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Abstract. When bright moving objects are viewed with an electro-
optical system at long range, they appear as small, slightly blurred mov-
ing points in the recorded image sequence. Typically, such point targets
need to be detected in an early stage. However, in some scenarios the
background of a scene may contain much structure, which makes it dif-
ficult to detect a point target. The novelty of this work is that superreso-
lution reconstruction is used for suppression of the background. With
superresolution reconstruction a high-resolution estimate of the back-
ground, without aliasing artifacts due to undersampling, is obtained. After
applying a camera model and subtraction, this will result in difference
images containing only the point target and temporal noise. In our ex-
periments, based on realistic scenarios, the detection performance, after
background suppression using superresolution reconstruction, is com-
pared with the detection performance of a common background suppres-
sion method. It is shown that using the proposed method, for an equal
detection-to-false-alarm ratio, the signal strength of a point target can be
up to 4 times smaller. This implies that a point target can be detected at
a longer range. © 2008 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.2977790�

Subject terms: superresolution reconstruction; detection; point target; back-
ground suppression; ROC.
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Introduction
n surveillance applications moving targets need to be de-
ected at a very early stage. Electro-optical surveillance
ystems observe missiles or other incoming threats as mov-
ng point targets. At maximum detection range these point
argets will have a low signal-to-noise ratio with respect to
he background. Furthermore, the background may also
ontain structure �clutter� of high contrast.

Usually, the first step of point target detection is to sup-
ress the clutter of the stationary background in the image.
clutter suppression step should remove the information of

he static background while preserving the target signal en-
rgy.

One of the essential steps for background suppression is
o determine the apparent motion between the frames, i.e.,
he registration step. The apparent motion of the back-
round can, on a small scale, often be described by trans-
ational motion between two subsequent camera frames Ik
nd Ik−1.

091-3286/2008/$25.00 © 2008 SPIE
ptical Engineering 096401-
A standard way of performing background suppression
is to shift, interpolate, and subtract �SIS�. One of the frames

is corrected for the shift �dx ,dy� using interpolation �Ĩk−1�
and is subtracted from the other frame. In the experiments
in this paper we use B-spline interpolation. After subtrac-
tion a difference image �Dk

SIS results:

�Dk
SIS�x,y� = Ik�x,y� − Ĩk−1�x + dx,y + dy� . �1�

Note that for point targets with a small apparent motion
with respect to the background, the point target’s signal
energy in the difference image �Dk

SIS is almost lost. An-
other problem of SIS is that due to undersampling by the
image sensor, aliasing artifacts in the recorded image se-
quence remain in the difference image. Both will hamper
point target detection.

In this paper we propose to use superresolution �SR�
reconstruction to improve the detection of moving point
targets. The SR reconstruction algorithm is used in the
background suppression step. In previous work1,2 we devel-
oped SR reconstruction techniques to improve the spatial
September 2008/Vol. 47�9�1
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esolution of undersampled image sequences by exploiting
he subpixel shift between the frames. Using SR for point
arget detection has the advantages that �1� the signal and
liasing contributions in the last frame can be predicted,
hich substantially reduces the aliasing-related clutter in

he difference image, �2� the temporal noise is reduced,
hich improves the amplitude-to-noise ratio �ANR� of the
oint target in the difference image, and �3� the ANR in the
ackground estimate is suppressed, which increases the
NR in the difference image. The latter is especially no-

iceable for point targets with a small apparent motion with
espect to the background. Note that point targets that have
o motion with respect to the background will be totally
ncluded in the background estimate. Therefore, they are
ot visible in the difference image.

After SIS or the SR background suppression step, stan-
ard detection algorithms such as thresholding or
rack-before-detect3,4 can be used. In this paper results are
hown for a three-out-of-five tracking algorithm5 and for
irect thresholding.

This paper is organized as follows. In the next section
he advantages of SR reconstruction for point target detec-
ion are discussed from a theoretical perspective. In Sec. 3
he SR-based point target detection method is presented. In
ec. 4 the setup of these experiments is described. The
xperimental results are shown in Sec. 5. Finally, conclu-
ions are presented in Sec. 6.

Theory
R reconstruction is a well-known technique to increase the
patial resolution of a sequence of aliased low-resolution
LR� images using temporal information. The zoom factor
f a SR reconstruction method is the ratio of the size of the
esulting high-resolution �HR� image to the size of the LR
mages. Numerous SR reconstruction methods are de-
cribed in the literature. Overviews are given by Park et
l.,6 Farsiu et al.,7 and Van Eekeren et al.8 Generally, SR
econstruction can be split into three parts:9 �1� registration,
2� fusion, and �3� deblurring. The first part is necessary to
lign the content of all frames with subpixel accuracy. The
wo following steps will fuse the aligned data on a HR grid
nd deblur the result.

SR reconstruction can be used for point target detection
o improve the background suppression step. With SR re-
onstruction it is possible to create a HR model of the back-
round. This HR background model contains less or no
liasing and ideally does not contain the point target. With
he HR background model Z �reordered in a vector� and a
ransfer matrix Hk, an estimate can be made of LR image Ik
reordered in a vector�. The transfer matrix Hk describes �1�
he model of the camera, �2� the estimated motion between

and Ik, and �3� the zoom factor. A difference image of
rame k is then created by applying

Dk
SR = Ik − HkZ . �2�

ere HkZ suffers from aliasing exactly the same way as Ik,
o the difference image is free from clutter due to aliasing.
f the images were subtracted in the HR space, this would
ot be the case, for the background image Z is aliasing-free
nd the HR version of I contains the interpolated aliasing.
k

ptical Engineering 096401-
In the next subsections the advantages of SR reconstruc-
tion for point target detection are explained from a theoret-
ical perspective.

2.1 Aliasing Noise Reduction
In a camera system the measured signal is limited by �1�
the band limitation of the optics and �2� the sampling of the
sensor. Aliasing is an effect due to undersampling. Both
limitations are depicted in Fig. 1.

Here, the blurring of the lens is modeled with Gaussian
blurring ��psf=0.3�, and the sensor is modeled as a 2-D
array of nonoverlapping square photosensitive elements
with fill factor 81%. The scene spectrum is modeled with a
quadratic decay, which is characteristic of natural images.10

Note that this may differ slightly from the real scene spec-
trum of the images used in the simulations of which no
spectrum was determined.

Applying SR reconstruction increases the sampling rate
so that the aliased frequency spectra are unfolded and part
of the high-frequency spectrum is recovered. This implies
that a better—i.e., �almost� aliasing-free—HR estimate of
the background is obtained. Applying the camera model for
frame k to this HR background image yields the same alias-
ing artifacts as in the recorded image Ik. Subtraction of
these two images is very effective in suppressing the back-
ground, because by sampling the HR image at exactly the
same grid positions �including subpixel shift� as the corre-
sponding LR image, exactly the same aliasing artifacts for
frame k are created. After subtraction, the difference image
will contain only temporal noise and the point target signal.
Note that the main aliasing effect on the point targets is that
their maximum energy per frame is not constant.
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Fig. 1 The aliased spectrum �no marks� of a signal that is bandlim-
ited and undersampled. The modulation transfer function �MTF� is
modeled by Gaussian lens blur ��psf=0.3� and uniform sensor blur
�area fill factor=81%�. The nonaliased spectrum �marked with tri-
angles� results after applying the MTF to the original spectrum. To
obtain the aliased spectrum, the spectral energy above the half
sampling frequency fs /2 needs to be folded �marked with the arrow�
and added to the nonaliased spectrum. Note that the aliased spec-
trum does not have any information above the half sampling fre-
quency. All spectra are normalized so that the dc value equals one.
September 2008/Vol. 47�9�2
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.2 Temporal-Noise Reduction
ll cameras add temporal noise to the scene information.
et us assume that there are N recorded frames available,
ontaining additive Gaussian-distribtued noise with stan-
ard deviation �n. The resulting noise in a difference image
fter SIS �Eq. �1�� will be �2�n. Note that we assume that
he images are corrected for nonuniformity. This can be
one by the camera or based on the images. In this paper,
e do not evaluate the effects of nonuniformity reduction
y SR on the detection of point targets.

Now, assume that SR reconstruction is used to calculate
difference image as in Eq. �2�. Here, the estimated LR

rame HkZ is based on N recorded frames, which reduces
he noise standard deviation by a factor �N. Therefore, the
esulting noise in a difference image after SR reconstruc-
ion is

n
�SR = �N + 1

N
�1/2

�n. �3�

If many frames are used, the noise in the resulting dif-
erence image will be only slightly higher than �n, the
oise in a single LR image. The ratio of noise in the SR
ifference image to that in the SIS difference image is

�n
�SR

�n
�SIS =

�N + 1

N
�1/2

�n

�2�n

�
1
�2

. �4�

his means that for the same rate of false detections, the
oint target amplitude that can be detected with SR recon-
truction in a temporal-noise-limited situation will be a fac-
or �2 lower.

.3 Point Target Amplitude Preservation
nother advantage of background suppression using SR re-

onstruction is that the point target intensity in the differ-
nce image is preserved for large and small apparent mo-
ion of the point target with respect to the background.
deally, the point target is not present in the projection of
he HR background image, i.e., the point target intensity in
he difference image is the same as the amplitude of the
oint target. The difference image is calculated with Eq.
2�. In the nonideal case, however, the point target can be
isible in the projection of the HR image Z. Note that the
ain aliasing effect on the point targets is that their maxi-
um energy per frame is not constant.
To analyze the point target amplitude preservation, point

argets with amplitude one are simulated. First, point tar-
ets are placed in a superscale image with a constant back-
round, which is a factor 15 larger than that of the LR
mage Ik. This superscale image is shifted and blurred with
he MTF as described in Fig. 1 and afterwards subsampled
ith factor 15. The simulation method is fully explained in
ec. 4.3. To the resulting LR images a small amount of
aussian-distributed noise ��n=0.002� is added.
The effect of point target amplitude preservation is mea-

ured as the maximum of the difference images �Dk
SR. If

his maximum is around one, the point target amplitude is
ell preserved. The point target intensity in the difference

mage is simulated for two different SR reconstruction
ptical Engineering 096401-
methods: Hardie �nonrobust� and Zomet �robust�. Both
methods model the camera blur with Gaussian blur ��cam

=0.41� and use 48 frames for reconstruction. A more de-
tailed explanation of both methods is given in Sec. 3.2.

As a comparison the point target amplitude preservation
of SIS for varying point target motion is simulated as well.
Here, the difference images �Dk

SIS are calculated with Eq.
�1�. The results are shown in Fig. 2. As expected, the robust
Zomet method �Z1 and Z2� performs best for point targets
with small apparent motion with respect to the background.
There is no significant effect between the different zoom
factors. Note that the robust Zomet method preserves the
point target amplitude better than the nonrobust Hardie
method. This can be explained by the fact that the point
target is treated as an outlier in Zomet’s SR reconstruction.
The difference between robust and nonrobust SR is ex-
plained in more detail in Sec. 3.2. If the point target veloc-
ity is large ��1.5 pixels/frame�, the point target profile of
the previous recorded frame will hardly influence the point
target profile in the current frame. For those cases the point
target amplitude in the difference image is maximal. The
high maximum value in the difference image after SIS for a
high point target velocity can be explained by the B-spline
interpolation that is used for the shift. This interpolation
can cause lobes that are below the background and add to
the point target in the noninterpolated frame.

Summarizing, using SR reconstruction for background
suppression has the following advantages from a theoretical
perspective: �1� aliasing artifacts are reduced, �2� temporal
noise is reduced, and �3� the point target is better preserved
in the difference image for small apparent motion with re-
spect to the background. Therefore, the largest gain from
using SR reconstruction for background suppression is ex-
pected for recorded sequences with much structure in the
background �causing significant aliasing artifacts� and a
small apparent point target motion.

3 Point Target Detection Using Superresolution
Reconstruction

This section describes the point target detection method
based on background suppression using SR reconstruction.
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Fig. 2 Relative point target amplitude in a difference image as a
function of the point target velocity. The relative point target ampli-
tude for a difference image resulting from SIS �B-spline� is indicated
with diamonds. Zomet �robust SR� is indicated with Z1 and Z2
�zoom factor 1 and 2 respectively�, and Hardie �nonrobust SR� is
indicated with H1 and H2. A total of 48 frames are used for the SR
reconstruction, and Gaussian blur with �=�cam=0.41 is used to de-
scribe the camera blur.
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lthough this method is based on existing, well-known
echniques, the combination and use of those techniques is
nnovative. First, the registration method is described, fol-
owed by the SR reconstruction method and finally the de-
ection and tracking methods.

.1 Registration
egistration aligns the content of all LR frames prior to SR

econstruction. This registration step is also needed for
ackground subtraction with SIS. There are a variety of
mage registration techniques described in the literature.11

e perform registration with a very precise iterative
radient-based shift estimator.12 This estimator13 finds the
isplacement �dxk1 ,dyk1� between two shifted images,

k−1�x ,y� and Ik�x ,y�, as a least-squares solution:

t: 1: min
dxk1,dyk1

1

P
	
x,y

�Ik − Ik−1 − dxk1
�Ik−1

�x
− dyk1

�Ik−1

�y
�2

.

�5�

Here, the image Ik is approximated with a Taylor expan-
ion of Ik−1, �x ,y� are the pixel positions, and P is the
umber of pixels in Ik. The partial derivatives are calcu-
ated with a Gaussian gradient filter �see p. 64 in Ref. 14�.

The solution of Eq. �5�, �dxk1 ,dyk1�, is biased; the bias is
orrected in an iterative way:

t: n: min
dxkn,dykn

1

P	
x,y

�Ĩk�x + dxk�n−1�,y + dyk�n−1�� − Ik−1

dxkn
�Ik−1

�x
− dykn

�Ik−1

�y
�2

. �6�

n iteration n �n�1�, Ik is translated by interpolation �indi-
ated by the tilde� with the estimated subpixel displacement
dxk�n−1� ,dyk�n−1�� from the previous iteration. Now, the dis-
lacement �dxkn ,dykn� between the shifted Ik and Ik−1 is
stimated. This displacement is accumulated with the dis-
lacement obtained in the previous iteration. This schema
s iterated until convergence and results in a very precise
�disp�0.01 pixel for noise-free data� unbiased
egistration.12 The total estimated displacement with the it-
rative gradient-based shift estimator after M iterations is

dxk,dyk� = �dxk1,dyk1� + ¯ + �dxkM,dykM� . �7�

Note that this registration method, due to its iterative
haracter, can also cope with multiple-pixel image shifts. In
uch a case, the registration will not be accurate after the
rst iteration, because the Taylor expansion is not accurate
or large shifts. However, after a few iterations the remain-
ng shift will be small and hence the Taylor expansion be-
omes accurate.

.2 Robust Superresolution Fusion and Deblurring
he second and third step of superresolution reconstruction
re fusion and deblurring. Numerous SR reconstruction
ethods can be found in the literature; some methods work

n the Fourier domain,15,16 there exist both robust
ethods17 and nonrobust methods,18 and some methods2

re adaptive. Van Eekeren et al.8 made a quantitative per-
ptical Engineering 096401-
formance comparison between a selection of different SR
reconstruction methods. One of the best-performing meth-
ods is the one proposed by Hardie et al.18 Like many other
SR reconstruction methods, it models the image formation
process in the following way:

Ik = DkCkFkZ + �k = HkZ + �k, �8�

where Ik is the k’th LR frame, Z is the HR image scene,
and �k is normally distributed additive noise, all reordered
in vectors; Fk is the geometric warp matrix based on the
results of the registration; Ck is the blurring matrix of the
camera; and Dk is the decimation matrix, which resamples
the image to low resolution. For simplification all matrices
are combined in Hk. The blurring of the camera is modeled
by Gaussian blurring. Note that it is allowed to represent
basic operations such as warping and blurring in a matrix,
because they are linear in the image intensities.

As already stated in Sec. 2.3, a robust SR algorithm for
background suppression is proposed because the point tar-
get is better preserved in the difference image. A robust
algorithm is less sensitive to outliers in the background
data, such as moving point targets. With enough frames
available and sufficient apparent motion of the point target
with respect to the background, a robust SR algorithm will
treat the point target as an outlier. For this reason we use a
robust method, proposed by Zomet et al.,19 in the experi-
ments. This method is similar to Hardie’s but uses robust-
ness in the minimization procedure.

This is best explained by comparing the minimization
procedure used by Hardie with that used by Zomet. We
start by giving a short derivation of Hardie’s method, and
then stress the differences from Zomet’s.

The total squared error of resampling the HR image Z is
given by

L�Z� =
1

2	
k=1

N

	
i

�Ik�i� − �HkZ��i��2 �9�

with N the total number of LR frames and i the LR pixels.
Note that Z is based on all the Ik ’s. Taking the derivative of
L with respect to Z results in

�L�Z� = 	
k=1

N

Hk
T�HkZ − Ik� = 	

k=1

N

Gk �10�

with Hk
T the transpose of Hk. A gradient-based iterative

minimization method updates the estimation in each itera-
tion n by

Zn+1 = Zn + � � L�Z� �11�

with � the step size in the direction of the gradient. The
procedure can be seen as a version of the iterated back-
projection method.20 In each iteration the difference be-
tween the resampled HR image HkZ and the LR image Ik is
projected back to the HR grid.

A replacement of the sum of backprojected images Gk in
Eq. �10� with a scaled pixelwise median introduces the ro-
bustness of Zomet’s method:

�L�Z� � N · median�Gk�k=1
N . �12�
September 2008/Vol. 47�9�4
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.3 Detection and Tracking of Point Targets
fter background subtraction, the point targets need to be
etected in the difference image. The difference images
how the amplitude difference between a moving target and
ts local background, noise, and aliasing artifacts �SIS
ethod�. On such a difference image the detection of the

bjects is done. The simplest detection technique is to
hreshold the magnitude of the difference image. All pixels
ith a value above a certain threshold are detected as tar-
ets:

k = 
0 for �Dk�x,y� � threshold,

1 for �Dk�x,y� � threshold.
� �13�

This detection method works well for targets that have a
ufficiently high ANR, so that the moving object can be
etected in every frame. However, objects having an am-
litude close to the local background may not be detected
his way.

The specificity of a detection algorithm can be increased
f it is performed on a series of subsequent difference im-
ges instead of a single difference image. Tracking can be
sed to associate the detections in the images. It is assumed
hat a target path is a continuous path over time, which

eans that the positions of correct detections are highly
orrelated over the frames. Uncorrelated detections are un-
ikely to be correct detections.

In this paper a three-out-of-five tracking algorithm5 is
sed to increase the specificity. This tracking algorithm per-
orms first a special dilation on five successive frames after
hresholding. This allows a limited displacement of the
oint target in the next frames. In order to keep the moving
oint target in track, a dilation with different kernel sizes is
erformed on frames 1, 2, 4, and 5. The center frame, 3, is
ot dilated. Kernel sizes are chosen such that point targets
hat have an apparent motion with respect to the back-
round of maximum 2 pixels/frame can be tracked �see
ig. 3�. Afterwards a pixelwise summation is performed.
ixels with a sum larger than or equal to 3 are marked as
etections after tracking. This means that the targets are
resent in at least three of the five frames. Note that this
racking algorithm can be improved �using velocity and
eading of the point target�, which will result in a further
eduction of the number of false alarms without losing sen-
itivity.

dilation kernel target k+2

target in frame k target in frame k+2

dilation kernel target k-1

2 pix

ig. 3 The different kernel sizes used for the special dilation in the
hree-out-of-five tracking algorithm. The smallest kernel size is

pixels, which supports tracking of point targets with an apparent
otion up to 2 pixels/frame.
ptical Engineering 096401-
4 Experimental Setup
The performance of the different algorithms is tested on
images containing point targets. These images are con-
structed by inserting simulated point targets in a real image
sequence. To simulate a realistic scenario, first a few real-
world scenarios are analyzed.

4.1 Real-World Scenario
An incoming missile at long distance is observed as a point
in a recorded sequence. Such a missile must be detected as
early as possible. In this analysis two missiles, a Stinger21

and an AA-10,22 are chosen, because most of these missiles
are radar-silent. This means that they must be detected us-
ing an electro-optical sensor. First, let us analyze the ob-
served velocity of missile. The apparent velocity �expressed
in radians per second� of a missile with respect to the back-
ground from the observer’s point of view can be described
with

vt =
v
d

sin � . �14�

Here, v is the velocity of the missile, d is the distance to the
observer, and � is the angle between the missile’s path and
the shortest path to the observer. The apparent motion of a
missile in camera coordinates depends on the instantaneous
field of view �IFOV� and the frame rate of the camera.

Realistic specifications of an infrared camera for the task
of missile detection are: a center wavelength of 4 �m,
IFOV=1.5 mrad, a frame rate of 15 Hz, and a sensitivity of
0.025 K. The last determines the amount of noise radiance.
With these specifications a missile, such as a Stinger, flying
at Mach 2 at 2 km with �=10 deg, has an apparent motion
of approximately 2.6 pixels/frame. For a scenario with a
larger range �e.g., an AA-10 flying at Mach 4 at 60 km with
�=10 deg� the apparent motion is approximately
0.17 pixels/frame.

The observed missile intensity depends on its radiated
energy at a certain wavelength. Propagation losses are ig-
nored in our analysis. The observed missile and back-
ground are regarded as blackbodies from which the radiated
energy per unit time per unit surface area per unit wave-
length can be calculated with Planck’s law.23 The total ob-
served radiance Et on one sensor element is defined as

Et = �Em + �1 − ��Ebg, �15�

with Em the radiance of the missile, Ebg the radiance of the
background, and � the area fraction of the missile. The
difference in radiance between an observed missile and its
background is defined as �Em=��Em−Ebg�. For two differ-
ent real-world scenarios �Em is calculated and compared
with the clutter radiance and the noise radiance:

• High-clutter scenario: In this scenario a Stinger is
fired from the ground to an air target at 3 km. The
temperature of the background is chosen to be 290 K,
and the clutter is chosen to be �Tcl=1 K. The Stinger
has a velocity of Mach 2 and has a diameter of 7 cm.
Its velocity determines its aerodynamic temperature24

to be 480 K. The diameter of the missile, the distance
to the target, and the IFOV and MTF of the camera
September 2008/Vol. 47�9�5
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determine the area fraction � to be 1.9	10−4. This
results in the following ratio between the missile’s ra-
diance and the noise radiance: �Em /En�24 with En
the noise radiance. The ratio between clutter radiance
and noise radiance is �Ecl /En�41. This indicates a
clutter-dominated scenario.

• Low-clutter scenario: In this scenario an AA-10 is
fired from an aircraft at 9-km altitude to an air target
at a distance of 60 km. The air temperature is esti-
mated �with a vertical gradient of −10 K /km� to be
203 K, and the clutter is estimated to be �Tcl=0.1 K.
The AA-10 flies at Mach 4 and has a diameter of
23 cm. Its velocity determines its aerodynamic
temperature24 to be 736 K. The diameter of the mis-
sile, the distance to the target, and the IFOV, and MTF
of the camera determine the area fraction � to be
5.1	10−6. This results in the following ratio between
the missile’s radiance and the noise radiance:
�Em /En�9. The ratio between clutter radiance and
noise radiance is �Ecl /En�0.04. This indicates a
noise-dominated scenario.

.2 Simulated Scenario
he point target images used for the experiments are con-
tructed from a real image sequence, which was recorded
ith an infrared camera �Radiance HS, 3 to 5 �m, 256
256, 15 frames /s�. The recorded images, which have an

ntensity range of �1000, 1172� gray values, contain noise
ith an estimated standard deviation of 1 gray value. Fur-

hermore, they contain artifacts such as bad pixels and non-
niformity. Before inserting the point targets, the recorded
mage sequence is corrected for those two types of
rtifacts.1 This will improve the detection results and will
ake it easier to compare the results of our experiments.
he camera movement of the recorded sequence is approxi-
ated by a frame-to-frame translation, which is on average

ver the frames vx=3.10 pixels/frame and
y =0.64 pixels/frame.

.3 Simulated Point Targets
he point targets are simulated and added to the LR camera

mages. First the point targets are placed in a superscale
mage, which is a factor 15 larger than the LR camera im-
ge. Here the position of the point target is integer-based.
o obtain the LR image with the point target, a camera
odel is applied to the superscale image. In this camera
odel the MTF of the camera is modeled by a lens blur

�psf=0.3 LR pixel� and a fill factor �81% area�. The cam-
ra MTF is plotted in Fig. 1. The camera model also sub-
amples the superscale image with a factor of 15. This sub-
ampling is done by taking each 15th pixel. The resulting
R image contains the point target with aliasing. The maxi-
um point target energy depends on the LR subpixel posi-

ion of the LR image. We define the amplitude of a point
arget as the average maximum intensity of the point target
n all available LR images. The point target simulation is
isualized in Fig. 4. Here can also be seen that due to
liasing the maximum energy per frame of the point targets
s not constant.

Adding the point target to the background instead of
eplacing the background introduces an error. In this simu-
ptical Engineering 096401-
lation the error is small, for reasons. First, the point target is
placed in a superscale image and downscaled as described,
instead of placing it directly into the LR image. In this way,
the point target will suffer from aliasing in a similar way to
the background. Second, the target is a point target and has
therefore a small footprint. The error that is made by adding
instead of replacing in the superscale image is �Eadd
=� �Ecl, which is the clutter radiance that is not replaced.
In our scenarios, the worst case of �Eadd is En	1.9
	10−4	41�En	10−2. This means that the maximum er-
ror is 100 times smaller than the temporal noise.

For the experiments, the amplitude and apparent motion
of the point target with respect to the background are varied
according to the calculations of the different real-world sce-
narios. The point target amplitude is varied between 4 and
56 gray values, and the apparent motion of the point target
is varied between 0.125 LR pixels per frame �almost no
movement with respect to the background� and 2 LR pixels
per frame. For each velocity eight different subpixel start
locations of the point target are chosen. To simulate the
different clutter scenarios, two different kind of sequences
are constructed: one with the point target in a low-clutter
region and one with it in a high-clutter region of the real
image sequence. The upper parts �256	128� of a few
frames of a constructed point target sequence are shown in
Fig. 5. Here, the point target is placed in a low-clutter re-
gion with an apparent motion with respect to the back-
ground of 2 pixels/frame.

4.4 Processing Details
The constructed LR images are registered using the tech-
niques presented in Sec. 3.1. The number of iterations used
is 5. The � of the Gaussian derivative filters is 1. Then the
constructed LR images are processed by three different
background suppression methods: �1� SIS with B-spline in-
terpolation, �2� Zomet’s robust SR reconstruction method
with zoom factor 1, and �3� Zomet’s robust SR reconstruc-
tion method with zoom factor 2. The camera model used in
Zomet’s method consists of a Gaussian blurring only. In our
experiments this blurring has been set to �̃cam=0.41, which
is the best Gaussian fit to the real camera model ��psf
=0.3 and fill factor 81%�. In the Zomet reconstruction 10
iterations are used. No regularization is used in the Zomet
algorithm.

(a) (b) (c)

Fig. 4 Two simulated point targets with different locations. In �a�,
the input point target in superscale is visualized. Note that the point
is slightly larger than 1 pixel for visualization purposes. In �b�, the
camera model has been applied to the point target. It can be seen
that the point target energy is spread over a large number of pixels.
When the image is downscaled �c�, the point target energy is still in
more than one pixel.
September 2008/Vol. 47�9�6
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Results
igure 6 shows the difference images for the three different
ackground suppression methods. It can be seen that the
ifference image resulting after background suppression
ith Zomet’s SR reconstruction method with zoom factor 2

ontains much less background contributions than the other
ethods. This effect is best seen in the middle part of the

mage, where the structure of the buildings is hardly visible
n comparison with the other two difference images. Fur-
hermore it can be seen that both difference images based
n Zomet’s method contain less noise than the difference
mage based on SIS.

To evaluate the performance of the different methods
nder different scenarios, sequences of 48 frames are used.
he different scenarios are created using: �1� different clut-

er levels �indicated with CNR=clutter noise ratio�, �2� dif-
erent point target amplitudes �indicated with ANR
amplitude noise ratio�, and �3� different point target ve-

ocities �indicated with PTV=point target velocity�. The
ast two can be controlled, because they are simulated, but
he clutter level cannot. Therefore, as low-clutter region the
ky area in the image is selected, and as high-clutter region
he building area in the middle. The clutter is defined as the

aximum gradient magnitude present in the region of in-
erest �ROI� used for a specific scenario. In Fig. 7 the ROIs
one for high and one for low clutter� are visualized for
rame 24. Note that in our analysis the point target is al-
ays present in the ROI. Furthermore, an external mask is
sed to mask the bad pixels in the original camera scene.

The detection results are presented in two different
ays. First, the results are presented by means of receiver
perating characteristic �ROC� curves. These curves repre-
ent the relation between the true-positive rate �sensitivity�

(a) frame 1 (b) fra

Fig. 5 Three frames �256	128� of a construc
target can be seen in Fig. 6. The amplitude of
moving with an apparent velocity of 2 LR pixels

(a) SIS (b) Zo

Fig. 6 Difference images for the different back
range �−6,6�. The positions of the point targe
shown for the 24th frame in the sequence. The
apparent motion with respect to the background
ptical Engineering 096401-
and the false-positive rate �1-specificity� for different
threshold values. Next, the performance for the different
algorithms is compared for a representative operating point.

5.1 ROC Curves
An ROC curve relates the sensitivity to the specificity of an
algorithm. For a detection method an ROC curve can be
determined by varying the threshold and counting the true
and the false detections �knowing the ground truth�. In our
analysis, first the fraction of true detections is determined.
A true detection occurs when in the point target ROI—a
5	5 neighborhood around the point target—a detection is
present. Here, a detection is defined as one or more con-
nected pixels after thresholding or tracking. Because every
frame contains one point target, the number of true detec-
tions divided by the total number of frames equals the frac-
tion of true detections. This is indicated on the vertical axis
of the ROC curve.

The next part of the analysis is to determine the number
of false detections. First, the true detections are removed if
they are smaller than twice the size of the point target ROI.
This is done to make sure that true detections are not
counted as false detection as well, except when a true de-
tection is large too. The latter situation can occur for small
threshold values. After this removal, the number of false
detections in each frame is determined after labeling �with
4-connected neighbors� all detections. In the ROC curves
that are presented here, the number of false detections per
second is plotted on the horizontal axis. These numbers
correspond with a frame rate of 15 frames /s and a frame
size of 256	256 pixels. Because the evaluation is done on

(c) frame 48

int target sequence. The position of the point
int target is 56 gray values. The point target is
ame with respect to the background.

(c) Zomet 2

suppression methods displayed with intensity
dicated with a circle. The difference image is
de of the point target is 12 gray values, and its
R pixels per frame.
me 24

ted po
the po
per fr
met 1

ground
t are in
amplitu

is 2 L
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smaller, defined ROI �see Fig. 7�, the measured numbers
f false detections are scaled so that they correspond to a
56	256-pixel frame.

In Fig. 8 the improvement in detection performance that
an be obtained by using tracking is shown. The high-
lutter scenario is used with a low point target velocity
0.125 pixel/frame� and an ANR of 12. It can be seen that
racking improves the detection results for background sub-
raction with both Zomet and the SIS method.

Figure 9 shows ROC curves of a low-clutter scenario.
hese curves show that the background subtraction meth-
ds using SR reconstruction outperform the SIS method.
or fast-moving point targets in a low-clutter scenario
lower row of Fig. 9�, the Zomet method performs better
ue to its noise reduction capabilities. For slow-moving
oint targets �upper row of Fig. 9� the Zomet method also
erforms better because the point target is efficiently sup-
ressed in the background estimation, resulting in more
oint target energy in the difference image. Therefore, the
mprovement using Zomet is much larger for point targets
ith a low apparent velocity than for point targets with a
igh apparent velocity. As expected, the difference in per-
ormance between the two zoom factors of Zomet is not
ignificant, because there is not much residual aliasing in
he low-clutter scenario.

Figure 10 shows ROC curves of the high-clutter sce-
ario. These results show the excellent performance of
omet’s SR method with zoom factor 2. This method re-
uces the aliasing artifacts, which are specifically present in
he high-clutter region, much better than both other meth-
ds. This can also be seen from the difference images de-
icted in Fig. 6 in the building ROI. In the upper row of
ig. 10 �small apparent point target motion with respect to

ig. 7 Regions of interest in frame 24 that are used for analyzing
he point target detection in a low- and high-clutter scenarios. All
mages are visualized in �1000, 1120�. Note that no simulated point
arget is present in these images.
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High clutter scenario, CNR = 35.00
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(a) no tracking

Fig. 8 ROC curves of the three different backgr
�buildings�, a point target velocity of 0.125 pixel/
obtained without using tracking, and �b� shows
ptical Engineering 096401-
the background�, Zomet’s SR method �both zoom factors�
outperforms the SIS method. This can be explained by a
higher point target amplitude in the difference image of
Zomet’s method. The difference image of Zomet with zoom
factor 2 also contains less aliasing artifacts. Note that in
Fig. 10�d� the SIS method performs better than Zomet’s
method with zoom factor 1 for small ANR. This is ex-
plained by the fact that the background estimation gener-
ated with the Zomet 1 method will have aliasing errors.
Because this background estimation is used for the detec-
tion in all frames, these aliasing errors will result in corre-
lated false detections. In the SIS method, there are also
aliasing errors in the frames, but these errors will be uncor-
related over subsequent frames, and will therefore not lead
to correlated detections. Because correlated false detections
are assumed to be correct detections by the tracking algo-
rithm, the Zomet 1 method will lead to more false detec-
tions. This result shows that it is useful to apply SR recon-
struction with a zoom factor larger than 1, because this
reduces the aliasing noise.

5.2 Performance Comparison
The area under the ROC curve is often used as a perfor-
mance measure.25,26 In our case the interesting part of the
ROC curve is where the number of false detections is
small.27 Therefore, the area under the ROC curve is deter-
mined up to a value of 20 false detections per second �for a
256	256-pixel frame and 15 frames /s�.

In this paper the performance of a specific scenario is
determined by ANR80, the ANR of the point target that
corresponds with a 80% area under the ROC curve. This is
the ANR for which 80% of the point targets are detected
with 20 false detections per second. Note that a smaller
ANR80 indicates better performance. An operating point of
80% area under the ROC curve up to 20 false detections
per second seems useful: The fraction of true detections is
high enough to perform more advanced tracking while re-
ducing the number of false positives even further.

For each scenario, ROC curves are measured for varying
ANRs. Under each ROC curve the area under the ROC
curve up to 20 false detections per second is calculated. By
linear interpolation between those areas the ANR80 is de-
termined. The resulting ANR80’s are shown in Table 1, in-
cluding the precision. The precision of the ANR80 is deter-
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(b) 3-out-of-5 tracker

uppression methods for a high-clutter scenario
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ined from the standard deviation of each point �eight
easurements� on the ROC curves. The inaccuracy of the

nterpolation is not taken into account in this precision. As
an be seen in Table 1, the improvement of tracking is on
he order of 1.5, except for point targets with the highest
pparent target velocity �PTV� of 2 pixels/frame, where the
ffect of tracking is negligible. This might be explained by
he limited association window used in the tracking algo-
ithm.

The relative performance of the proposed detection
ethod using Zomet’s robust SR reconstruction for back-

round suppression, compared with the detection method
ased on SIS, is presented in Table 2. Each number indi-
ates the ratio of the ANR80 of SIS+TR �baseline� to the
NR80 of Zomet 1+TR or Zomet 2+TR. Larger numbers

ndicate better performance.
For the smallest apparent target velocity the improve-

ent is at least 2.3 for the Zomet method compared to SIS.
or high-clutter scenarios, Zomet 2 is significantly better

han Zomet 1, while for low-clutter scenarios the difference
etween Zomet 1 and Zomet 2 is not significant. The larg-
st improvement compared to the baseline is obtained with
omet 2 for the scenario of high clutter and a small appar-
nt point target velocity. Here, the improvement is almost a
actor 4.

The measured improvement in performance of a detec-
ion method using SR reconstruction over the expected the-
retical improvement is also given in Table 2. The theoret-
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Fig. 9 ROC curves of the three different back
clutter scenario �sky�. SIS, shift, interpolate, and
with zoom factor 1 and 2, respectively; TR, track
with low apparent point target velocity �0.125 p
apparent point target velocity �1 pixel/frame�. E
noise ratio.
ptical Engineering 096401-
ical values are based on the analysis in Secs. 2.2 �Eq. �4��
and 2.3 �Fig. 2� and are given by TI= Inoise · Iampl. Here, Inoise
is the ANR improvement due to the temporal noise reduc-
tion, which is �2, and Iampl is the ANR improvement due to
point target suppression in the background by using robust
SR reconstruction.

Because we cannot quantitatively estimate the reduction
of the aliasing noise, the values for the high-clutter scenario
are only indicative. As can be seen in this table, mostly the
real performance is smaller than our theoretical expecta-
tions. For point targets with a high apparent motion with
respect to the background, the improvement is primarily
due to temporal noise reduction. Here, our measurements
are close to what is expected. For small apparent motion of
the point targets, the difference between theory and mea-
surements is somewhat larger. This may be explained by
the fact that the simulated point targets are placed in real
recorded data, which introduces an error in the position and
therefore in the apparent motion of the point target. Rela-
tively, this error is larger for smaller apparent motions.

6 Conclusions and Discussion
In this paper we have presented a new method for point
target detection based on superresolution �SR� reconstruc-
tion of the background. With a simulation based on a real-
world sequence we show that the specificity and sensitivity
of a point target detection method are improved. The im-
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Table 1 Point target amplitude noise ratios �ANR80� that correspond with 80% area under the ROC
curve up to 20 false detections per second for the shift, interpolate, and subtract �SIS� method and the
Zomet method with zoom factors 1 and 2. For all methods the results with and without tracking �TR�
are given. Note that a smaller ANR80 indicates better performance.

Clutter PTV

ANR80

SIS
SIS
+TR Zomet 1

Zomet 1
+TR Zomet 2

Zomet 2
+TR

Low 0.125 23.3±3.9 15.6±3.7 8.0±0.7 5.3±1.3 9.4±0.6 5.1±0.8

0.25 24.1±2.0 15.4±2.7 7.8±0.7 5.1±0.8 9.3±0.9 5.3±1.3

0.5 15.5±3.9 12.0±2.9 7.7±0.9 4.2±1.1 8.7±1.2 5.4±1.2

1 9.5±0.8 6.2±0.7 7.8±1.4 4.4±1.8 8.6±1.8 4.0±1.3

2 7.4±0.6 7.2±1.2 6.0±0.3 5.6±0.7 6.7±0.7 5.7±0.9

High 0.125 57.5±12.9 29.6±4.7 16.5±1.0 12.8±1.9 10.6±0.7 7.7±0.2

0.25 44.8±4.5 29.9±7.3 16.2±0.6 12.7±1.2 10.4±0.5 8.1±0.7

0.5 31.8±3.6 21.7±2.7 16.0±0.6 11.9±1.6 10.0±0.6 7.6±0.2

1 20.4±1.8 12.3±1.5 15.7±0.8 12.0±1.1 9.5±1.1 7.3±1.0

2 15.0±0.9 11.8±1.9 15.7±0.5 14.8±1.2 7.9±1.1 5.8±1.1
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Fig. 10 ROC curves of the three different background suppression methods plus tracking for a high-
clutter scenario �buildings�. SIS, shift, interpolate, and subtract; Zomet 1 and 2, Zomet’s robust SR
method with zoom factor 1 and 2, respectively; TR, tracking. The upper row ��a�, �b�, �c�� shows results
of data with low apparent point target velocity �0.125 pixel/frame�, and the lower row ��d�, �e�, �f�� with
high apparent point target velocity �1 pixel/frame�. Each column shows a specific point target
amplitude-noise ratio.
ptical Engineering September 2008/Vol. 47�9�096401-10
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rovement in specificity is based on two properties of the
R reconstruction algorithm: temporal noise reduction and
nti-aliasing. Both these effects reduce the number of false
larms, because there is less noise in the background esti-
ation and therefore also less noise in the difference image

n which the detection is based.
The sensitivity of point target detection is increased by

he point target suppression capabilities of SR reconstruc-
ion in the background estimate. Therefore, the amplitude
f the point target is preserved in the difference image. This
ffect is larger for point targets with lower apparent target
elocity. Robust SR reconstruction is used, because this
uppresses outliers and therefore has hardly any contribu-
ion of the point target in its background estimation,
hereas for nonrobust SR reconstruction methods a small
ortion of the point target energy will still be seen in the
ackground estimation.

It can be seen that background suppression with SR re-
onstruction performs better than a standard shift, interpo-
ate, and subtract �SIS� algorithm in almost all tested sce-
arios. As expected, SR reconstruction with zoom factor 2
erforms better than SR reconstruction with zoom factor 1
n high-clutter scenarios. This effect is due to the fact that a
etter estimation of the background by using antialiasing,
s is done with zoom factor 2, will decrease the number of
alse detections. In low-clutter scenarios a higher zoom fac-
or does not improve the performance.

The improvement using SR reconstruction is only dem-
nstrated for a limited data set. However, these results pro-
ide indicators for the performance of these techniques us-
ng other imaging systems and for other scenes. The
erformance depends on the properties of the imaging sys-
em, such as its sharpness and sampling frequency. These

able 2 Relative performance of the proposed detection method
sing Zomet for background suppression and the detection method
ased on shift, interpolate, and subtract �SIS�. For all methods only
he results with tracking �TR� are given.

lutter PTV

ANP80 ratio

Zomet 1+TR
versus SIS+TR

Zomet 2+TR
versus SIS+TR

Theoretical
improvement

ow 0.125 2.9±1.0 3.1±0.9 4.1

0.25 3.0±0.7 2.9±0.8 2.8

0.5 2.9±1.0 2.2±0.8 2.4

1 1.4±0.6 1.6±0.8 1.7

2 1.3±0.3 1.3±0.3 1.2

igh 0.125 2.3±0.5 3.8±0.6 �4.1

0.25 2.4±0.6 3.7±0.5 �2.8

0.5 1.8±0.3 2.9±0.4 �2.4

1 1.0±0.2 1.7±0.3 �1.7

2 0.8±0.1 2.0±0.4 �1.2
ptical Engineering 096401-1
properties affect the aliasing properties. According to the
theory, the performance gain will be lower for systems with
less aliasing. On the other hand, the performance gain will
increase for systems with more aliasing. The results also
depend on the amount of clutter in the scene. In our simu-
lations we tested two scenarios: a high-clutter scenario,
which was clutter-dominated, and a low-clutter scenario,
which was temporal-noise-dominated. This provides two
measuring points at the extremes of the clutter-to-noise ra-
tio. The performance gain of scenes with another clutter-to-
noise ratio will therefore be in between the low- and high-
clutter improvements shown in this paper.

Summarizing, we have shown that point target detection
after background suppression with SR reconstruction is sig-
nificantly better than detection with the SIS method, espe-
cially in high-clutter scenarios and for low apparent target
motion with respect to the background. While maintaining
equal detection performance, the proposed method using
SR reconstruction can detect point targets that have an up
to 4 times smaller amplitude-to-noise ratio in the scenarios
studied. In practice this implies that a point target can be
detected at longer range.
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