDR and plaid become larger

for higher components/plaid models.

Biological interpretation
There are too many metabolites present in each IDR

components to come to a meaningful analysis of the IDR results.

Figure 5. Determination of the optimal number of zeros for the
first IDR component. The optimum is chosen where the angle
between the simple component and principal components is minimal.
This is indicated by a dotted line and an asterisk.
doi:10.1371/journal.pone.0003259.g005
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Figure 6. The first 6 IDR components obtained with deflation. Black squares indicate a +1, white indicates a zero, grey indicates a 21. The
grouping of metabolites is identical to the grouping of the plaid solution for clarity.
doi:10.1371/journal.pone.0003259.g006
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Figure 7. The first 6 plaid components. Black squares indicate a +1, white indicates a zero. Results have been grouped as much as possible for
clarity.
doi:10.1371/journal.pone.0003259.g007
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Figure 8. Correlations between metabolites present in IDR component 1 (top part) and plaid component 1 (bottom part). Positive
correlations are indicated by a white square, negative correlations are indicated by a black square.
doi:10.1371/journal.pone.0003259.g008
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However, the plaid clusters are relatively simple and contain

biological meaningful metabolite clusters. For instance, the first

plaid cluster contains all intermediates of the Krebs cycle whose

concentration is above the detection limit in this data set, i.e.

fumarate, malate; 2-ketoglutarate, and citrate (Fig. 7). Moreover,

three metabolites which are just one enzymatic step removed from

these TCA cycle intermediates, i.e. 2-hydroxyglutarate, glutamate

and aspartate are also present in this first plaid cluster.

Another example is plaid cluster 4 that contains many

intermediates of the phenylalanine biosynthesis pathway, i.e.

erythrose-4-phosphate, 3-dehydroquinate, shikimate-3-phosphate,

chorismate, phenylpyruvate, and phenylalanine itself, and several

compounds which are side routes of this pathway, i.e. 3-

phenyllactate, and tyrosine. Interestingly, prephenate, an inter-

mediate at the splitting point of the phenylalanine and tyrosine

biosynthesis routes, is not clustered in plaid cluster 4 but in plaid

cluster 3. In contrast, when analyzing this data set by IDR, all the

phenylalanine-related intermediates described above, including

prephenate, end up in the same IDR component, i.e. IDR

component 3 (Fig. 6). However, prephenate shows a negative

loading while all other intermediates have a positive loading. One

of the enzymes catalyzing the formation of prephenate (chorismate

mutase encoded by pheA) is controlled by feedback inhibition by

phenylalanine and also the two enzymes catalyzing its conversion

(prephenate dehydratase and prephenate dehydrogenase) are

controlled by feedback inhibition by phenylalanine and tyrosine,

respectively. This might very well explain why this intermediate

(prephenate) shows a negative correlation with the other

phenylalanine intermediates (IDR analysis) and thus ends up in

a different plaid cluster. Remarkably, shikimate, another phenyl-

alanine biosynthesis intermediate, is neither clustered in plaid

cluster 4 (Fig. 7) nor in IDR component 3 (Fig. 6). Interestingly,

ppGpp, a major regulator of cellular metabolism, is present in

plaid cluster 4/IDR component 3 indicating a link between

phenylalanine biosynthesis and the stringent response in E. coli.

The most useful results are obtained with plaid which models

(patches of) data with an additive model while IDR uses a

multiplicative model. It is possible to mix both models to obtain a

mixed model representation (see section on simple structures,

model number 4). Mixed models might also help to further

strengthen the plaid clusters. Additive plaid models can only

contain positively correlated metabolite concentrations, while

metabolites that are negatively correlated can still be part of the

same biochemical process.

Conclusions
The presented framework provides a good basis for simplivari-

ate data analysis models. The two presented methods IDR and

Plaid fit well in this framework. IDR suffers from too many

selected metabolites which makes it rather ineffective for creating

more interpretable models. This selection is intrinsic for the

method and cannot be tuned. Plaid, on the other hand, was shown

to be very effective in creating clusters with distinct biochemical

meanings. This shows that the concept of simplivariate models is

valuable.

The Plaid models also have shortcomings, notably, their

inability to model metabolites belonging to the same processes

having either positive or negative correlations. This can possibly

be overcome by using simple components with a mixed-model

structure. Moreover, the pruning mechanism present in plaid that

prevents that too many metabolites are selected in a plaid cluster,

remains a crude way of cleaning up a solution. It is inefficient to

first create large plaid clusters (at a certain computational cost) and

decreasing them after they are finished. By more carefully

optimizing a plaid cluster this should be prevented. This will be

subject of further research.

The framework allows for any simple component structure to

include in the simplivariate model. When some of the metabolites

are known to be linked in certain experiments by interlinked

pathways and/or co-regulation, then these can be forced in one

simple component with a structure reflecting these pathways/ this

co-regulation. Also metabolic network information can be used to

choose simple component structures. All these extensions are the

subject of a follow-up paper.

Notation
Matrix X (boldface), vector x (boldface), scalar x (italic).

Sizes: X (I objects6J variables), objects, i = 1,…,I; variables

j = 1,…,J; groups k = 1,…,K; Each k represents a simple compo-

nent that are used to described the data.

Group memberships: djk = indicator for group membership of

variable j in group k (djk = 1 if variable j is present in group k, 0

otherwise); cik = indicator for group membership of object i in

group k (cik = 1 if object i is present in group k, 0 otherwise).

PCA-scores: T (I6R), tr (r = 1,…R), tir. (R = number of principal

components used)

PCA-loadings: P (J6R), pr, pjr.
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