
Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 837095, 18 pages
doi:10.1155/2009/837095

Research Article

Games and Agents: Designing Intelligent Gameplay

F. Dignum,1 J. Westra,1 W. A. van Doesburg,2 and M. Harbers1, 2

1 Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
2 TNO Defence, Security and Safety, P.O. Box 23, 3769 ZG Soesterberg, The Netherlands

Correspondence should be addressed to F. Dignum, dignum@cs.uu.nl

Received 27 April 2008; Revised 20 August 2008; Accepted 2 December 2008

Recommended by Abdennour El Rhalibi

There is an attention shift within the gaming industry toward more natural (long-term) behavior of nonplaying characters (NPCs).
Multiagent system research offers a promising technology to implement cognitive intelligent NPCs. However, the technologies used
in game engines and multiagent platforms are not readily compatible due to some inherent differences of concerns. Where game
engines focus on real-time aspects and thus propagate efficiency and central control, multiagent platforms assume autonomy of
the agents. Increased autonomy and intelligence may offer benefits for a more compelling gameplay and may even be necessary
for serious games. However, it raises problems when current game design techniques are used to incorporate state-of-the-art
multiagent system technology. In this paper, we will focus on three specific problem areas that arise from this difference of view:
synchronization, information representation, and communication. We argue that the current attempts for integration still fall short
on some of these aspects. We show that to fully integrate intelligent agents in games, one should not only use a technical solution,
but also a design methodology that is amenable to agents. The game design should be adjusted to incorporate the possibilities of
agents early on in the process.

Copyright © 2009 F. Dignum et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The gaming industry has changed dramatically over the past
few years. Where the development focus used to be on the
graphical possibilities of the games, that is, the naturalness of
the image rendering, the near movie realism of the graphics
now increasingly contrasts with the rather primitive and
unnatural behavior of the characters. With behavior, we do
not mean the animation of the character, but its cognitive
behavior, that is, the reaction and interaction with other
characters, the consistency over time of its goals, and so forth.
Therefore, the focus is now shifting toward more natural
behavior of the game characters. This shift changes the focus
on the techniques to be used as well. Whereas geometric
techniques and graphics were the prime focus, now it seems
the time to introduce more serious AI techniques, see for
example [1]. We see an increasing use of techniques such
as fuzzy logic and neural networks to enhance the decision
functions of the characters, see [2] for an example. These
features are very useful to make individual behaviors look
more realistic and in some cases make them blend into a
crowd in a natural way.

The game developers community has also recognized
the importance of making characters appear intelligent over
longer periods of time. Finite state machines are most
often used to model the life cycle behavior of a character.
Each state describes an important state of the character
that determines its choice of available actions. Although
this works fine for simple behavior, Orkin [3] realized that
more flexible planning is needed for complex behavior. In
F.E.A.R., planning techniques based on STRIPS [4] and goal-
oriented action planning [5] are introduced. This leads to
more natural behavior because the goals of the character
are separated from the plans generated to reach the goal.
Therefore, the failure of a plan does not directly lead to giving
up a goal but rather leads to generating an alternative plan
including the new information about the world that led to
the failure of the first plan. Interestingly enough though, little
reference is made in this work to the research performed in
the agent community about dynamic and real-time planning,
which would be directly applicable such as [6].

Despite these examples, few commercial games have
focused on making characters within games behave more
natural on a cognitive level. Probably the main exception was



2 International Journal of Computer Games Technology

the Soar Quakebot build in SOAR for Quake II. However,
this was done (successfully) as an academic project, but the
Soar Quakebot was not incorporated in later commercial
versions of Quake. This is partly explained by the fact
that Quake like most video games does not require more
complicated behavior than that of film characters played
by actors like Sylvester Stalone or Arnold Schwarzenegger.
Not much intelligence is needed to emulate that behavior
yet. However, if we want to move beyond the shooting and
fighting games toward games in which multiple characters
interact naturally over extended episodes or serious games
to train people leading teams in stressful situations, we need
more cognitive believable behavior of the characters. One
of the problems mentioned in [3] is the implementation of
believable and natural communication between characters.
This can be done by giving them additional information,
not available to normal players. Also the use of special
environmental characteristics can provide the illusion that
characters are cooperating, while they merely all react to
the same environmental cue. These features are for instance,
used in F.E.A.R. to create a realistic appearance. However,
this trick can only be used in well-defined environments and
everything has to be preprogrammed.

The more complex the games become and the more
elaborate the interactions between the characters during
the game, the more difficult it will become to design
these characters without the use of specialized tools geared
toward implementing intelligent agents in a modular way.
We aim for characters that are programed using agent
technology that actually incorporates deliberation on actions
and cooperation, rather than simulated intelligence through
clever tricks. Thus this seems an excellent area for applying
intelligent agent technology such as that being developed
within computer science faculties at the universities, which
already for a decade has developed models, techniques, and
tools to design software based on design concepts such as
goals, intentions, plans, and beliefs. Some first attempts to
connect game engines with this type of agents have been
made, for example [7, 8]. However, these are very specific to
game engine and agent type, no general solutions have been
proposed. The main issue of this paper is thus, given that
it makes sense to use ideas from agent research in gaming,
as seems to be supported by the growing amount of work
in games that incorporates (parts of) agent concepts and
technologies, what would be necessary to make use of the
agent technology as developed for the multiagent platforms?

The techniques used in agent technology do not seam-
lessly fit with those used in game technology. Agent technol-
ogy has hardly bothered about efficiency issues up till now.
Most applications are not real-time ones or still have large
time scales. Moreover, agent technology usually assumes
distributed control and a certain level of autonomy of the
agents. This is in stark contrast with game technology in
which the game engine dictates the application, and strict
time constraints are used in order to render the images
naturally and efficiently.

In this paper, we explore the possibilities to join the game
to existing agent technologies despite some inherent incom-
patibilities. We will focus on some of the most apparent

problem areas and also show how they can be solved in a
structural way. A main assumption of this paper is that we
want to use agent platforms and the associated technology
to develop the intelligent agents, because platforms such as
JADEX, Jack, Jason, and 2APL [9] provide optimal support
for developing the agents themselves. This will, therefore,
support the design principle of separation of concerns, which
is important for complex systems. The way to design a
complex system is to separate different concerns and tackle
them separately using the most appropriate tools for that part
and joining them later. This principle can already be seen in
the game technology where the game engine is built from
physics engine, animation engine, and so forth, each taking
care of one part of the design of the game. So, the challenge
is to connect the agents developed on these platforms to the
game engines on which the rest of the game is developed. The
work reported in this paper is based on our experiences of
connecting the 2APL platform to several game engines. These
experiences led us to the conviction that in order to fully
integrate agents in games, one should not only use a technical
solution, but also a design methodology that is amenable to
agents. We aim to support this claim as well in this paper. The
areas that we will specifically look at are: synchronization,
information representation, and communication.

As the agents will run in separate threads from the
game engine (in principle using the agent platform), the
actions of the agents and the game engine also have to be
synchronized explicitly, for example, in order to make the
agents behave according to the laws of physics. The problem
of synchronization is of course not new; neither will we
present completely new solutions. However, the solution
should take the peculiarities of the games and agents into
consideration.

Information filtering is needed to provide both the agents
and the game engine with the right type of information at
the right time. Whereas the geometric information might
be the most important for the game engine, the agent
wants to get its information at a higher knowledge level.
For example, instead of knowing the rotation angle of a
rectangular object, the agent just wants to know that the
door is open. Conversely, the agent might perform an action
to move a fire hose toward the house which has to be
translated to more geometric actions that can be used by the
game engine. The idea of using different knowledge levels
to solve different types of problems dates back to Allen
Newell [10] who distinguished, for example, a biological,
cognitive, rational, and social level. Each knowledge level
represents the information in a format that is suited for that
particular type knowledge and may also contain its own type
of problem solving methods. We actually propagate the same
idea and claim that agents need a different (cognitive or
rational) knowledge level from the game engine, which uses
a biological (or physical) knowledge level.

Communication is the last area that we will consider
explicitly. We will mainly look at communication between
different characters in a game. In most games, coordination
between characters is preprogrammed and thus communica-
tion is only needed on a small scale. In multiagent systems,
communication is one of the pillars of the whole system



International Journal of Computer Games Technology 3

and thus takes a prominent place in both design as well
as technology. We will show how communication can be
adequately integrated with the game engine to provide the
agents with easy communication, while keeping it visible for
the game engine.

The rest of the paper is ordered as follows. First, we
will discuss the state of the art with respect to games
and agents and identify problem areas. In Section 3, we
describe some applications of (serious) games that rely on
intelligent behavior and are currently difficult to achieve,
but will be more readily attainable using our approach. In
Section 4, we will describe our vision on connecting games
and agents, using three different perspectives to alleviate
the problems of Section 2 and enable games described in
Section 3. In Section 5, we will discuss the different parts of
our approach and indicate their contribution to the type of
gaming scenarios described in Section 3. Finally, we will draw
some conclusions and sketch directions for future work in
Section 6.

2. State of the Art

In this section, we discuss several approaches to the integra-
tion of agents in game engines. As said in the introduction,
many games already advertise the use of AI; however, the
meaning of the term agent differs between game developers
and AI researchers. In the next subsection, we discuss the
type of agent we will focus on in this paper. Subsequently,
we discuss different ways in which agents are connected to
game engines.

2.1. Software Agents. In the game developer community,
the term software agent usually refers to some character
or unit within the game. In contrast, in the area of agent
research, many definitions of software agents are used, which
can lead to confusion when the term is used by different
communities. (For some attempts to get to a common
definition and characterize agents, see, e.g., [11]). However,
there are some features of agents that are generally accepted
in the community, which we will also adhere to in this paper.
Software agents should be autonomous, proactive, reactive,
and socially able. In this paper, we assume the following,
more specific, definition of software agent: a software agent
is a piece of software that has its own goals available (is
proactive) and will try to achieve them without intervention
of a user or other program (is autonomous), while sensing its
environment and reacting to possible changes (is reactive).
Additionally, agents in a multiagent system (MAS) are not
centrally controlled, execute asynchronous, and should be
able to communicate with each other, the user(s) and the
environment. Software agents might be able to learn and
adapt, but we do not consider these features as essential for
agents.

The above definition mentions the generally accepted
features of agents, but of course is still quite vague. However,
it does give an indication of what type of features one
generally expects in agents. Without going into a complete
classification of agents, we do want to mention a few types

of software agents that are already used in the context of
gaming. Most important are the virtual agents or believable
characters. They are especially useful for user interfaces
and as such the emphasis is on natural interaction of the
characters with persons, see [12, 13] for examples of these
types of agents. The goals of these types of agents exist
only implicit in the way that the rules with which they
react to the environment are modeled and ordered in a
way to resemble the fact that they have a goal. Because
these types of agents usually have only one goal (something
like assisting the user to understand or use the system),
this will work fine. However, this approach fails when the
character has more complicated goals or several goals that
are competing. This happens particularly when more than
one virtual agent is present at the same time and they
have to cooperate which is usually avoided in this type of
applications.

Much work on using multiple agents with (relatively)
simple behavior is done in the area of (agent-based) social
simulation (see, e.g., [14]). These agent systems focus on the
emergent behavior of the system as a result of the interactions
of the agents according to simple rules. Some work where
multiple agents have been used in a simulation environment
for training is [15]. In this work, the agents represent
individuals or groups that interact in a virtual village, region,
or country. Their goal is to study how the behavior of groups
influences that of other groups or individuals. In these
simulations, the agents are not really autonomous. They
react to their environment through relatively simple rules.
More importantly they do not plan but only execute actions
one by one. Planning can be simulated by manipulating the
environment in such a way that sequences of actions are
forced after the first action is taken. However, it is difficult
to program long-term goals in these agents.

In the research on multiagent systems (MASs), the
starting point is that each agent represents a point of view
or party with its own goal. Therefore, usually each agent
runs in its own thread such that it can be autonomous.
Also, agents usually contain some mechanism to deliberate
about which action to take next in order to reach their
own goal. The interactions between the agents emerge from
the fact that the goals of the agents are not independent
and thus the agents need each other to achieve their goals.
Therefore, the design of agent interactions in such a way that
all agents can reach their goal is of prime importance. This
is illustrated by the amount of game theory-related research
reported at the recent MAS conferences [16]. In MAS,
the communication facilities play a crucial role. Because
not all interactions are preprogrammed, a high degree of
flexibility is needed to handle the communication. The de
facto standard communication language is the FIPA ACL
[17], which is based on speech act theory and can be used to
pass information, but also to request or order actions. MAS
platforms support communication by providing addresses of
all agents, delivering messages in the right order, and so forth.
The most widespread MAS platform is JADE(X), which is
provided as a library of JAVA classes and fully supports the
use of FIPA ACL communication (and thus provides easy
interoperability with other FIPA ACL compliant platforms).



4 International Journal of Computer Games Technology

Good examples of applications of MAS are logistics and
virtual organizations. In these business applications, the
benefits of representing the stakeholders by their own agent
that pursues the goal of that party while interacting with the
other parties (either cooperatively or competitively) becomes
obvious. It is this kind of MAS that we are aiming to connect
to the games. Taking this type of MAS as a starting point
provides a means to design each virtual character with its
own goal, while being able to interact with other characters
to reach its goal.

Also in MAS, there are several types of agents. We are
particularly interested in intelligent agents, which will use
some form of logic to perform their deliberation. That is,
they are able to reason about their own goals and plans,
to check which plan is best to achieve their goal given the
current situation of the world, and to replan when the
situation changed. The most well-known type of intelligent
agents is the so-called BDI agent [18], which are specified
(and sometimes implemented [19, 20]) in terms of the
agent’s beliefs, desires, and intentions. We believe that the
BDI agents are most suitable to implement consistent long-
term intelligent behavior in games. They seem a natural
extension to the work started by the use of goal-oriented
action planning in gaming as they also make explicit use
of goals and planning. However, they also incorporate
mechanisms to effectively use communication and other
interaction mechanisms in their action deliberation.

Some platforms that are more geared toward the use
of agents for cognitive simulation (and thus, like the BDI
agents, seem suitable for use within the gaming area) are
SOAR [21] and ACT-R [22]. In this paper, we do not commit
to a particular platform, but rather try to propose a more
generic framework that can be used by most agent types
and platforms. We thus will only refer to properties that are
shared by most (well-known) agent platforms.

2.2. Connecting Games and Agents. Current work on com-
bining agent systems such as the described above and game
environments either uses a server or client-side approach.
The server-side approach can be said to be the traditional
approach used in game design. In server-side approaches, the
decision-making process of the agents is usually completely
integrated into the game, resulting in agents that have to
make decisions within one time step of the game loop.
As such, server-side approaches have not made use of the
available agent systems. Examples of this approach are Quake
III [23], Never Winter Nights [24], F.E.A.R. [25], and Bos
Wars [12]. In contrast, agents in client-side approaches are
separate applications using the network information that is
usually sent to a client game (a game instance that connects
to a server for the world information, such as the one used
by the human player). Some examples of this approach
are Gamebot [26] connecting to Unreal Tournament 2003,
Flexbot [27] connecting agents to Half-life, and Quakebots
[28] in Quake II. Most of these types of implementations are
made for research purposes.

Intelligent human-like behavior is important in the first
person shooter games because in the newest ones, the agents

control single avatars just like humans can control their
avatar. Thus bots should be intelligent enough to perform
in a way that makes their avatar resemble an avatar of a
human player. In real-time strategy games, a whole team
is controlled by a single agent. The team members are just
executing basic instructions received from this top level
control. In this setting the emphasis is more on the quality
of the strategy and winning the game than on whether
the strategy resembles that of human players. Finally, the
pace of first person shooter games is higher than in most
other game genres, necessitating quicker decision making
and use of heuristics. For some games, it is claimed that
more sophisticated agent technologies are used, but this is
difficult to verify because most games are not open source.
Most games also have no publications from the creators and
third party publications are often inconsistent. So, in this
paper, we use a rather old game (Quake III), but we believe
very prototypical for this approach, to illustrate our point,
because it was the only open source game that we could
access and thus reliably discuss.

In order to get a better understanding of the state-of-the-
art approaches, we will analyze Quake III as a prototypical
example of the server-side approach and one of the few of
which the code is open source and thus inspectable and
Gamebots as a good example of the client-side approach. For
both approaches, the analysis will be made according to three
major aspects: synchronization, information representation,
and communication.

2.2.1. A Server-Side Approach: Quake III. In Quake III, the
agents are completely integrated in the default game loop in
the same way as the physics engine, the animation engine,
and rendering engine. The agent’s decisions are defined by
a sequence of method calls, and the methods return the
action that has to be performed at that time step. Direct
method calls can be used for many different decision-
making processes, for example, hard coding approaches,
directly specifying what to return with a certain input; fuzzy
logic, mapping the right output to a certain set of input
variables; or finite state machines, identifying the situation
the agent is in and executing the corresponding method call.
Independent of the particular decision-making strategy, the
whole process is completely synchronized. This limits the
complexity of behavior because in a synchronized process all
decisions have to be made within one time step, and complex
decisions would slow down a game too much.

Figure 1 gives an impression of the implementation of
agents in Quake III. On the lowest level in the figure, a
translation from the raw engine data to a representation
more suitable for agents has been created, called the area
awareness system (AAS). The heart of the AAS is a special
3D representation of the game world that provides all the
information relevant to the bot. The AAS informs the bot
about the current state of the world, including information
relevant to navigation, routing, and other entities in the
game. The information is formatted and preprocessed for
fast and easy access and usage by the bot. For instance, to
navigate the bot receives information from the AAS about the



International Journal of Computer Games Technology 5

locations of all static items, and it can ask the AAS whether a
certain location is reachable. The AAS is responsible for route
planning. The first level also executes the actual actions of
the agent and facilitates the decision process of the agents.
However, the agents are highly dependent on the data they
can extract from the AAS, for example, an agent cannot
decide to take another route to a certain item. To illustrate the
importance of the linkage between the engine and the agents,
this part constitutes over 50% of the entire agent code.

On the second and third levels of the architecture, the
information from the AAS can be used to check whether the
bot’s goals are reached or how far off they are. Depending
on the character that a bot plays, the fuzzy logic control
determines which of the possible paths the bot should start
navigating.

Little communication between agents takes place in a
normal game of Quake III; it is only used to assign roles
in team play situations. Communication is implemented
by using the chat system for sending simple text messages.
More cooperation between agents would require improved
communication facilities. Moreover, currently it is assumed
that communication is always successful, which is usually not
guaranteed in realistic multiagent scenarios.

2.2.2. A Client-Side Approach: Gamebots. Gamebots [8]
has been created as a research platform for making the
connection between agent research and a computer game,
namely, the Unreal Tournament environment, and is one
of the most used client-side implementations. In client-
side approaches, agents are running as completely separate
programs from the server and are usually communicating
through network sockets. Network communication between
agents and other external software programs has been
successfully used in other multiagent systems. Gamebots was
designed for educational purposes, and therefore, multiple
client implementations have been created, for example, one
using the scripting language TCL, a SOAR bot, and a JAVA-
based implementation.

Figure 2 shows a diagram of the different Gamebot
modules in combination with the JAVAbot extension. The
Gamebot API forms the extension to Unreal Tournament
that is needed to connect a client-side program to the
Unreal Tournament. The JAVAbot API is the client side
of the coupling. Having a general JAVA API on this side
facilitates the connection to most agent platforms because
they are usually also JAVA based. Information is sent from
the game engine to the agents through the Gamebot and
JAVAbot APIs by two types of messages: synchronous and
asynchronous messages. The synchronous messages are sent
at a configurable interval. They provide information about
the perceptions of the bot in the game world and a status
report of the bot itself. Asynchronous messages are used for
events in the game that occur less often and are directly sent
to the agent (but do not interrupt the large synchronous
message).

Gamebots is actually not a pure client-side solution
because the server is also modified to supply a special
world representation to the bot. There are some pure client

4th

3rd

2nd

1st

Team leader AI

Misc. AI AI network Commands

Fuzzy Character Goals Navigation Chats

Area awareness system Basic actions

Figure 1: The Quake III bot architecture as described in the
developer documentation. This figure shows the close coupling
between the various levels of abstraction (Copied from [28]).

Unreal
tournament

server

Gamebot
API

JAVAbot
API

Agent
platform

Figure 2: The Gamebot architecture showing that a server-side
module is needed to translate the game data to terms the agent can
process.

agent implementations, but they are usually only created
for cheating purposes. In this case, the processing of the
data is done in the bot itself because it pretends to be a
human client game. Doing this filtering on the server is
more efficient because only the useful information needs to
be communicated. This server modification, the Gamebots
network API, performs a similar task and for similar reasons
as the area awareness system in Quake III. This clarifies why
the Gamebot API is specific for Unreal Tournament; it needs
to know the internal representation of the game world in
order to make the translation (efficiently).

The Gamebot API does not provide information about
the complete environment, but only about objects that are
perceivable by the bot. Thus, if a bot wants to gather
information about the complete environment, it has to
(physically) explore it. To navigate, for example, the agent
receives information about predefined navigation nodes in
the game map, but only the currently observable nodes are
returned. The agent thus does not know what exists around
the corner, let alone that it can reason about it. Due to
the representation choices made in Gamebots, information
about the environment has to be stored at the agent side
of the system. This results in large differences between the
agent’s representation of the environment and the actual
environment of the game engine. For complex bots, the
information provided by the Gamebot API quickly becomes
too limited to make intelligent decisions. For example, the
agent cannot know the spawning location of a certain power-
up, and therefore, it cannot plan to go there.

There is no facility for communication between agents
in the Gamebots API because Gamebots was not designed
for adding a multiagent system with interacting agents to
the game. It is allowed to add multiple agents to one game,
but there are no facilities for direct interaction between these
agents. It is possible to create a separate communication



6 International Journal of Computer Games Technology

system between the agents by bypassing the API and the
engine. However, this solution is not only inelegant, but also
restrains the game environment to have any influence on
the communication. An advantage of separating the game
engine and the agents in different processes is that there
are no strict time limits on the reasoning process of the
agents. A disadvantage of using a fixed API is that the agent
receives information it does not need and it cannot access
information that it might need.

2.3. Multiagent Interaction. In the previous paragraph, we
have seen two examples of ways to connect agents to
games. These approaches are limited to a technical way of
connecting agents to a game. On the level of game design,
few games have tried to leverage these approaches from
the start of the game design to add multiple agents and
create a more compelling game play. Current games are
generally not created with multiagent interaction in mind;
interaction is not implemented at all or added as an extra
feature in a later phase. For games in which interaction is
simple, this is not problematic. For example, Quake III has
a game mode in which two teams strive to capture each
others flag. The player plays one character in a team, while all
the other characters, from his own and the opposing team,
are computer-controlled agents. Although the interaction
between agents and between agents and the player is limited,
the game conveys the feeling of a dynamic interactive world.
The same can be said about the communication between
characters in F.E.A.R. Although the communication looks
quite natural it is actually added to the interaction scene
afterward. It thus serves more to enhance reality than that
it has a function in the gameplay! See [3] for a description of
the problems encountered.

If the interaction in a game becomes more complex and
the multiagent interaction is not an intricate part of the
design process, some unexpected or unbelievable behavior
might occur. For instance, users who were testing the game
“Elder Scrolls: Oblivion” by Bethesda games [29] noticed
that if they gave one character a rake and the goal “rake
leaves” and another a broom and the goal “sweep paths”
this worked smoothly. But when they swapped the items,
so that the raker was given a broom and the sweeper was
given the rake, in the end one of them killed the other
so he could get the proper item. If the communication
between agents in this game would have been possible, they
could have communicated about their goals, and solved
their problem. In the academic community, much work has
been done on sharing, exchanging, and rejecting goals [30].
So far, this has not been absorbed by the game developer
community.

Current games also do not facilitate multiple agents
requiring complex decision making. In order to generate
agent behavior, complex computation may be required. For
instance, in a real-time strategy game, an opponent agent
needs to observe the playing field, assess the state of his own
units, make an assessment of the strategy of its opponents,
generate a strategy, form a plan to execute that strategy,
coordinate plans with other agents within the same faction,

and in some cases evaluate actions in order to learn from
them for future battles. Depending on the algorithms used,
this can take considerable processing time. Current games
make high demands on computer processors in order to
display graphics, simulate physics, create 3D audio, and
perform network communication, amongst others. Many
games are, therefore, forced to minimize the processing
time used for individual agents. If each agent has its own
reasoning process running in parallel to generate behavior,
this can spiral out of control quickly. This is certainly the
case in games with many characters in a scenario. Current
games, therefore, often forego the generation of complex
behavior and script the behavior of nonplaying characters.
For instance, in a first-person shooter game, two computer-
controlled players happen to be within equal distance of
a power-up. In the current game AI design approaches,
such players enter a scripted line of reasoning, resulting
in the decision to retrieve the power-up. This will lead
them toward the same area in the game and within the
shooting range of each other. This behavior is an example
of nonrealistic behavior due to oversimplification in a
script.

A human player expects the entire game world to persist
even when not present in a particular area. Many games have
an optimized design that allows a game to be compressed to
events, behaviors, and reactions that directly surround the
player, and therefore, only the ones visible to the player. So
when a nonplaying character falls out of the scope of the
player, the game engine no longer simulates the interaction
between a nonplaying character and its environment. Thus
the game is optimized and the demands on computer
hardware are reduced. However, simulating only parts of the
game world might result in unrealistic behavior. For instance,
in large first-person shooter games, the positions of guards
are reset (or their behavior no longer updated) when the
player has reached a certain distance. Each time the player
returns to the initial area, the guards will be at the same places
or even have become alive again while they were killed before.
The example shows that simulating an agent depending on
the position of the play can lead to discontinuities in the
game world.

Conclusion. Most state-of-the-art games use a server-side
model with tightly integrated agents. As we have seen,
this approach restricts the reasoning time of the agents
considerably. An asynchronous solution is more suitable
and will be used as a starting point in the next sections.
Translating the raw game data to information more suitable
for the agents is done in most computer games, but usually
in a very restrictive way. In Section 5.2, we propose a more
flexible solution. Many of the current games do not use
communication at all, and if they do, only for simple tasks
and in an ad hoc fashion. Modern games are not created
with multiagent interaction in mind. This results in games
without or with very simple interaction, or in unexpected
behavior in more complicated scenarios. We propose to
make the agent interaction an intricate part of the whole
development process.



International Journal of Computer Games Technology 7

3. Using Intelligent Agents

In this section, we describe some applications of (serious)
games that really leverage intelligent agent technology in a
way that is currently not practiced. These examples serve to
illustrate the usefulness of our approach. The examples in
Section 3.1 mainly focus on problems related to information
representation. Section 3.2 about multiagent systems stresses
the importance of finding solutions for communication
issues. The area of synchronization is addressed throughout
the whole section.

3.1. Serious Gaming. Besides the purpose of entertainment,
games are also used for training and education. These so-
called serious games are for example used for the training
of pilots, soldiers, and commanders in crisis situations.
The training scenarios often involve complex and dynamic
situations that require fast decision making. By interacting
with these games, the player learns about the consequences
of his actions from the reactions of the environment and
other (nonplayer) characters to his behavior. Explanations
can enhance the player’s understanding of a situation [31].
Several approaches of self-explaining agents have been
proposed [32–34]. In addition to performing interesting
behavior, such agents are able to explain the underlying
reasons for it afterward. By understanding the motivations
of the other characters in the game, the player learns how his
behavior is interpreted by others.

An example of a serious game to which explanation
capabilities could be added is virtual training for leading
firefighters. In such training, the player (training to become
a leading firefighter) has to handle an incident in the game,
and is surrounded by virtual characters representing his team
members, police, bystanders, or victims. A possible scenario
is a fire in a building. During the training session, the player
commands his team members to go inside a building and
extinguish a fire. The player’s team enters the building, but
after a while he still does not see the fire shrink from the
outside. To better understand the situation, he might ask the
virtual characters to explain their behavior. Their possible
answer is that they saw a victim inside the building, and
decided to save the victim first before extinguishing the fire.

The scenario just given is described on a high level. The
virtual characters get commands from the player such as go
to the building, find the fire, and extinguish the fire. When they
explain their behavior, they refer to abstract concepts such as
priorities between different tasks (saving a victim has priority
over extinguishing a fire). However, the abstract decisions
that the characters make result into actions that have to
be executed and visualized in the virtual environment.
Instead of the description go to the building, more specific
information is required on the implementation level, for
example, the coordinates of the agent’s starting position,
exact path, and final position. So in order to perform actions
in the virtual world, the high-level descriptions generated by
an agent’s reasoning process have to be translated to low-level
descriptions required by the game engine.

Besides acting in the environment, agents sense their
environment and information goes from the game engine to

the agent. The low-level information that is made available
by the engine is not immediately useful to the agents. Instead
of the exact positions of all the entities and objects in the
game at every time step, agents use abstractions, for example,
someone is going inside a building, exploring a building takes
some time, and the entity in the building is a victim who
needs help. The low-level information provided by the game
engine needs to be translated to concepts that are useful
for the agent. For instance, information about the course
of the coordinates of a character could be translated to the
more abstract description that the character enters a building,
and if a state holds for a certain amount of time steps, this
could be translated to the high-level concept for a while. This
concept has to be flexible, as the agent might decide to take
an action at time “t,” but the game engine can only process
its action a few steps later. After translating the available low-
level information to concepts that agents use, an agent itself
can select which of the high-level information will influence
its future actions.

For the generation of explanations about agent behavior,
a high-level representation of the agent’s reasoning process
is needed. For instance, agents implemented in a BDI
programming language appropriate for the addition of
explanation capabilities. Concepts such as goals, beliefs, and
plans are explicitly represented in BDI agents and thus
available for reasoning and the generation of explanations.
Moreover, it has been demonstrated that BDI agents are
suitable for developing virtual nonplayer characters for
computer games [35]. A nonplaying character however needs
to act in and sense its virtual environment, in which other
representations of the game world are used. The example
illustrates the need of a middle layer in serious gaming,
where a translation between the two representation levels
takes place.

3.2. Multiagent Systems. Multiple intelligent nonplaying
characters bring additional challenges to game design. Cur-
rently there are few facilities that allow efficient multiagent
behavior. Issues that should be addressed are for example
how an agent determines whether there are other agents in
the game. If so, how can it communicate with these other
agents? How does it know that a message has reached the
intended agent? How is information filtered such that it
allows an agent to reason about social concepts, for example,
about groups, group goals, and roles within a group?

In the firefighting scenario sketched in the previous
subsection, the team members of the leading firefighter
(player) are intelligent agents (nonplayers). Although they
have to execute the commands of the player, they still need
intelligence of their own. In the first place because they
might take initiatives by themselves; in the scenario the
nonplaying characters decided to save the victim first instead
of extinguishing the fire as the commander had told them.
Second, because they act in a team and have to coordinate
their actions with each other. For instance, if the group has to
decide whether to go left or right, they have to communicate
to each other in order to make a common decision. Or, only
one of the characters needs to carry an axe for opening doors,



8 International Journal of Computer Games Technology

but the others have to know that one of the team members is
responsible for this task.

Suppose that a team of firefighters goes into a building
with the goal to extinguish a fire. One of the members is
responsible for opening locked doors and another has to
extinguish the fire. If the first carries an axe and the second an
extinguisher, this will work smoothly. However, the situation
in which the door opener carries an extinguisher and the
fire extinguisher and axe is more complex and requires
communication. The door opener has to be aware of the
other character, come up with the idea to communicate
with it, send the right message, wait—long enough—for the
result, and finally connect the right action to it. The next
action of the door opener depends on the information it
receives from the fire extinguisher.

We believe that the communication between different
agents in a game should go through the game engine instead
of taking place on the agent platform because the effect
of communication has influence on the game world itself
and not only on the agents. For instance, if the two agents
in the scenario successfully communicated and decided to
exchange their tools, this needs to happen physically in the
virtual environment as well. If communication would not go
through the game engine, there is a danger that processes
in the game world and between the agents are no longer
synchronized. For example, if the agents agree to swap items,
they would both send a message to the game engine and
believe that the items will be successfully exchanged in the
game world. This however is not obvious. The actual swap
in the virtual world is managed by the game engine, for
example, one agent puts down its tool, has its hands free
to receive the other tool, and the other agent picks up the
tool from the ground. For such a process, it is crucial that
the game engine receives the messages from both agents at
the same time, or at least connects them to each other. This
can be better realized if the game engine is included into the
communication loop.

In turn, physical changes in the world have effect on
communication as well. For example, if the door opening
agent asks a team member to take over, it expects this
member to come and take his axe. By perception, the
agent derives whether its colleague perceived the message
and decided to assist, or if it should communicate more.
The colleague might have a good reason to refuse, for
example, it has to assist a third agent already. It could
communicate this to the requesting agent. The timing of this
communication and the action to help the third agent should
be synchronized; otherwise the requesting agent might for
example unjustly belief that it is being ignored. Such timing is
facilitated by including communication into the game loop.

Further issues concerning careful time management
include a translation of time for the game engine to time
for the agents. For instance, if the door opening agent sends
the message what tool are you carrying? To the other agent,
it expects a reaction. It is not realistic to expect a response
directly in the next time step, the game engine could give
priority to other processes first and the other agent might
need some time to reason about the question. However,
the agent also should not wait indefinitely because it could

be that the message never arrived, or that the other agent
misunderstood the content, and so forth. So after a certain
amount of time, the agent has to react, for example, by
sending the same message again, or by sending a message did
you understand my previous message? In the middle layer, a
translation of time for the game engine (a number of time
steps) to time for the agents (time in which a reaction could
be expected) has to be made.

The examples in this subsection aim to make clear
that communication is more than just an exchange of
information. After sending a question or a command, the
sender expects an answer or action. If it does not see an
effect of its communication action for whatever reason, the
sender will react on that. Decisions of agents depend on the
information they receive by communication and perception,
and their communication actions have effect on the game
world and the behavior of other agents. Therefore, the
communication processes and the actions in the game world
have to be well synchronized.

4. Connecting Games and Agents, Our Vision

In Section 2, we have shown current approaches to integrate
agents in game engines. It is clear that those solutions
are pragmatic but do not really give room to fully use all
aspects of agent technology in the game environment. In
Section 3, we have illustrated how agent technology can
contribute to the use of game for serious purposes and a
more compelling interaction between NPC characters. To
overcome issues with synchronization, information repre-
sentation, and communication, we analyze the connection
between game and agent technology from three different
perspectives, that is, the infrastructural, conceptual, and
design perspectives.

For our solution, we look at the connection between the
agents and the game engine starting from infrastructural
point of view. The main requirement is that on the one
hand the game engine should have some control over the
actions of the agents in order to control the overall game
play and preserve physical realism. For instance, if an agent
wants to move in a straight line to a position in the game
world, but there is a wall in between the agent and that point,
then the game engine will prevent the agent from moving
to the point it wants to get to, that is, the agent cannot just
move through walls. On the other hand, the agents should
be autonomous to a certain level. For instance, if an agent
is walking to a way point, but is reconsidering his decision
and wants to turn back, it should not first have to walk to
the way point and only there be able to turn back. Also, we
want the agents to be able to keep reasoning full time and not
being restricted to specific time slots allocated by the game
engine.

An important consideration in the connection between
the agents and the game engine is which information is
available to the agent and when and how does it get that
information. Moreover, we have to consider when agents can
perform actions in the game and which actions are available
to the agent. With respect to the latter, one should think



International Journal of Computer Games Technology 9

more in terms of abstractions than in terms of forbidden
actions. For example, can an agent open a door or should it
manipulate a door object position to another position? Often
the translation between these types of actions is provided for
the avatars steered by the user. However, it is not clear that the
same set of translations applies for the nonplaying characters
in the game. For example, current animation engines are
capable of performing rudimentary path planning. This
means that actions become available to characters to move
through a room without bumping into any object with one
command. These commands might not be available for the
human players, but are very efficient for the nonplaying
characters.

The above considerations all relate to the connection
of a single agent to the game engine. In general, one
would like to connect a complete multiagent system to
the game in which the agents also can communicate and
coordinate their actions. In order to fully profit from agent
technology, one would want especially to have the agents
using their own high-level communication protocols that
facilitate coordination. These communication facilities are
standard provided by the agent platforms on which the
agents reside normally. As we have seen, the facilities for
communication within the game engines are rather primitive
and/or ad hoc. So they are not very suitable for this type of
communication, unless we extend them considerably.

The next question thus becomes how to connect the
agent platforms to the game engine. Several solutions are
possible. First, one can integrate the functionality of these
platforms in the game engine. In this case, the agents can be
built as if they are running on an agent platform. Second,
one can distribute the functionality over the game engine and
the agents. This means that some rudimentary functionality
is incorporated in the game engine, but the agents have
to get some more elaborate communication functionalities
to compensate for the loss of some features. For example,
they might have to keep track of the other agents they can
communicate with (storing agent names and addresses). A
last option is to let the agents run on their own platform and
connect the platform to the game engine. One problem with
this option is that the platform runs in parallel to the game
engine and all types of interactions between the agents are
not available to the game engine. This might potentially lead
to a loss of control and inconsistencies between the agents
and the game engine.

We will opt for a position in the middle. We will transfer
some of the communication functionalities to the game
engine to preserve consistency and control. However, we
also will keep the agents running within their own platform.
This is mainly done for some other facilities provided by
the platforms, such as efficient sharing of reasoning engines
by the agents and monitoring and debugging interfaces
for the agents. The last parts are important for designing
and implementation, but can be decoupled in the runtime
version of the game. In order to address all issues, we
divide the connection into three stances: an infrastructural,
a conceptual, and a design stance.

As indicated above, the infrastructural connection
requires adjustments on both the agent as well as on the game

engine side. Therefore, although the connection principles
might be platform independent, the actual implementation
will not be completely platform independent. The standard
way to ameliorate this point is to create a middleware API.
Basically, connecting agent (platforms) to game engines is
not different from connecting any other software together.
So, in the end, we also will make use of the means available to
connect independent threads of software. However, what is
different is the perspective. In most applications that connect
software, there will be a single thread of control that is well
defined. In our case, we want a kind of shared control that
is different from traditional software solutions. It means that
our infrastructural solutions should take this perspective of
shared control already in mind and be as flexible as possible
in order to define the way control is shared on higher
levels. So, in our middleware, one can define the standard
constructions that we assume to exist on both sides, but
the way they work together is kept as flexible as possible.
The exact sharing of control is defined in the infrastructural
stance. We describe the infrastructural stance in more detail
in Section 5.1.

The translations between information representations
that are needed to connect the agents to the game are
described using a conceptual stance. Most important will be
the translation of actions of the agent into actions within the
game engine and translations of changes in the world into
percepts that can be handled by the agent. We aim to use the
high-level architecture (HLA) standard for this purpose. This
stance is described in Section 5.2.

Finally, it is important to incorporate the agents explicitly
in the design method of the games. The type of data that has
to be generated or kept depends crucially on the ways that
the agents need to use them. Therefore, if the world is first
created and the agents are only added in the end, they might
not have enough information available to act intelligently.
For example, if an agent has to take cover it should know the
distinction between an iron bar fence and stone wall of the
same dimensions. If the only data available is that there is an
obstacle of certain dimensions, this information can hardly
be deduced. Designing the environment with the possible
actions and perceptions of the agents in mind will drastically
change the way the world is created. In Section 5.3, we will
show that the agent-oriented OperA framework is a good
starting point for such a design methodology.

In Table 1, we summarize how the different issues that we
focused on are dealt with within the different stances. In this
table, we denote the technique that is used in a particular
stance to deal with an issue. Please note that the issues are
not all of the same type. Synchronization, for example, is a
technical issue that is, therefore, not really discussed in the
design stance. In contrast, communication is such a general
issue that it has elements that are dealt with in all the different
stances.

5. Three Stances to View the Connection

In this section, we will discuss the three stances (infrastruc-
tural, conceptual, and design stance) in our approach more



10 International Journal of Computer Games Technology

extensively. For each of them, we will indicate their contribu-
tion to gaming scenarios as described in the previous section.
As argued before, the topics of synchronization, information
filtering, and communication play a fundamental role in
coupling games and agents. So they all will be covered in
this section as well. Synchronization is mainly addressed in
the subsection about the infrastructural stance. Information
filtering receives most attention in the subsection about the
conceptual stance. Communication involves several aspects;
it is, therefore, discussed in all of the three subsections.

5.1. Infrastructural Stance. In our approach, we view the
game engine and agents as asynchronous processes because,
as discussed in Section 2, agents that are part of the game
loop are restricted in their reasoning by time. Therefore,
we believe that a synchronous approach is not suitable
for intelligent agents with complex reasoning processes.
Although we are investigating a coupling between two
specific types of asynchronous processes, infrastructurally
our case is similar to other asynchronous couplings.

There are four basic tasks that need to be performed
by the infrastructure. First, information about the game
environment needs to be provided to the agents to allow
them to reason about the game. Second, the actions that
the agents have selected to perform in the game need to be
transferred to the game engine to allow them to be executed.
Third, the communication between agents can be effected
by the game environment and thus needs to flow from the
agents, through the game engine, back to the agents. Last,
the infrastructure needs to provide a central time. The latter
is relatively simple and done by sending timed events to both
game engine and agents.

When an agent requires information from the game
engine, a distinction is made between information about
static and dynamic game entities. Static entities have proper-
ties that are fixed for the duration of the game, for example,
buildings, mountains, and roads. Dynamic entities contain
properties that change continuously. For example, victims
have changing health, firefighters change position, and fire
spreads through a building. For static entities, the engine
can inform that the entity is static and include the requested
properties. After such a message, the agent normally does not
need to update this information anymore. This thus provides
for some efficiency in the information flow.

For dynamic entities, the game engine sends a message
when entities become (un)perceivable for the agent. The
conditions for perceivability are defined conceptually. In
the filtering layer is decided which events are relevant for
that specific agent. This in contrast to fixed APIs used
in current work where all agents receive the same event
types. After being subscribed to a dynamic entity, the game
engine will keep sending updates about these properties.
This mechanism prevents the agent from being flooded by
information about all possible entities and their properties,
while not limiting it to predefined aspects of the game world.
One could see the decision-making process that selects which
events are selected as part of the agent but this is not a
necessity.

Table 1: Contribution of each stance to the three challenges of
connecting agents to games.

Infrastructure Conceptual Design

Synchronization Event queues Timestamps —

Filtering — HLA Ontology

Communication Communication
queue

ACM Interaction
patterns

Agent platform

Requested action

Game engine

Succeeded?

Figure 3: Event queues in the infrastructure allow both the agent
platform and the game engine the flexibility to select events based
on their own criteria.

In order to execute actions in the game world, an agent
sends a request to the game engine. However, the agent’s
actions might be of a different type than the game engine’s
actions, for instance, open a door versus move object x to
position y, z. Moreover, the timing of the request might
not correspond to the game loop, so directly executing
these actions in the game engine is in general not possible.
Therefore, we propose to implement the actions of the
agents in the game world by a queue structure which
contains a description of the action plus possible timing
constraints. Figure 3 shows a diagram of the information
flow of the action requests. A requested action is inserted at
the end of the queue to keep an ordering of the requested
actions. At the beginning of each new time step of the
game loop, the engine selects actions to perform. One
possible approach would be to always select the actions
at the top of the queue. The game engine however is
able to select actions based on other criteria. For example,
certain actions might be preferred by the game engine or
a higher priority might be given to actions by a certain
agent.

Normally agents expect an external action to behave
like a method call and the agent waits for the result. But
because actions in the game world are not always executed
right away, do not always succeed, and sometimes have
unexpected results, we separate the request of performing the
actions from the result. The result of the execution of the
actions is sent back from the game engine to the agent in a
separate message. Agents do not have to stop their reasoning
process to wait for this message. When the message arrives,
the information can be used for further reasoning. This is



International Journal of Computer Games Technology 11

significantly different from normal multiagent programing.
There are different ways to cope with this delayed feedback.
There is no guarantee that the engine responds within a
certain time limit. An agent could be programed in such a
way that it assumes that the action failed if no response is
received within a fixed amount of time. Or an agent can
assume that all actions succeed and if a negative response
is received from the engine, this information is corrected.
More elaborate reasoning about this information is also
possible.

When comparing this approach to the Gamebots model,
it is obvious that there are some similarities. Gamebots
also uses separate asynchronous processes and some adjust-
ments can be made on the timing of information passing.
However, there are some advantages to using the approach
suggested in this section. The main difference is that there
is a lot more flexibility on the kind of information that
is passed from the engine to the agent because of the
usage of a subscription model instead of the fixed API.
For example, in the subscription model, the agent could
subscribe to a very specific property such as the health
information of another character. With the fixed information
passing used in Gamebots, all predefined information is
continuously sent, and therefore, such specific properties
are omitted. The timing is also more flexible on both
sides of the system. When using Gamebots, information
is either sent to the agent at a fixed time interval or
directly for synchronous or asynchronous, respectively. It
is not possible to change the timing or the amount of
information that is sent, although the interval between
messages is configurable. In the subscription model, the
agent can request information whenever it is convenient.
On the game side, the engine selects the requested actions
from the input queue at its own time and with its own
selection criteria. In the Gamebots approach, the actions
requests all have to be executed immediately in the next time
step.

Communication between agents is organized in a similar
way to action requests and information passing. Sending
a message to another agent is treated as a type of action
request, where the action consists of delivering information
to another agent. Communication plays an important role
in multiagent systems, which is why we prefer using a
separate queue for communication requests. Again the game
engine can have its own preferences about the selection of
messages from this queue. The game engine determines how
a communication request is handled. For example, if an
agent shouts, the engine determines which agents receive
this message. Similar to action requests, the agents also
receive feedback about the result of sending the message.
Because the game environment can influence the success
and effect of the communication, it is clear that it should
pass through the game engine and cannot be organized
through the multiagent system platform (as is normally
done).

5.2. Conceptual Stance. The second stance in our framework
connects the character’s mental capabilities (implemented

in the software agent) to their physical counterpart (imple-
mented in the game engine), in a similar fashion as the pineal
gland was supposed to connect the mind and the body in
Rene Descartes’ dualist worldview [36]. In this section, we
will discuss the mapping of agent reasoning symbols to game
engine data.

5.2.1. Conceptual Agreement. The most important aspect of
this stance consists of a translation between concepts in the
game engine and the agent. For example, when an agent
wants to execute the action go to the building, this should be
translated in the game engine to find object called building,
check object can be reached, plan path to object, follow path
to object, and vice versa. In order to create this mapping,
we need to define a consistent common representation.
This representation functions as an agreement or contract
between the game engine and the agent. While each has a
different internal representation of the concept, both have
to respect the meaning of the concept as defined in the
agreement.

The agreement will cover the way the world can be
perceived by the agent (game engine to agent mapping)
and the way the world can be acted upon by the agent
(agent to game engine mapping). These agreements are
called the object perception model (OPM) and the object
interaction model (OIM). They are inspired by HLA. HLA
is a simulation interoperability standard [37]. HLA was
designed to allow different simulations to connect and
participate in a shared scenario. However, it was not designed
to connect agents to simulations or games. One aspect that
is required for the case of connecting an agent is filtering of
data. An agent should only receive data that is relevant for the
agent. For example, if an agent is fighting a fire in a building,
it is of little use to receive a message that there is a player
on the other side of the game world that lost his helmet.
In HLA, there is only control over data distribution among
participants by the use of a publish-subscribe approach.
However, in the case of agents, the need for information is
highly dynamic and based on the situation at hand and the
line of reasoning by the agent. Therefore, the condition under
which subscriptions should change needs to be represented.
In the case of agents, we will extend the HLA approach with
more control over data distribution. This extended control
will create a more dynamic publish-subscribe approach in
which a party is only subscribed to certain information in
relevant situations.

First, we will describe the object perception model. The
OPM represents both the entities that can be perceived
(ontological representation) and the condition in which they
can be perceived (qualification representation). In HLA, the
common ontological representation is defined in the federate
object model (FOM) which is an instantiation of the object
model template (OMT). In the case of agents, we will not
need many of the data types defined in the OMT and we can
use a general syntax such as XML. For example, a firefighter
in our scenario can observe other characters. The following
XML description indicates which features of the characters it
can perceive:



12 International Journal of Computer Games Technology

<class name=“Character”>

<property>

<name>ID</name>

<type>number</type>

</property>

<property>

<name>Distance</name>

<type>meters</type>

</property>

<property>

<name>Direction</name>

<type>Orientation</type>

</property>

<property>

<name>Tool</name>

<type>Tool</type>

</property>

</class>

Stating that one can perceive the character’s distance and
the tool it carries. An agent can for instance subscribe to
perception messages about other characters. Only when it
is relevant should the agent actually receive these messages.
This is accomplished with the Poss() operator. It means
that only messages will be sent when the situation satisfies
some constraints. For instance, the conditions in which the
characters can be perceived can be described as follows:

Poss(Perceive(Character, ID)) ⇐⇒
(Dist(Character, ID) < 150∧ LineofSight

(Character, ID)∧Direction(Character, ID, towards)

So, a character can only be perceived if it is closer than 150
meters and one looks in the right direction. Both the agent
and the game engine need to interpret the OPM based on
this common representation.

In the case of the game engine, the part of the game
loop that sends world data to the agents contains a list of
agents that have the capability “perception.” This capability
is described in the OIM (which we will introduce hereafter).
It also contains a list of objects of the type “Character.” It
compares the x, y, z positions and checks if the distance
is smaller than 150 meters, checks if there is a line of
sight between each agent and each character and checks
the relative orientation of agent and character. If these
actions satisfy the perception rule in the OPM, the game
engine sends an asynchronous message to the queue of
the perceiving agent. The message contains the “Character”
object with the properties as defined in the OPM.

The mapping of concepts between game engine and
agent can be facilitated by software tools that automate some
of such mappings. For example, Kynapse from Kynogon [38]
is able to analyze geometric data and extract path planning

information from this data. This in fact is an automated
step to translate game engine information to concepts with
which an agent can reason. For information other than path
planning, additional tools could be developed.

In the case of an agent created in an agent language
such as 2APL, it will interpret the OPM straightforward as
an incoming event of the type perceive with a number of
parameters.

Event (Perceive (Character, ID, Distance, Direction, Tool),
TIMESTAMP). The timestamp indicates the time the event
was received. These types of events are stored in the so-called
event base of the 2APL agent. It can use reasoning rules to
decide what to do with these perceptions. For example, it can
update its belief base each time such an event is received, but
it can also restrict updates to characters that are closer than
50 meters or of which the distance changed more than 100
meters.

Second, we will describe the object interaction model.
The OIM represents the capabilities of the agent to interact
with the world. It denotes the possible interactions, the
conditions under which they are possible, and the effects
of an action. In HLA, interactivity between simulations is
achieved through sending specific interaction events. These
interactions are messages specifying events that happen in
a simulation. Based on the subscriptions of a simulation, it
will receive all corresponding events. In the case of agents
and games, we again need more precise control over which
interactions are relevant for an agent. This helps reduce
processing load on the agent side and optimize the game on
the game engine side. We again take inspiration from HLA
and define the interaction relevant properties of objects using
XML. We then extend this with rules specifying constraints
and consequences concerning the actions. We continue the
firefighter example and describe an agent (which can be
viewed as an object that can interact) that can open doors:

<Agent name=“Door-opener”>

<general>

<property>

<name>HoldsOpeningTool</name>

<type>Tools</type>

</property>

</ general>

<physical>

<property>

<name>height</name>

<type>meters</type>

</property>

</physical>

<sensor name=“eyes”>

<property>

<name>Range</name>



International Journal of Computer Games Technology 13

<type>meters</type>

</property>

</sensor>

<capability name=“Open door”>

<property>

<name>target</name>

<type>Door</type>

</property>

</capability >

</Agent>

We force agreement on the circumstances before and after
the action in a similar fashion as done in [39] by specifying
pre- and postconditions of the action:

PRE: Poss(OpenDoor(Agent, Door)) ⇐⇒
Closed(Door)∧Distance(Agent, Door) < 1

∧Holds(Agent, Axe)

POST: Done(OpenDoor(Agent, Door))

=⇒ Open(Door)∧ Poss(Backdraft(Door)).

So the agent can open a door if the door is closed and it stands
near to the door and is holding an axe. If a door is opened,
its state is changed to open and the agent is automatically
subscribed to messages that indicate a back draft explosion
occurred.

Similar to perception, both the agent and the game
engine will need to interpret the OIM. For the game
engine, this means that the “Door-opener” agent will be
subscribed to asynchronous messages (as described in the
previous section) about “Door” objects in its vicinity. This is
interpreted from the appearance of door objects both in the
agent properties and in the interaction rules. Additionally,
the game engine processes code to execute “OpenDoor”
actions sent by the “Door-opener” agent (i.e., changing the
status of the door to open) while it ignores such actions from
other agents. It changes the physical representation of the
door by turning it ninety degrees. Following this, the game
engine recalculates fire and heat intensity and the oxygen
level in the room behind the door. If a door is opened in a
room that is very hot but contains little oxygen, the game
engine will produce a message indicating that a back draft
explosion occurred.

The link to the agent side has to be made through the
capabilities of the agent. In 2APL, this is an easy process
because the capabilities of an agent are given explicitly in
the agent program with their pre- and postconditions. For
example,

{Closed(Door), Distance(Agent,Door) < 1,

Holds(Agent,Axe)} OpenDoor

{Open(Door)}
By forcing agreement on the concepts used between agents
and the game engine, each can have their own internal
representation while there is an agreement on what can be
communicated and on what level of abstraction.

5.2.2. Communication. In a multiagent setting where agents
need to coordinate their actions, they must communicate.
Communication between agents can be achieved in similar
fashion as actions and perception of the agent. The action
of an agent now is the sending of a message, while the
perception consists of the reception of a message. Sending
a message consequently requires describing the pre- and
postconditions. Receiving a message is controlled by an agent
subscribing on messages and by the game engine when it
determines that an agent can sense an action. In this case, we
do not only specify the agreement between agent and game
engine, but also between agents. So there are three or more
parties that need to conform to the agreement instead of two
in the previous case. We will call this agreement the agent
communication model (ACM).

The definition of the ACM will contain the type of
things that can be communicated (communication content
representation) between agents. This representation is only
relevant to the agents in the game. The ACM also specifies
when communication can take place (qualification represen-
tation). This specifies the impact of the environment upon
communication. For instance, if an agent is far away, it
may not be able to communicate. These factors are relevant
for the game engine that is responsible for simulating the
environment.

There already exists a formalism that provides a com-
munication content representation. It provides a way to
communicate such things as beliefs among agents or propose
an action or communicate with multiple agents. Within the
FIPA standard [17], these communicative acts are already
defined. We propose to use the FIPA standard to establish
a game-specific message structure. For example, in our
firefighting game, agent A may propose to agent B that A
opens the door to the building:

(propose

:sender (agent-identifier:name A)

:receiver (set (agent-identifier:name B))

:content

“((action A (open door))”

:ontology Fire-fighting

:in-reply-to proposal2

:language fipa-sl)

The message is translated to the concepts internal to both
the agent and the game engine. The game engine will, upon
reception of the above message, send this message to agent B
and automatically subscribe agent A to the communication
messages of agent B. This is because agent A and B can
now be said to be in a dialogue and it is likely that agent A
would like to receive an answer. The game could progress
such that agent B replies affirmatively and the game engine
receives an action from agent A to open the door and an
action from agent B to go through the door. The game engine
will now have enough information to know that this is a
coordinated action and that the order of actions (as implied
by the dialogue) is to process the door opening action first



14 International Journal of Computer Games Technology

and the movement action second. The game engine therefore
takes these messages from the incoming actions queue and
processes these together (coordinated) and in the right order.

To describe the impact of the environment on communi-
cation, we have to augment the linguistic representation with
information about the environment. Since communication is
a form of action, the same qualification representation needs
to be made explicit. These qualification rules will also need
to specify the ramifications of communication. This allows
us on the one hand to specify what is needed when agents
want to communicate (e.g., that they are close together) and
on the other hand the (side) effects of communication (e.g.,
if other agents than the message recipient are nearby they too
may receive the message):

PRE: Poss(Send(Propose(Action,Agent)))

⇐⇒ Dist(Agent)<5

POST: Done(Send(Propose(Action,Agent)))

∧ Dist(Agent’)<5 =⇒
Poss(Receive(Propose(Action,Agent)))

5.2.3. Time. Time is an important aspect in the connection
between game engine and agent. Both need to agree on a
reference of time. In our approach, the game engine provides
the time by sending periodic time messages to all agents. The
meaning of these time messages is defined in the OPM:

<class name=“time”>

<property>

<name>value</name>

<Type>Seconds</type>

</property>

</class>

The game engine will translate its own data in milliseconds to
seconds and send the messages. The agent will translate these
time messages into meaningful symbols that are relevant to
the agents updating a belief it formed an hour ago to an “old
belief” or “stale belief.” Additional to these time messages
a game designer is free to add additional facilities, such as
allowing agents to query how much time passed between
two events. Such a service could provide the translation from
milliseconds in the game engine to concepts such as “just
now,” “a while,” and “long ago.”

The above contracts (i.e., OPM, OIM, and ACM) will
be derived from the game design process in the design
stance. For instance, it is established that a game interaction
takes place in a scene called “building.” The game designer
can then start to construct the contracts that describe the
concepts of that building that are relevant to both agents and
the game engine.

5.3. Design Stance. In the previous sections, we discussed
how agents could be connected to game engines infrastruc-
turally and conceptually. However, creating these connec-
tions does not automatically mean that they are used in a

proper way. Game design uses several methodologies [40],
but all consider aspects such as rules, play, and culture. We
will follow [41] and distinguish the following channels.

(i) The abstract rules governing the game play. For
example, this determines the strength of weapons or
what is needed to open doors, and so forth.

(ii) The storyline. This determines the overall narrative.
For example, in Quake, the story is about capturing a
flag.

(iii) The user interface. How is the game environment
represented and how does the user interact with it.

(iv) Look and feel. What emotions are generated by the
game, what kind of feeling it gives. For example, are
enemies extraterrestrial beings or soldiers?

Current practice in game design assumes that the human
players are intelligent. The game rules are meant to regulate
how the users can interact with the game and ensure that the
storyline is kept. At this moment, the only place where AI
plays a significant role is on intelligent path planning. All
characters have to do some form of path planning to get
around in the world and this is a nice modular task that
can be enhanced by some more realistic or intelligent path
planning. Looking at the different channels, we see that it
mainly influences the look and feel channel as it makes the
characters move more natural. It thus has no fundamental
influence on the game play.

This will be quite different when the characters are played
by software agents that can be autonomous, adaptive, and
intelligent and moreover can communicate with each other.
Once these features are added, it is unclear whether the same
game rules still ensure the same game play. Once characters
can reason about the world, start cooperating and adapting
to the players, the game might fundamentally change of
character, and it is not directly clear if it will change for the
better!

If we want to add software agents that can behave more
intelligent and adaptive, we should also design the game
rules such that the game profits from this behavior. Thus,
we should take the capabilities of the characters already into
account when designing the game rules! For example, a game
rule that determines that in a firefighter training, at least one
of three doors is locked to make the firefighting more difficult
becomes useless if the characters learn how to open a locked
door as quick as a nonlocked door. This becomes even more
apparent if we consider that agents might also communicate
(in a more or less unrestricted way). Adding communication
capabilities to agents means that they can start to cooperate
and thus circumvent some of the rules in the game. For
example, one character can start extinguishing the fire while
the other saves a victim. The one that goes inside the building
to save the victim can be determined by which of the two
knows the building better. This can be easily determined
through communication, but is hard to preprogram. It does
mean that the agents will be able to achieve more than when
used independently. This kind of elements should thus also
be modeled in the game rules channel. In general, one would



International Journal of Computer Games Technology 15

Start

End

Emergency
call

Create
team

Get to
location

Evaluate
situation

Save
victim

Extinguish
fire

Ambulance

Expert

Figure 4: Interaction structure in OperA.

have to take into account who can communicate with whom
and whether communication always succeeds. In a realistic
environment, a character might only be able to communicate
by “talking” to characters in the same physical space while
other characters are overhearing the conversation.

In multiagent systems, communication mechanisms pro-
vide standard ways of dealing with these issues. However,
they do not assume the agents operate in a game environ-
ment. Thus the mechanisms would have to be adjusted to
the game engine.

The above points illustrate that, if we assume that
characters are played by intelligent software agents that can
communicate, the game rules should be designed in such
a way that the storyline will still be guaranteed. Moreover,
if we assume the characters to act intelligently, they should
also have the means to do so, that is, they should have the
right information available at the right time. For example, if
a character has to avoid being seen, it does not make sense
to duck behind an obstacle which happens to be an iron
fence. However, if geometric features of the obstacles are the
only available information, it will be hard to create intelligent
behavior based on them.

This pleads for the fact that we should take possible
intelligent behavior and the requirements for this behavior
on the world already into account in an early design stage.
One could also argue to start modeling the agents using an
agent-oriented software methodology. This at least ensures a
proper modeling of the agents and their interactions in the
game. However, agent-oriented methodologies hardly take
the environment in which the agents operate into account.
Therefore, the modeling of the actual world and the intricate
interactions that are needed in the game environment are not
supported sufficiently.

This leaves only one way open, which is a new design
methodology that allows designing the game environment
and the agents concurrently. We believe that there are good
starting points for creating such a methodology if we use
an agent-oriented methodology that also takes the agent’s
organization into account.

Roughly the methodology should start with designing
the game rules and storyline at a high level. At this level,
the specific actions that take place are not fixed yet, but
only the required landmarks that the game should pass
through. In the next stage, the designer should determine
which agents would possibly play a role in the different scenes
that lead to these landmarks. Note that the order of scenes

might still vary. He can then decide which requirements
have to be fulfilled by the agents to perform their actions
in the different scenes and what kind of information should
they have available if they want to exhibit some intelligent
behavior. Besides these requirements, he also has to give
the constraints on the actions, for example, opening a door
requires an axe, to ensure that “intelligent” behavior does not
lead to completely unexpected and unwanted behavior.

The requirements on the availability of information lead
to requirements on the conceptual contracts. The boundaries
on the actions lead to requirements on the capabilities of the
agents, for example, the precondition of opening a door is to
carry an axe.

5.3.1. A Design Methodology: OperA. We propose to use
OperA [42] as a starting point of a framework to model
games incorporating agents. OperA provides a model for
agent organizations that enables the specification of organi-
zational requirements and objectives, and at the same time
allows participants to act according to their own capabilities
and demands. It still needs to be extended with a more
elaborate environment model to capture the game world
aspects. In this paper, we will focus on the specification
part of the agents. Role descriptions in OperA define the
activities and services that have to be performed to achieve
the game objectives. These objectives are distributed over
the objectives of the agents. Role descriptions also define the
rights and capabilities of the agents.

By clearly defining these capabilities in an early design
stage, we can guarantee that they are implemented in the
game world (through a conceptual translation). Table 2
shows an example of a role description for an agent of
the type “leading firefighter.” From this description, the
objectives of this type of agent become clear and it already
gives some idea about the information needed by the agent to
realize these objectives. A part of the game rules is specified
by the norms. The rights of the agents also define a part of the
game rules and need to be translated to actual capabilities in
the game engine.

In OperA, the overall storyline is specified by the
interaction structure. The main purpose of this structure is
to specify an ordering between separate scenes in the game
and to make sure that required states are always reached.
The ordering is not always linear; scenes can be executed
multiple times. The actors that participate in the scenes of



16 International Journal of Computer Games Technology

Table 2: Role definition in OperA.

Role: leading firefighter

Objectives Fire under control, victims save

Subobjectives {get to disaster location, situation assessment, plan of attack, extinguish fire, rescue victims}
Rights Command team members, order ambulance, get experts

Norms

OBLIGED inform(headquarters, plan of attack) BEFORE NOW+10 IF DO safe(victim) or DO extinguish(fire)
THEN PERMITTED damage(building)

OBLIGED ensure safety(team)

OBLIGED safe(victims) BEFORE extinguish(fire)

Table 3: Interaction scene in OperA.

Interaction scene: save victim

Roles Leading firefighter(1), door opener(1), fire extinguisher(1), ambulance(2), victim(3)

Results r1 = ∀T ∈ victim, safe(T)

Interaction patterns

PATTERN(r1) =
{DONE(T, at(H,T)) BEFORE DONE(B, secure area),

DONE(B, secure area) BEFORE DeadlineH,

DONE(M, stabilise(H) BEFORE Dead(H))

DONE(T, transport to ambulance(H))

}

Norms
PERMITTED (E, blow obstacles)

OBLIGED (M,stabilise(T) BEFORE Dead(T))

OBLIGED (B, extinguish fire BEFORE transport(H))

the game and the way they interact are defined in the scene
level description. Figure 4 shows a graphical representation
of a possible interaction structure. The transitions between
the different scenes are specified in the interaction structure
to make sure that a scene is entered and terminated in such a
way that the storyline is guaranteed.

A scene is a formal description of the interaction space
between different agents for a specific part of the game.
In these scenes, the types and number of participating
agents are defined, and the interaction between the agents
themselves and the environment. The result of a scene is
specified and optionally norms can be added.

Table 3 shows a possible description of the “save victim”
scene from the interaction structure above. For each role that
is possibly active in this scene, we specify the number of
agents that fulfill that role. For example, there is one lead-
ingfirefighter and there are three victims. Most importantly,
the desired results of the scene and the interaction patterns
between the different roles are specified. In an interaction
scene, separate norms and permissions can be specified that
determine specific game rules for the interaction.

Starting from the interaction patterns of the scenes,
different messages and other forms of communication can
be specified, and a platform-independent design can be
created. The ordering of these communicative actions can be
strictly defined by a protocol or, more flexible, an interaction
diagram. From this platform-independent model, we can
move on to the platform-specific phase, in which the agent
interface and the interaction specifications are implemented.
If certain inherent limitations on the communication are

known in advance, these limitations should already be taken
into account during the platform-independent design phase.
If they surface during the implementation phase, it is usually
better to go back and adjust the platform-independent
design. In the design phase, the agents’ knowledge about
the environment and themselves should be modeled. This
information can later be used in the platform-specific design
to create the data models.

After we specified the agent roles and interactions,
decisions have to be made about the agent implementation.
The requirements that the agents need to fulfill have to be
taken into account in this step. For example, if the agents
have to be able to explain themselves [43], it is necessary
that they use high-level concepts in their reasoning, such as
beliefs, intensions, and goals. A logical decision in case of
this requirement would be to implement the agents in a BDI
programing language. Another example could be learning
or adapting agents; the appropriate agent type needs to
be selected to allow for the expected adaptability. Also the
learning algorithm itself, the elements that are adapted and
the feedback type have to be chosen.

The multiagent interaction also has to be specified more
precisely. In the interaction scenes, we already define a
high-level definition of the interaction. As we have seen in
Section 3.2 (multiagents systems), certain tradeoffs have to
be made on the amount of communication. In the design
phase, a clear definition has to be made of what information
is passed on and when. Designing decisions also have to be
made about the activity of characters that are not playing an
active role in the current scene.



International Journal of Computer Games Technology 17

Besides specifying the technical requirements, some
quality requirements have to be kept into consideration as
well. An important quality requirement for computers is that
the agents and other parts of game respond fast enough. The
behavior of agents should be believable. Games should be
esthetically pleasing and a certain atmosphere in the design
is desired. These quality requirements are mostly related to
the look and feel channel and the user interface channel.
Sometimes they can be translated to a technical specification,
but most of the time they have to be considered during
the whole development process without being captured by
a precise technical requirement.

6. Conclusion

There is consensus among game developers that intelligent
characters for games can make games better. However,
there is a difference in the approach to bring intelligence
about between the game developers and the artificial intel-
ligences researchers. Consequently, using agent technology
in combination with game technology is not trivial. Because
agents are more or less autonomous they should run in
their own thread and can only be loosely coupled to
the game engine. Synchronizing the agents with the game
thus becomes an important point. Once the agents are
synchronized not all problems are solved. Because agents
usually function on a more abstract level than the game
world representation allows. A translation is needed between
the game world information and processes to the beliefs
and actions of the agents. Finally, agents should be able
to communicate not only with the game world but also
with each other. Thus there is a need for communication
mechanisms that connect both the agents and the game
world. We have seen that current combinations of games and
agents only deliver limited or ad hoc solutions for all these
issues.

In this paper, we argue that improving the AI in games
by using agent technology to its full extent involves solving
the issues above. Furthermore, solving the synchroniza-
tion, information representation, and communication issues
requires more than constructing a technical solution for the
loosely coupling of some asynchronous processes. Although
this aspect is a fundamental part of the coupling, we also need
to provide support on a conceptual and design level. Using a
conceptual stance allows for connecting the agent concepts to
the game concepts such that agent actions can be connected
to actions that can be executed through the game engine
and that agents can reason intelligently on the information
available from the game engine.

We also argue that coupling agents to games requires
a design methodology including agent notions from an
early stage in the design process in order to allow a full
integration of agent characteristics in the game and to profit
from specific agent characteristics such as communication,
cooperation, reasoning, proactive behavior, and adaptivity.

In Section 5, we have shown how each of the three stances
can contribute to the use of agents in games. We have also
shown some standards and tools that could be used in each

of the three stances. We have successfully tested the synchro-
nization principles explained in the infrastructural stance by
coupling the Pilgrim game engine (under development at
TNO, Soesterberg, The Netherlands) with the 2APL agent
platform.

We have shown that the HLA standard is a good starting
point to describe the filtering in the conceptual stance. The
ease of the translation between the game engine and the agent
concepts, of course, also depends on the specific platforms
used. The Pilgrim game engine appeared very suitable for
this approach because all game objects have a property tree
describing all the properties of that object, thus allowing
for an easy translation to a common representation (OPM).
In a similar fashion, the properties of the 2APL agents
are available in a declarative format and could easily be
converted to the common representation (OIM). Finally,
the agent-based methodology OperA seems to offer a good
starting point for combining agent-oriented and game-
oriented methodologies.

As a future work, we hope to build some support tools
to facilitate the modeling and implementation of games with
agents, making use of the framework sketched in this paper.

Acknowledgments

Thanks to Bernard Maassen whose implementation of the
connection between Pilgrim and 2APL started off this paper.
This research has been supported by the GATE project,
funded by the Netherlands Organization for Scientific
Research (NWO) and the Netherlands ICT Research and
Innovation Authority (ICT Regie).

References

[1] S. Rabin, AI Game Programming Wisdom 3, Charles River
Media, Brookline, Mass, USA, 2006.

[2] A. Ayesh, J. Stokes, and R. Edwards, “Fuzzy Individual Model
(FIM) for realistic crowd simulation: preliminary results,” in
Proceedings of IEEE International Conference on Fuzzy Systems
(FUZZ ’07), pp. 1–5, London, UK, July 2007.

[3] J. Orkin, “Three states and a plan: the AI of F.E.A.R.,” in
Proceedings of the Game Developers Conference (GDC ’06), San
Jose, Calif, USA, March 2006.

[4] R. E. Fikes and N. J. Nilsson, “STRIPS: a new approach to the
application of theorem proving to problem solving,” Artificial
Intelligence, vol. 2, no. 3-4, pp. 189–208, 1971.

[5] J. Orkin, “Applying goal-oriented action planning to games,”
in AI Game Programming Wisdom 2, Charles River Media,
Brookline, Mass, USA, 2003.

[6] M. E. Pollack and J. F. Horty, “There’s more to life than
making plans: plan management in dynamic, multiagent
environments,” AI Magazine, vol. 20, no. 4, pp. 71–83, 1999.

[7] M. Lees, B. Logan, and G. K. Theodoropoulos, “Agents, games
and HLA,” Simulation Modelling Practice and Theory, vol. 14,
no. 6, pp. 752–767, 2006.

[8] R. Adobbati, A. N. Marshall, A. Scholer, et al., “Gamebots:
a 3D virtual world test-bed for multi-agent research,” in
Proceedings of the 2nd International Workshop on Infrastructure
for Agents, MAS, and Scalable MAS, Montreal, Canada, May
2001.



18 International Journal of Computer Games Technology

[9] R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni,
Eds., Multi-Agent Programming: Languages, Platforms and
Applications, International Book Series on Multiagent Systems,
Artificial Societies, and Simulated Organizations, Springer,
Berlin, Germany, 2005.

[10] A. Newell, Unified Theories of Cognition, Harvard University
Press, Cambridge, Mass, USA, 1994.

[11] S. Franklin and L. Gasser, “Is it an agent, or just a program?:
A taxonomy for autonomous agents,” in Intelligent Agents
III. Agent Theories, Architectures, and Languages, pp. 21–35,
Springer, Berlin, Germany, 1997.

[12] “Bos Wars,” http://www.boswars.org.
[13] S. Kopp, L. Gesellensetter, N. C. Krämer, and I. Wachsmuth,

“A conversational agent as museum guide—design and eval-
uation of a real-world application,” in Proceedings of the
5th International Working Conference on Intelligent Virtual
Agents (IVA ’05), T. Panayiotopoulos, J. Gratch, R. Aylett,
D. Ballin, P. Olivier, and T. Rist, Eds., vol. 3661 of Lecture
Notes in Computer Science, pp. 329–343, Springer, Kos, Greece,
September 2005.

[14] L. Antunes and K. Takadama, Eds., Multi-Agent-Based Sim-
ulation VII, vol. 4442 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, 2007.

[15] B. G. Silverman, G. Bharathy, M. Johns, R. J. Eidelson, T.
E. Smith, and B. Nye, “Sociocultural games for training and
analysis,” IEEE Transactions on Systems, Man and Cybernetics,
Part A, vol. 37, no. 6, pp. 1113–1130, 2007.

[16] L. Padgham, D. Parkes, S. Parsons, and J. Müller, Eds.,
Proceedings of the 7th International Conference on Autonomous
Agents and Multi Agent Systems (AAMAS ’08), IFAAMAS,
Estoril, Portugal, May 2008.

[17] FIPA, Foundation for Intelligent Physical Agents, http://
www.fipa.org.

[18] M. Wooldridge, Reasoning about Rational Agents, MIT Press,
Cambridge, Mass, USA, 2000.

[19] M. Dastani, “2APL: a practical agent programming language,”
Autonomous Agents and Multi-Agent Systems, vol. 16, no. 3, pp.
214–248, 2008.

[20] R. Bordini, J. Hübner, and M. Wooldridge, Programming
Multi-Agent Systems in AgentSpeak Using Jason, John Wiley &
Sons, New York, NY, USA, 2007.

[21] P. S. Rosenbloom, J. E. Laird, and A. Newell, The Soar Papers:
Readings on Integrated Intelligence, MIT Press, Cambridge,
Mass, USA, 1993.

[22] J. R. Anderson, “ACT: a simple theory of complex cognition,”
American Psychologist, vol. 51, no. 4, pp. 355–365, 1996.

[23] Quake, http://www.idsoftware.com/games/quake/quake3-
arena.

[24] Never Winter Nights, http://nwn.bioware.com.
[25] F.E.A.R., http://whatisfear.com.
[26] G. A. Kaminka, M. M. Veloso, S. Schaffer, et al., “GameBots:

a flexible test bed for multiagent team research,” Communica-
tions of the ACM, vol. 45, no. 1, pp. 43–45, 2002.

[27] A. Khoo, G. Dunham, N. Trienens, and S. Sood, “Efficient,
realistic NPC control systems using behavior-based tech-
niques,” in Proceedings of the AAAI Spring Symposium on
Artificial Intelligence and Interactive Entertainment, Palo Alto,
Calif, USA, March 2002.

[28] J. M. P. van Waveren, The quake III arena bot, M.S. thesis,
Faculty ITS, University of Technology Delft, Delft, The
Netherlands, 2003.

[29] A. Witzel and J. Zvesper, “Higher order knowledge in
computer games,” in Proceedings of the AISB Symposium on

Logic and the Simulation of Interaction and Reasoning, pp. 1–
5, Aberdeen, Scotland, April 2008.

[30] S. Kraus, “Negotiation and cooperation in multi-agent envi-
ronments,” Artificial Intelligence, vol. 94, no. 1-2, pp. 79–97,
1997.

[31] T. Mioch, M. Harbers, W. van Doesburg, and K. van den
Bosch, “Enhancing human understanding through intelligent
explanations,” in Proceedings of the 1st International Workshop
on Human Aspects in Ambient Intelligence, pp. 327–337,
Darmstadt, Germany, November 2007.

[32] W. L. Johnson, “Agents that learn to explain themselves,”
in Proceedings of the 12th National Conference on Artificial
Intelligence, vol. 2, pp. 1257–1263, Seattle, Wash, USA, July-
August 1994.

[33] M. van Lent, W. Fisher, and M. Mancuso, “An explainable
artificial intelligence system for small-unit tactical behavior,”
in Proceedings of the 19th National Conference on Artificial
Intelligence and the 16th Conference on Innovative Applications
of Artificial Intelligence (IAAI ’04), pp. 900–907, AAAI Press,
San Jose, Calif, USA, July 2004.

[34] D. Gomboc, S. Solomon, M. G. Core, H. C. Lane, and M. van
Lent, “Design recommendations to support automated expla-
nation and tutoring,” in Proceedings of the 14th Conference on
Behavior Representation in Modeling and Simulation (BRIMS
’05), Universal City, Calif, USA, May 2005.

[35] E. Norling and L. Sonenberg, “Creating interactive characters
with BDI agents,” in Proceedings of the Australian Workshop
on Interactive Entertainment (IE ’04), pp. 69–76, Sydney,
Australia, February 2004.

[36] R. Descartes, Treatise on Man, Harvard University Press,
Cambridge, Mass, USA, 1976.

[37] IEEE Std 1516-2000, “IEEE Standard for modeling and
simulation (M&S) high level architecture (HLA)—framework
and rules,” September 2000.

[38] Kynogon, http://www.kynogon.com.
[39] R. Reiter, Knowledge in Action: Logical Foundations for

Describing and Implementing Dynamical Systems, MIT Press,
Cambridge, Mass, USA, 2001.

[40] P. Vorderer and J. Bryant, Playing Video Games, Lawrence
Erlbaum, Mahwah, NJ, USA, 2006.

[41] K. Salen and E. Zimmerman, Rules of Play: Game Design
Fundamentals, MIT Press, Cambridge, Mass, USA, 2004.

[42] V. Dignum, A model for organizational interaction: based on
agents, founded in logic, Ph.D. dissertation, Utrecht University,
Utrecht, The Netherlands, 2004.

[43] C. de Melo, R. Prada, G. Raimundo, J. P. Pardal, H. S.
Pinto, and A. Paiva, “Mainstream games in the multi-agent
classroom,” in Proceedings of IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT ’06), pp. 757–
761, Hong Kong, December 2006.



Advances in Artificial Intelligence

Special Issue on

Artificial Intelligence in Neuroscience and
Systems Biology: Lessons Learnt, Open Problems,
and the Road Ahead

Call for Papers

Since its conception in the mid 1950s, artificial intelligence
with its great ambition to understand intelligence, its origin
and creation, in natural and artificial environments alike,
has been a truly multidisciplinary field that reaches out and
is inspired by a great diversity of other fields in perpetual
motion. Rapid advances in research and technology in
various fields have created environments into which artificial
intelligence could embed itself naturally and comfortably.
Neuroscience with its desire to understand nervous systems
of biological organisms and system biology with its longing
to comprehend, holistically, the multitude of complex inter-
actions in biological systems are two such fields. They target
ideals artificial intelligence has dreamt about for a long time
including the computer simulation of an entire biological
brain or the creation of new life forms from manipulations
on cellular and genetic information in the laboratory.

The scope for artificial intelligence, neuroscience, and sys-
tems biology is extremely wide. The motivation of this special
issue is to create a bird-eye view on areas and challenges
where these fields overlap in their defining ambitions and
where these fields may benefit from a synergetic mutual
exchange of ideas. The rationale behind this special issue
is that a multidisciplinary approach in modern artificial
intelligence, neuroscience, and systems biology is essential
and that progress in these fields requires a multitude of views
and contributions from a wide spectrum of contributors.
This special issue, therefore, aims to create a centre of gravity
pulling together researchers and industry practitioners from
a variety of areas and backgrounds to share results of
current research and development and to discuss existing
and emerging theoretical and applied problems in artificial
intelligence, neuroscience, and systems biology transporting
them beyond the event horizon of their individual domains.

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/aai/guidelines.html. Prospective au-
thors should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-

tem at http://mts.hindawi.com/ according to the following
timetable:

Manuscript Due September 1, 2009

First Round of Reviews November 1, 2009

Publication Date December 1, 2009

Lead Guest Editor

Daniel Berrar, Systems Biology Research Group, Centre for
Molecular Biosciences, School of Biomedical Sciences,
University of Ulster, Cromore Road, Coleraine BT52 1SA,
Northern Ireland; dp.berrar@ulster.ac.uk

Guest Editors

Naoyuki Sato, Department of Complex Systems, Future
University Hakodate, 116-2 Kamedanakano-cho, Hakodate,
Hokkaido 041-8655, Japan; satonao@fun.ac.jp

Alfons Schuster, School of Computing and Mathematics,
Faculty of Computing and Engineering, University of Ulster,
Shore Road, Newtownabbey BT37 0QB, Northern Ireland;
a.schuster@ulster.ac.uk

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/aai/guidelines.html
http://www.hindawi.com/journals/aai/guidelines.html
http://mts.hindawi.com/
mailto:dp.berrar@ulster.ac.uk
mailto:satonao@fun.ac.jp
mailto:a.schuster@ulster.ac.uk


Advances in Fuzzy Systems

Special Issue on

Fuzzy Logic Techniques for Clean Environment

Call for Papers

The fuzzy technique for clean energy, solar and wind energy,
is the most readily available source of energy, and one of
the important sources of the renewable energy, because
it is nonpolluting and, therefore, helps in lessening the
greenhouse effect. The benefits arising from the utilization
of solar and wind energy systems can be categorized into two
sections: energy saving and the decrease of environmental
pollution. The clean energy saving benefits come from
the reduction in electricity consumption and from using
any conventional energy supplier, which can avoid the
expenditure of fuel supply. The other main benefit of the
renewable energy is the decrease of environmental pollution,
which can be achieved by the reduction of emissions due
to the usage of electricity and conventional power stations.
Electricity production using solar and wind energy is of
the main research areas at present in the field of renewable
energies, the significant price fluctuations are seen for the
fossil fuel in one hand, and the trend toward privatization
that dominates the power markets these days in the other
hand, will drive the demand for solar technologies in the near
term. The process of solar distillation is used worldwide for
arid communities that do not have access to potable water.
Also some solar technologies provide other benefits beside
power generation, that is, fresh water (using desalination
techniques).

The main focus of this special issue will be on the applica-
tions of fuzzy techniques for clean energy. We are particularly
interested in manuscripts that report the fuzzy techniques
applications of clean energy (solar, wind, desalination, etc.).
Potential topics include, but are not limited to:

• Solar power station
• Wind power
• Photovoltaic and renewable energy engineering
• Renewable energy commercialization
• Solar cities
• Solar powered desalination unit
• Solar power
• Solar power plants
• Solar systems (company)
• World solar challenge

• Seawater desalination to produce fresh water
• Desalination for long-term water security

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/afs/guidelines.html. Prospective au-
thors should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/, according to the following
timetable:

Manuscript Due August 1, 2009

First Round of Reviews November 1, 2009

Publication Date February 1, 2010

Guest Editors

Rustom M. Mamlook, Middle East University for Graduate
Studies, Amman, Jordan; rstmamlk@hotmail.com

Guest Editors

S. Paramasivam, ESAB Engineering Services Limited,
Tamil Nadu 600 058, India; param@ieee.org

Mohammad Ameen Al-Jarrah, American University of
Sharjah, P.O. Box 26666, Sharjah, UAE; mjarrah@aus.edu

Zeki Ayag, Kadir Has University, 34083 Istanbul, Turkey;
zekia@khas.edu.tr

Ashok B. Kulkarni, University of Technology, Kingston 6,
Jamaica; kulkarniab2@rediffmail.com

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/afs/guidelines.html
http://www.hindawi.com/journals/afs/guidelines.html
http://mts.hindawi.com/
mailto:rstmamlk@hotmail.com
mailto:param@ieee.org
mailto:mjarrah@aus.edu
mailto:zekia@khas.edu.tr
mailto:kulkarniab2@rediffmail.com

