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Abstract. This paper presents a cognitive modelling approach to predict pilot 

errors and error recovery during the interaction with aircraft cockpit systems. 

The model allows execution of flight procedures in a virtual simulation 

environment and production of simulation traces. We present traces for the 

interaction with a future Flight Management System that show in detail the 

dependencies of two cognitive error production mechanisms that are integrated 

in the model: Learned Carelessness and Cognitive Lockup. The traces provide a 

basis for later comparison with human data in order to validate the model. The 

ultimate goal of the work is to apply the model within a method for the analysis 

of human errors to support human centred design of cockpit systems. As an 

example we analyze the perception of automatic flight mode changes. 

Keywords: Human Error Prediction, Human-Centred Design, Cognitive Model 

1 Introduction 

Aircraft pilots are faced with a complex traffic environment. Cockpit automation and 

support systems help to reduce complexity. Currently, a lot of research is done to 

improve the onboard management of flight trajectories and the negotiation of 

trajectory changes with Air Traffic Control (ATC). During the flight, many factors 

may induce changes to the original flight plan, e.g. bad weather, traffic conflicts, or 

runway changes. In future air traffic management, an aircraft will be equipped with an 

advanced flight management system that provides information on the current traffic 

and weather status in an intuitive form. This allows pilots to easily adapt a flight route 

via a graphical Advanced Human Machine Interface (AHMI). Voice communication 

between aircraft and ATC will be partly replaced by Data Link communication which 

provides pilots and controllers with a detailed electronic picture of the time and space 

(4D) trajectory. This allows efficient negotiation of route changes and improves 



 

predictability of conflicts between aircraft or between planned routes and severe 

weather conditions. 

In order to leverage this new air traffic management concept, intuitive and easy-to-

use human machine interfaces as well as efficient and robust flight procedures are 

needed. Safe operation of aircraft is based on normative flight procedures (standard 

operating procedures) and rules of good airmanship, which we will referred to as 

„normative activities‟. We define pilot errors as deviations from normative activities. 

In the past, several cognitive explanations and theories have been proposed to 

understand why pilots deviate from normative activities (e.g. [7]). The European 

project HUMAN, in which the research described in this paper is done, strives to pave 

a way of making this knowledge readily available to designers of new cockpit 

systems. We intend to achieve this by means of a valid executable flight crew model 

which incorporates cognitive error-producing mechanisms leading to deviations from 

normative activities. The model interacts with models of cockpit systems (like 

advanced flight management systems) in a virtual simulation environment to predict 

deviations and its potential consequences on the safety of flight. The ultimate 

objective of HUMAN is to apply this model to analyze human errors and support 

error prediction in ways that are usable and practical for human-centred design of 

systems operating in complex cockpit environments. 

This paper focuses on the interaction between two highly relevant cognitive error-

producing mechanisms:  

 routine learning leading to Learned Carelessness (effort-optimizing 

shortcuts leading to inadequate simplifications that omit safety critical 

aspects of normative activities) and  

 attention allocation (deciding where to allocate the limited cognitive 

resources) leading to Cognitive Lockup (failing to switch attention when 

currently working on  a demanding task).  

At the initial stage of HUMAN we performed questionnaire interviews with pilots 

and human factor experts based on a literature survey of error-producing mechanisms. 

We identified Learned Carelessness and Cognitive Lockup to be among the most 

relevant mechanisms for modern and future cockpit human machine interfaces. 

This paper describes how we modelled these two processes in one integrated 

executable cognitive flight crew model and discusses in detail hypotheses derived 

from the model.  

2 Re-planning via 4D-Flight Management Systems  

Today, the flight management system, which controls the lateral and vertical 

movement of an aircraft, is operated by a multi-purpose control display unit (MCDU). 

The MCDU consists of a small monitor and an alphanumerical keyboard, by which 

the pilots type in the desired flight plan changes. Flight plans consist of a certain 

number of waypoints, identified by a three or five letter code, which is entered into 

the MCDU. The airplane‟s autoflight system can be coupled to the flight plan, which 



 

then follows the plan automatically. However, clearance requests and reception for 

the different sections of the flight plan are mandatory, and are today performed via 

voice communication with the ATC. Problems with this are that communicating route 

changes via voice is a lengthy and error-prone process [2], and that the interaction 

with the MCDU is cumbersome and inefficient (e.g. [6]). As described in the 

introduction, future flight management systems and their user interfaces try to tackle 

these problems. For our study we use an advanced flight management system and its 

AHMI, which have been developed by the German Aerospace Institute (DLR, 

Braunschweig, Germany). Both systems are used as demonstration settings for the 

current research, without their design playing a role in the validity of the current 

research.  

The AHMI represents flight plans on a map with their status being graphically 

augmented by different colours and shapes, e.g. if a new trajectory is generated after 

the flight plan has been changed, it is displayed as a dotted line, while the active 

trajectory is solid of another colour (cf. Fig. 1). Still, pilots can insert, move or delete 

waypoints, but also handle a lot of different events, e.g. display weather radar 

information, allowing graphical re-planning to avoid a thunderstorm. However, the 

insertions do not necessarily make use of keyboards such as the MCDU - 

manipulation is done directly on the map by trackball cursor-control. Any trajectory 

created by the pilot is generated as a data-link, ready to be sent to ATC for 

negotiation.  

The advanced flight management system and its AHMI is used in HUMAN as a 

target system to demonstrate the predictive capabilities of the cognitive flight crew 

model by simulating the interaction between system and crew in different re-planning 

scenarios according to a set of normative activities.  

 

Fig. 1: AHMI of the Flight Management target system 

Since this is a new system we had to define the normative activities (NA) from 

scratch. Knowledge acquisition techniques were used to gather first ideas for the 



 

scenarios and NA definition. As a second step, common Standard Operating 

Procedures (SOP) and Rules of Good Airmanship were the basis of workflow patterns 

which were applied and refined by test and trainer pilots working in the field of 

procedure and training-scenario/simulation design.  

Next, these procedural workflow patterns were translated into a textual description. 

This textual description served as the basis for the first plot of NA‟s in table format. 

These tables, in turn, were used to model the NAs in the semi-formal task modelling 

software AMBOSS [20]. The task trees were useful in two ways: first of all, the 

AMBOSS models were used to reveal the flaws in the NA tables that were 

undetectable without a simulation. And second, these tables paved the path for a 

formal model of the normative activities, which are then input for the cognitive 

architecture. Fig. 2 represents the modelling process. 

 

Fig. 2: Modelling Process 

The most relevant activities for this paper are those for re-planning. Re-planning 

means modifying the current flight route via the AHMI by changing the lateral or 

vertical profile. Changes to the route can be initiated either by the pilots or by the 

controllers. In the first case the pilots introduce the changes into the route and send it 

down to ATC (downlink). In the latter case ATC sends a modified route up to the 

aircraft (uplink). In both cases the last three actions which have to be performed by 

the pilots are the same: (NA1) Generate the modified route by clicking on the “Dirto” 

button (Fig. 1, bottom left), as a result the new trajectory is shown as a dotted line; 

(NA2) click the “Send to ATC” button (Fig. 1, bottom middle) to downlink self-

initiated changes or to acknowledge uplinked changes; (NA3) next a feedback from 

ATC is received in the form of an uplink. Since this uplink may contain further lateral 

or vertical changes pilots must check the lateral and vertical profile to identify any 

final modifications. If a change introduced by ATC at this stage is not acceptable for 

any reason, then the re-planning procedure has to be restarted by the pilots resulting in 

a new downlink. In case no changes have been received or the changes are acceptable 

pilots have to press the “Engage” button (Fig. 1, bottom right) to activate the new 

route.  

The trajectory in Fig. 1 represents a typical re-planning scenario which we used in 

the HUMAN project to generate detailed hypotheses on pilot behavior (see Section 5) 



 

provoking Learned Carelessness and Cognitive Lockup. It starts during cruising at 

flight level 250 (25,000 feet) on a flight inbound to FRA (Frankfurt, Germany). 

Passing waypoint ETAGO (approx. 130NM inbound to Frankfurt), a system non-

normal message pops up advising the crew of a fuel-pump malfunction. The 

normative activities require the crew to initiate descent to maximum flight level 100 

in order to assure adequate pressure for continuous fuel feed to the respective engine 

(approx. 60NM earlier than planned). This will be done by a cruise-level alteration in 

the current flight route via the AHMI followed by a trajectory generation, negotiation 

and activation (steps NA1, NA2 and NA3) as described above. During descent, the 

crew receives the latest weather report of Frankfurt which allows preparing for the 

given approach. The report indicates that there is a thunderstorm approaching the 

airport which should be monitored from now on by the crew on the weather radar. In 

the vicinity of waypoint ROLSO, the crew receives a shortcut uplink which clears the 

flight to proceed directly to waypoint CHA. In this case the pilots are required to 

check the uplinked changes and either accept them by performing steps NA1, NA2, 

NA3 or to introduce changes before doing so. The scenario foresees that during NA3 

the uplink received by the crew contains the standard flight level for the current 

arrival segment which is flight level 110, 1000 feet higher than the previous clearance 

and off the operational envelope regarding the system malfunction. This is to be 

recognized by the pilots while checking the vertical profile of the uplink, who should 

correct the altitude and then re-negotiate with ATC starting again with NA1. If the 

incorrect altitude was engaged by the crew then the aircraft would re-climb to flight 

level 110.  

The main questions which are investigated are: 

 Does the pilot model recognize the incorrect altitude? 

 Is the pilot model able to recover from the re-climb by initiating a 

new descent via the AHMI? 

In Section 5, we show that the approaching thunderstorm may have a significant 

effect on the error recovery. 

3 Cognitive Processes Involved in Re-planning Tasks 

To explain and model why pilots deviate from normative activities, we have focussed 

on the underlying cognitive processes. In this section, we describe cognitive processes 

that play a role in re-planning and that are the basis for our crew model. 

Cognitive processes can be differentiated by their degree of consciousness. 

Rasmussen [5] defines three different behaviour levels in which cognitive processing 

and hence errors can take place: skill-based, rule-based, and knowledge-based 

behaviour. The level of processing mainly depends on the experience with a task. 

Anderson [1] distinguishes very similar levels but uses the terminology of 

autonomous, associative, and cognitive level.  

A task that is encountered for the first time is processed on the cognitive level with 

maximal cognitive effort. This processing is goal driven; alternative plans to reach a 

goal are evaluated usually through mental simulation, and finally one plan is selected 

to be executed. With some experience, the associative level is used, where solutions 



 

are stored that proved to be successful; the pilot has for example learned how to 

handle the cockpit systems in specific flight scenarios. According to Rasmussen [5], 

processing is controlled by a set of rules that have to be retrieved and then executed in 

the appropriate context. On the autonomous level routine behaviour emerges that is 

applied without conscious thought, e.g. manually manoeuvring an aircraft.  

When solving a task, people tend to apply a solution on the lower levels first, and 

only revert to solutions on higher levels when lower-level ones are not available [5] or 

when the situation requires very careful handling due to unusual and safety relevant 

conditions. 

In our research, we focus on two kinds of error production mechanisms that we 

associate with the associative and the cognitive level respectively, namely Learned 

Carelessness and Cognitive Lockup.  

Learned Carelessness: When re-planning takes place on the associative layer, the 

procedure may be simplified according to scenarios encountered before. The 

psychological theory of Learned Carelessness states that humans have a tendency to 

neglect safety precautions if this has immediate advantages, e.g. it saves time because 

less physical or cognitive resources are necessary [11]. Careless behaviour emerges if 

safety precautions have been followed several times but would not have been 

necessary, because no hazards occurred. Then, people tend to omit the safety 

precautions and the absence of hazardous consequences acts as a negative reinforcer 

of careless behaviour. 

Cognitive Lockup: On the cognitive layer, the cognitive attention may be captured 

by a task, which causes people to switch between tasks too late or not at all. This 

usually happens in situations with a high multitask workload, as switching between 

tasks costs time and effort, and cognitive resources are limited [3].   

4 Modelling Re-planning in a Layered Cognitive Architecture  

Cognitive architectures were established in the early eighties as research tools to unify 

psychological models of particular cognitive processes [12]. These early models only 

dealt with laboratory tasks in non-dynamic environments [13], [14]. Furthermore, 

they neglected processes such as multitasking, perception and motor control that are 

essential for predicting human interaction with complex systems in highly dynamic 

environments like the air traffic environment addressed in HUMAN with the AFMS 

target system. Models such as ACT-R and SOAR have been extended in this direction 

[15], [18] but still have their main focus on processes suitable for static, non-

interruptive environments. Other cognitive models like MIDAS [16], APEX [17] and 

COGNET [19] were explicitly motivated by the needs of human-machine interaction 

and thus focused for example on multitasking right from the beginning. To our 

knowledge, none of these architectures has a multi-layered knowledge processing, 

with different levels of consciousness, as proposed in the following.  



 

4.1 The Cognitive Architecture CASCaS 

In HUMAN the cognitive architecture CASCaS (Cognitive Architecture for Safety 

Critical Task Simulation) as depicted in Fig. 3 is used to model the cognitive process 

described in the previous section. CASCaS is based on research performed by OFFIS 

in the European project ISAAC (6th Framework Programme) [8], and has been 

extended in HUMAN to cover two of Anderson‟s behaviour levels (c.f. section 3).  

 

Fig. 3: CASCaS Architecture 

The core of CASCaS is formed by the layered knowledge processing component 

that contains the associative and the cognitive layer. 

Knowledge for both layers is stored in the memory component. The short-term 

memory stores variable-value pairs of data that have been perceived from the 

environment or derived by applying rules (see below). The long-term memory stores 

flight procedures in form of Goal-State-Means (GSM) rules (Fig. 3). All rules consist 

of a left-hand side and a right-hand side. The left-hand side consists of a goal in the 

Goal-Part and a State-part, which specifies Boolean conditions on the current state of 

the environment, together with associated memory-read items to specify variables that 

have to be retrieved from memory. The right-hand side consists of a Means-Part 

containing motor as well as percept actions (e.g. hand movements or attention shifts), 

memory-store items and a set of partial ordered sub-goals.  

Rule 1 in Fig. 4 defines a goal-sub-goal relation between HANDLE_ATC_ 

UPLINK and the three sub-goals GENERATE_ROUTE, NEGOTIATE_ROUTE and 

CHECK_ATC_UPLINK_VERT_PREPARE. The precondition in the goal term 

imposes a temporal order on the sub-goals, i.e. NEGOTIATE_ROUTE can only be 

performed after GENERATE_ROUTE. 
 



 

 

Rule 1: 

IF
 

Goal (HANDLE_ATC_UPLINK) (G)oal-Part 

Memory-Read(atc_uplink_present) (S)tate-Part 

Condition(atc_uplink_present==true) 

 

  

TH
EN

 Goal (GENERATE_ROUTE) 

(M)ean-Part Goal (NEGOTIATE_ROUTE, precondition=GENERATE_ROUTE) 

Goal (CHECK_ATC_UPLINK_VERT_PREPARE, precondition=NEGOTIATE_ROUTE) 
 

IF 
 

Rule 2: 

Condition(atc_uplink_message==true) (S)tate-Part 

  

THEN Memory-Store (atc_uplink_present, true) (M)ean-Part 

 Goal (HANDLE_ATC_UPLINK) 

Fig. 4. Format of GSM rules 

Additionally to the GSM-rules we added a second rule type, called reactive rules. 

Rule 2 in Fig. 4 is an example for this rule type. The only difference is that reactive 

rules have no Goal-Part. While GSM-rules represent deliberate behaviour, and are 

selected by the knowledge processing component during the execution of a flight 

procedure, reactive rules (State-Means rules) represent immediate or reactive 

behaviour which is triggered by events in the environment, e.g. in rule 2 of Fig. 4 an 

ATC uplink message (atc_uplink_mesage==true) triggers the goal 

HANDLE_ATC_UPLINK. 

The associative layer selects and executes rules from long-term memory. It is 

modelled as a production system. Characteristic for such systems is a serial cognitive 

cycle for processing rules: A goal is selected from the set of active goals (Phase 1), all 

rules containing the selected goal in their Goal-Part are collected and a short-term 

memory retrieval of all state variables in the Boolean conditions of the collected rules 

is performed (Phase 2). If a variable is absent in memory, a dedicated percept action is 

fired and sent to the percept component to perceive the value from the environment 

and to write it into the short-term memory. After all variables have been retrieved, 

one of the collected rules is selected by evaluating the conditions (Phase 3). Finally 

the selected rule is fired (Phase 4), which means that the motor and percept actions 

are sent to the motor and percept component respectively and the sub-goals are added 

to the set of active goals. This cycle is started when a Boolean condition of a reactive 

rule is true. In Phase 2 reactive rules may be added to the set of collected rules if new 

values for the variables contained in the State-Part have been added to the memory 

component (by the percept component). In Phase 3, reactive rules are always 

preferred to non-reactive rules. The cognitive cycle is iterated until no more rules are 

applicable.  

The cognitive layer reasons about the current situation and makes decisions based 

on this reasoning. Consequently, we differentiate between a decision-making module, 

a module for task execution and a module for interpreting perceived knowledge (sign-

symbol translator). 

The decision-making module determines which goal is executed. Goals have 

priorities, which depend on several factors: first, goals have a static priority value that 

is set by a domain expert. Second, priorities of goals increase over time if not 

executed. Implicitly, temporal deadlines are modelled in this way. If, while executing 



 

a goal, another goal has a clearly higher priority than the current one, the execution of 

the current goal is stopped and the new goal is attended to.  

The task-execution module executes the goals that have been chosen by the 

decision-making module. (Sub-)tasks might be passed to the associative layer if rules 

exist in long-term memory.  

The sign-symbol translator is based on Rasmussen‟s differentiation between signs 

and symbols [5]. This module raises the level of abstraction of the signs perceived by 

the percept component and stored in short-term memory by identifying and 

interpreting the situation, and thereby adding extra knowledge to the sign. In addition, 

background knowledge is applied to judge and evaluate the current situation.  

The associative and cognitive layer interact in the following ways: first, the 

cognitive layer can start (and thus delegate), monitor, temporally halt, resume and 

stop activities on the associative layer by manipulating the associative layer‟s goal 

agenda. Monitoring of the associative layer is realized through determining whether 

the appropriate goals are placed in the goal agenda.  

The associative layer can inform the cognitive layer about the status of rule 

execution, e.g. current execution is stuck because for the chosen goal no rules are 

available in long-term memory or execution of a perceived event cannot be started for 

the very same reason. In these cases the cognitive layer starts to perform the goal or 

event. Furthermore, the cognitive layer can take over control at any time. Currently 

this is initiated by setting the parameter “Consciousness”. If the value is “associative” 

then every event will first be processed if possible and the cognitive layer becomes 

only active if no rules are available. If the value is “cognitive” then the cognitive layer 

processes each event independent of the availability of rules.  

The percept component consists of two sub-components, an auditory component 

for receiving sounds or vocal input (in form of variables representing acoustic input), 

and a visual component for perception of visual input (in form of variables 

representing visual input). While the auditory component is purely reactive to external 

input, the visual component can be controlled by the knowledge processing 

component via percept-actions contained in rules. Percept-actions result in eye 

movements, which are performed by the eyes sub-component in the motor 

component. The eyes component has a detailed model of eye movements, in order to 

simulate the timing of the eye movements. For a more detailed description of the 

visual component, see [4]. All information that has been perceived is stored in the 

short-term memory of the cognitive architecture.  

The motor component contains, apart from the eye component, modules for hand 

and feet movement. This components use the 2D and 3D formulations of Fitt‟s Law 

[10] in order to model the timing of the requested movements (via motor actions 

received from the knowledge processing component). With these components, the 

cognitive model can for example simulate button presses. 

The Simulation Environment Wrapper provides data for the percept component and 

functions for the motor component to manipulate the environment by connecting 

CASCaS with different simulation backends. In HUMAN we connected CASCaS to 

the fixed base flight simulator used by the DLR for experiments with human pilots. In 

this way the model can be executed and data can be recorded in the very same 

environment in which also human subject pilots interact. This allows validation of the 

model by comparing model data with human data.  



 

4.2   The Error-Producing Mechanisms 

Learned Carelessness is modelled on the associative layer by a dedicated learning 

algorithm. This is modelled by melting two rules into one rule by means of rule 

composition [8]. A precondition for composing rules is that firing of the first rule has 

evoked the second rule, or more exact, the first rule derives a sub-goal that is 

contained in the Goal-Part of the second rule. Melting the rules means building a 

composite rule by combing the left-hand sides of both rules and also combing both 

right-hand sides. The crucial point is that in this process elements that are contained 

on the right-hand side of the first and also on the left hand side of the second rule are 

eliminated. This process cuts off intermediate knowledge processing steps. 

Rule 5 in Fig. 5 specifies that it is only allowed to proceed with engaging the route 

[Goal(ENGAGE_ROUTE)] if the vertical profile contains no changes 

(changes_present == false). Using rule 3 the current value of the variable is perceived 

from the AHMI. Rule 4 stores the perceived value into the short-term memory. 

Mostly when pilots want to engage a route, there are actually no changes to the 

vertical profile. Thus, most of the time the percept action delivers 'false'. Our pilot 

model produces a new simplified rule by merging rule 3 and 4 to rule 71, where the 

existence of changes is no longer perceived from the AHMI but is just retrieved from 

memory. The percept action has been eliminated and the simplified rule always stores 

the value 'false' into the memory. Applying rule 71 results in careless behaviour: 

engaging an uplinked route independent from actual changes in the vertical profile. At 

the beginning of the simulation, all rules in the long-term memory component are 

normative, meaning that the application of these rules does not lead to an error. 
Rule 3:  Rule 5: 

Goal (CHECK_ATC_UPLINK_VERT_PREPARE)  Goal (CHECK_ATC_UPLINK_VERTICAL) 

  Memory-Read (changes_present) 

Percept (changes_present, CHANGES_PRESENT)  Condition (changes_present == false) 

Goal (CHECK_ATC_UPLINK_VERT)   

  Goal (ENGAGE_ROUTE) 

 
  

 

  Rule 71: 

Rule 4:  Goal (CHECK_ATC_UPLINK_VERT_PREPARE) 

Percept (changes_present, CHANGES_PRESENT)   

  Memory-Store (changes_present, false) 

Memory-Store(changes_present, CHANGES_PRESENT)  Goal (CHECK_ATC_UPLINK_VERT) 

Fig. 5: Composition of rule 3 and 4 to rule 71, which lead in rule 5 to careless behaviour 

Cognitive lockup is implemented as part of the goal decision mechanism, thus on 

the cognitive layer. In certain situations, switching between goals does not take place 

even though the priority of another goal is higher than the currently selected one. The 

selection mechanism is extended by the parameter Task Switch Costs (TSC), which 

determines the difference that the priorities need to have to halt the execution of a 

goal to select a different goal to be executed. Task Switch Costs are described 

extensively in the literature (e.g. [9]). The TSC depends on the cognitive demands of 

the current task. The higher the cognitive demands the higher are the costs to switch a 

task: TSC = StartTSC + cognitive_complexity_current_task. The parameter StartTSC 



 

denotes the threshold that gives the difference in priority two goals need to have to 

make an interruption of the one goal and the changing to the other goal possible. This 

parameter is determined by experimentation. The cognitive complexity of a task is 

determined by a domain expert and increases the threshold to switch tasks.  

5 Detailed Hypotheses on Re-planning Behaviour 

This section describes hypotheses on pilot behaviour that have been derived by 

executing the cognitive crew model in the flight scenario described in Section 2. The 

hypotheses will in the future be used to validate the model behaviour by comparing 

the simulation traces of the model with traces of real pilot behaviour. Our hypotheses 

describe predictions generated by the model with regard to a pilot error due to 

Learned Carelessness, a pilot error due to Cognitive Lockup and the interaction 

between both mechanisms in the course of error recovery. The predictions are 

presented in the form of simulation traces. 

Hypothesis 1: If checking the vertical profile never shows any irregularities, 

Learned Carelessness will inhibit this check in the future 

The re-planning procedure prescribes to check the vertical profile after the 

acknowledge has been received from ATC. It can happen that ATC does not accept 

the altitude that has been downlinked via the AHMI. In this case altitude changes can 

be seen in the vertical profile. Since this check costs effort, in terms of time needed 

for goal selection, percept and motor actions, and since altitude changes by ATC are 

rather unlikely in that phase of the re-planning procedure the check is prone to be 

omitted after a certain number of procedure repetitions. Our cognitive model learns a 

simplified procedure rule (c.f. rule 71 in Section 4.2) in which the check is no longer 

present. Fig. 6 shows this phenomenon as generated by the pilot model in the scenario 

of Section 2. 

 
Fig. 6: Pilot error due to Learned Carelessness  

 

At the beginning of the scenario the model has already flown two other 

experimental scenarios with twelve re-planning events. A simplified rule without the 



 

vertical profile check has been learned in our simulations after the 10th procedure 

repetition and was first applied during the 11th repetition. At T1 in scenario C the fuel 

pump fails which requires the pilots to descend to altitude 10000. The pilot model 

adjusts the altitude of the current route via the AHMI, sends it to ATC and receives an 

acknowledge which is then engaged. The altitude is not checked but in this case there 

are no consequences. At T4 ATC sends a shortcut allowing the aircraft to fly directly 

to waypoint CHA. This uplink contains a vertical profile (altitude 11000) that violates 

the altitude constraint (altitude 10000) which still holds due to the fuel pump 

malfunction. The model does not notice this violation because it again omits the 

altitude check before engaging the changed route. Thus, the aircraft starts to re-climb 

to altitude 11000. After a certain while, at T5, the model recognizes the climb during 

regular monitoring of the flight conditions. The model corrects the vertical profile of 

the route via the AHMI which make the aircraft descend again. 

 

Hypothesis 2: If the cognitive layer keeps control of the proceduralized check on 

the associative layer, irregularities in the vertical profile will be detected 

We built an alternative version of the pilot model in which the parameter 

Consciousness is set to “cognitive” whenever a system failure is experienced. This 

value is maintained until the problem is solved. This version of the model has been 

used to derive an alternative hypothesis for the same scenario (Fig. 7). At T1 the fuel 

pump failure occurs and Consciousness is set to “cognitive”. As a consequence the 

pilot model performs the modification of the route after T4 on the cognitive layer and 

thus the original non-careless version of the re-planning procedure is applied. The 

pilot model recognizes the incorrect altitude, corrects it and sends it to ATC, where 

the change is accepted and sent back. 

 
Fig. 7: Conscious procedure execution prevents pilot error 

 

 



 

Hypothesis 3: When a task requires high cognitive demand, other tasks might be 

inadequately neglected – this Cognitive Lockup will delay subsequent recoveries of 

irregularities in the vertical profile that were not detected by the associative layer  

due to Learned Carelessness. 

For this hypothesis we assume a variant of the scenario with an additional event 

which is emitted at T3 (). Pilots receive a weather report update indicating that there 

is a thunderstorm approaching the airport which should be monitored from now on by 

the crew on the weather radar. As a result the pilot model is focused on monitoring 

the thunderstorm that the climb of the aircraft due to the incorrect uplink at T4 is 

recognized considerably later than in the preceding scenario. The reason is the 

Cognitive Lockup mechanism. The model does not switch to the regular task of 

monitoring the flight conditions because monitoring of the thunderstorm is a 

demanding task.  

 
Fig. 8: Error is not recovered due to Cognitive Lockup 

 

6 Summary 

In this paper we have presented a cognitive model of pilot behaviour that simulates 

interaction with cockpit systems and predicts pilot errors due to Learned Carelessness 

and Cognitive Lockup. We described detailed hypotheses on errors and error recovery 

in the form of simulation traces that have been derived by executing the model in a 

virtual simulation environment. The next step in the reported research is to compare 

the model generated traces with traces of human pilots recorded in the same 

simulation environment.   

The work described in this paper is funded by the European Commission in the 7th 

Framework Programme, Transportation under the number FP7 – 211988. 
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