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Chapter 1

Introduction

Cardio-vascular diseases (CVD) are the number one cause of death in the USA and
most European countries. They kill more people every year than cancer, accidents,
diabetes, and influenza combined in western countries [3, 6]. CVD are often related
to thrombosis and atherosclerosis.

Thrombosis is the formation of a clot (thrombus) inside a blood vessel, obstruct-
ing the flow of blood through the circulatory system. When the clot detaches and
travels through the vascular system it is called an embolus. An embolus that blocks
the arteries in the lungs is called a pulmonary embolus, which mostly originates
from a venous thrombus in the legs.

Atherosclerosis is a vascular disease that hardens the arteries by plaque forma-
tion. Rupture of vulnerable plaque may lead to the formation of a thrombus. The
thrombus (or after detachment: embolus) may obstruct blood supply to the heart
and the brains, causing a heart attack or a stroke. The thickening of plaque and
the arterial wall can also lead to a narrowing (stenosis) of the artery.

Both stenosis and embolism can hinder the blood flow in vessels, which may
lead to an infarct (i.e. local death of tissue), or even patient death. This thesis
focusses on computer assistance for the diagnosis of stenosis of systemic arteries
and embolism in pulmonary arteries.

1.1 Vessel-Diameter Quantification

A heart attack and a stroke are caused by clots that block the vessels that feed
the heart and the brain respectively. Those clots are often related to stenosis, since
both are caused by atherosclerotic plaque formation. In almost 30% of the patients
with a stroke or transient ischaemic attaque (TIA), a substantial stenosis could be
found in the carotid arteries, which are the most important blood suppliers for the
brain [159].

Stenosis may be treated by endarterectomy, angioplasty or stenting. Endarterec-
tomy is the surgical removal of plaque in an artery; it is used in the carotids, some-
times in the legs, but never in the heart or the lungs. Angioplasty is a non-surgical

9



10 Introduction

minimally invasive treatment procedure by which an intra-arterial catheter is in-
serted percutaneously an the stenosis of the vessel is widened by inflating a balloon.
Stenting is a similar procedure that includes the placement of a tubular mesh (stent)
to keep the vessel open.

The degree of stenosis determines how much a patient might benefit from treat-
ment, because higher grades of stenosis are associated with an increased risk of
stroke. However, treatment itself also carries a risk of stroke or TIA. Therefore
only the people with severe stenosis (diameter reduction of more than 70%) are
treated [102]. For an optimal selection of patients, and to perform studies that will
improve the protocol, the quantification of the vessel diameter must be accurate.

Traditionally, stenosis grading was primarily based on digital subtraction angio-
graphy (DSA), but DSA for diagnostic purposes has gradually been replaced by less
invasive techniques, such as magnetic resonance (MR) and CT imaging [102, 159].
The latter is most often used due to the high resolution and shorter acquisition
times, especially for acute disorders.

Many methods have been proposed to improve the reproducibility and precision
(which is related to the stochastic error) of vessel-diameter estimation in medical
images [12, 24, 54, 69, 125, 159]. However, inherent to image acquisition is a blurring
effect, which causes a bias (systematic error) in the diameter estimation of most
quantification methods [70, 102]. Some methods even increase the amount of blur
further with the differential operators that are used to localize the vessel boundary
and thus also the bias. Especially small vessels and stenoses are systematically over-
or underestimated. This systematic error in the diameter estimation deteriorates the
selection of patients. Therefore, we will focus on fast and accurate (i.e. unbiased)
vessel-diameter quantification.

1.2 Embolus Detection

Pulmonary Embolism

Pulmonary embolism (PE) is the sudden obstruction of an artery in the lungs,
usually due to a blood clot originating from the veins in the legs [127]. There are
more than 50 cases of PE per 100,000 persons every year in the USA [118]. Of these
cases, 11% die in the first hour [75] and in total, the untreated mortality rate of PE is
estimated to be 30% [124] versus 2.5% for appropriately treated PE [134]. Autopsy
studies on hospitalized patients even showed a PE prevalence of 60% to 70% [132].
Consequently, PE is a common disorder with a high morbidity and mortality for
which an early and precise diagnosis is highly desirable [40].

The process of blood-clot formation inside a blood vessel is called thrombosis.
The blood clotting mechanism can have many causes. For example, thrombosis can
be caused by a decreased velocity of blood [32, 68]. Because blood flow is slower
in veins than in arteries, most thrombi are formed in veins. When a piece of a
thrombus ruptures it is called an embolus. Emboli can travel through the vascular
system and block blood flow at a distant site. Emboli are arrested in vessels that
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are too narrow to pass. Most emboli originate from thrombi inside the veins in the
legs. These emboli will travel through the inferior vena cava and the right heart
and they will get trapped in the pulmonary arteries. Blood flow blockage caused
by emboli can result in an infarct or even in death, dependent on the severity of
vascular obstruction and the heart function.

The most commonly known risk factor for PE are immobility or inactivity, which
leads to a reduced blood flow, e.g., by hospitalization or long-distance car or plane
travel. Other risk factors are hypertension, surgery or trauma, which are related
to damaged cells in the inner layer of blood vessels. Additional factors that may
lead to a higher risk are: cigarette smoking, obesity, heart failure, cancer, chronic
obstructive lung disease, hormone therapy, pregnancy, oral contraceptives, advanced
age and family members with thrombosis or embolism [61].

The signs and symptoms of PE can vary greatly, depending on the size of the
clot, the area of the lung that is affected, and the overall health of the patient.
Common warning signals of PE include: unexplained shortness of breath, chest
pain, breathing difficulties and leg discomfort or leg swelling (which is related to
thrombosis). These signals and the mentioned risk factors are used to determine
the clinical probability of pulmonary embolism [162].

The treatment of PE depends on the severity. The embolization is mild when
only a few subsegmental vessels are blocked and it is severe when multiple segmental
or a few lobar vessels are blocked. Mild PE is managed with blood thinners. Severe
PE requires additional measures, such as clot-dissolving medication, placement of a
filter in the inferior vena cava, or clot removal with either a catheter or surgery [61].

Methods for the Diagnosis of PE

The first step in the diagnosis of PE is a clinical assessment [131, 162, 163]. The
best known standardized clinical assessment is the Wells score [162], which uses risk
factors, signs and symptoms to estimate the probability of PE. A clinical pre-test
assessment is crucial for the selection of patients that need further treatment. It
is important for hospitals to minimize costs and for patients to select the right
diagnostic procedure, to get prompt treatment and to avoid unnecessary exposure
to radiation or invasive diagnosis. Diagnosing PE – or thrombosis – remains a
major challenge because the symptoms are unspecific and may not be present in
all patients. Radiological imaging therefore plays a crucial role. Diagnostic tests
have different strength with respect to their capability to ‘rule in’ or ‘rule out’ a
disease [78]. For that reason, one or more of the following tests can be performed
to find the cause of the symptom and – equally important – to determine whether
the symptoms are caused by another disorder. For example, a chest x-ray is often
the initial imaging study in patients with suspected PE [29]. This test shows a
2D image of the heart and lungs. X-ray images can neither rule out nor diagnose
PE, they can only be used to rule out conditions that mimic PE [60], e.g. a
pneumothorax can cause chest pain similar to pain caused by acute PE.

There are several tests for the diagnosis of thrombosis (which is related to the risk
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of PE), such as the D-dimer test, a Doppler ultra-sound test or venous angiography.
The D-dimer blood test can be used to rule out thrombosis. Thrombosis is a clot

of platelets enmeshed in a network of fibrin (which is a protein). D-dimer is formed
when cross-linked fibrin is broken down. A low value of D-dimer can help to rule out
PE, because it shows that the clotting process is not active. An elevated D-dimer,
however, is nonspecific and can be caused by acute PE but also by many other
conditions such as trauma, post-operative state, cancer, inflammation, pregnancy
and advanced age. Thus, an elevated D-dimer level is non-diagnostic for acute PE,
particularly among hospitalized patients [132].

A venous ultra-sound (US) test uses the reflection of high frequency sound waves
to create images of veins in the leg. The test is quick, painless and carries no risk.
Unfortunately, the test is not very sensitive, especially for thrombi below the knee
and dependent on the experience of the examiner.

Venous angiography (venography) is another test for the detection of blood
clots in the legs [132]. Contrast media is injected via a foot vein and images of the
contrast-filled leg veins are taken in several projections.

There are also methods that create an image of the lungs in order to diagnose PE,
such as a ventilation/perfusion scintigram (V/Q scan), pulmonary angiography, MR
and CT imaging.

Traditionally, a V/Q scan was the most important test in patients with sus-
pected PE. This scan uses radioactive tracers to evaluate both the air ventilation
(V) and the blood perfusion (Q) through the lungs. A mismatch of ventilated but
not perfused lung tissue was considered as indicator for pulmonary embolism. Thus
the V/Q scan allowed the indirect detection of an embolus by looking at the effects
of an occlusion. In comparison with the CT scan, the frequency of a false negative
scan was higher, inter-observer correlation lower and the number of ‘indeterminate
scans’ not yielding a definite diagnosis much higher [137]. A normal perfusion scan
securely excluded pulmonary embolism, but was found in a minority of the patients
that are suspected of PE [120], and thus, often further testing was needed.

Pulmonary angiography has been used when other tests fail to provide a defini-
tive diagnosis. For a pulmonary angiogram, a catheter is inserted into a large vein
and threaded through the heart into the pulmonary arteries. A sequence of x-ray
images is taken while the pulmonary vessels are enhanced with contrast material.
Before the introduction of spiral CT angiography, pulmonary angiography was con-
sidered the gold standard but it has not been used frequently, because it is invasive,
costly, technically demanding to perform and associated with serious side effects
(0.5% mortality) [78].

Several studies reported promising results for the assessment of PE with mag-
netic resonance (MR) imaging [51]. MR uses a magnetic field to generate a 3D
image volume. This modality is promising because images can be generated with-
out radiation, and because it allows a combination of morphological and functional
imaging (e.g., perfusion) [51]. However, MR has a lower spatial resolution than
CT and much longer acquisition times (around 30 minutes as opposed to seconds



1.2 Embolus Detection 13

with CT). Besides, it is more expensive and less readily available than CT [132].
Therefore, CT is currently the preferred modality. MR plays a role in patients when
radiation is undesirable, e.g., in pregnant patients or children.

In the last few years, contrast-enhanced multi-slice x-ray computed tomography
(CT) has become the preferred initial imaging test (and often the only test) to di-
agnose PE, for reasons that have already been mentioned before: it is a simple,
minimally invasive, accurate and a very fast imaging technique [66, 128, 129, 136]
that allows the direct depiction of a clot inside the blood vessels. Since its intro-
duction of spiral CT in the early 1990s, it has gained wide acceptance as a first-line
imaging test for PE [51, 123]. While the first single-slice scanners were limited in
spatial resolution and scan time, and therefore less suited for depiction of subseg-
mental emboli, these limitations have been overcome by the advent of multi-slice
scanners. The introduction of multi-slice CT has substantially improved the spatial
resolution and scan times. A CT scan of the pulmonary arterial tree can be ac-
quired up to the eighth branch in less than 10 seconds [51, 59]. The CT image can
also be used to identify alternative potentially life-threatening causes of signs and
symptoms in a patient with chest pain [137].

Diagnosis with Computed Tomography

A CT scanner uses x-rays. The CT image consists of attenuation (absorbtion)
differences of the various tissues, transferred into different grey levels: bones are
white, tissue and blood are grey, and air is black. Contrast material (iodine) is
injected into the vascular system with a relatively high flow and CT data is acquired
during the ‘first pass’ of the contrast through the vessels, before the contrast material
diffuses from the intra-vascular in the extra-vascular (organ) space. The CT scan of
strongly contrast-enhanced blood vessels is called CT angiography (CTA). In CTA
images the blood vessels appear as bright tubular structures (Figure 1.1) because
the contrast material is dissolved in blood.

1
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45

R L
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R

Figure 1.1: Three axial CT images from top to bottom showing (1) the
aortic arch, (2) ascending aorta, (3) descending aorta, (4) main pulmonary
artery, which is bifurcating in the left and right pulmonary artery, (5) supe-
rior vena cava and the (6) left atrium, which is connected to the pulmonary
veins.

An embolus causes an intravascular contrast defect, and therefore, is seen as a
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dark spot in the pulmonary arteries (Figure 1.2).

P E

Figure 1.2: PE appears as a filling defect inside the pulmonary arteries
in CT images.

For a radiologist, it can be difficult to detect all PE in the CT data [143] for
several reasons. The CT scanner produces consecutive 2D x-ray images of 512x512
pixels (picture elements), as a stack of approximately 400 cross-sectional slices so
that a three-dimensional (3D) volume is constructed. In a 3D volume, the pixels are
called voxels (volume pixels), of which the size is approximately 0.6 mm in every
direction. The several hundred high-resolution images consisting of 100 million
voxels have to be reviewed. Furthermore, the lung vasculature is quite complex with
many segmental and subsegmental branches. It is almost impossible to visualize all
vascular structures within one image at a time. Therefore, many radiologists go
through such a scan several times reviewing only parts of the vascular system in the
attempt not to miss an intravascular (sometimes very small) black dot indicating
PE. A secure diagnosis or exclusion of PE is therefore quite time-consuming and
highly dependent on the experience of the radiologist.

For a radiologist, it might also be difficult to avoid false detections. There are
several diagnostic pitfalls [63, 124, 165]:
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Examples of diagnostic pitfalls are:

• A poorly enhanced vein. Since PE are arrested in pulmonary arteries,
the scan is optimized for enhancement of the arteries and the veins are
often poorly filled with contrast material. These filling defects in the
veins look similar to PE and might be misdiagnosed if the radiologist
misinterprets the location.

• Lymphoid tissue that is located around the vessels. Because it has
the same intensity as PE, it might be misinterpreted as wall adherent
thrombi.

• Respiratory or cardiac motion, which may cause movement artifacts in
the CT image with inhomogeneous intravascular contrast resembling
PE.

• Streak-artifacts near the superior vena cava due to beam hardening.

• Parenchymal diseases alter the pulmonary perfusion and thus the dif-
ference between intravascular and extravascular contrast, hampering
the diagnosis of PE.

• Blurring due to the partial volume effect at the vessel wall or at bi-
furcations.

• Impacted bronchi mimic dark tubular structures.

• Incorrect bolus timing resulting in insufficient intravascular contrast.

• Image noise due to low dose or obese patients.

• Artifacts due to edge-enhancing image reconstruction.

Because it is difficult and time consuming for a radiologist to find all emboli, a
computer aided diagnosis (CAD) system is desirable. In current clinical practice,
the diagnosis of PE is divided in a yes-or-no decision, independent of the location
and severity of emboli (with some exclusions as stated before). It is therefore less
important that CAD finds more emboli in a patient with already known disease.
More important tasks of CAD seem to be: to increase the radiologists certainty to
rule out a disease, to estimate the obstruction index [121] or to decrease inter-reader
variability. In this thesis, we propose a CAD system for the automatic detection of
PE in CTA images. For the design of such a system, the mentioned pitfalls must be
taken into account, to avoid a large number of false detections. Therefore, our data
were selected to demonstrate a variety of thrombus load and considerable differences
in image quality with respect to motion artifacts, sub-optimal contrast enhancement
and parenchymal diseases. This is important because the main problem of PE
detection is the separation between true PE and look-alikes, which is much harder
when the patient is suffering from overlying disease and image quality is suboptimal.
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1.3 Outline of the Thesis

Both stenosis and pulmonary embolism can obstruct the blood flow in vessels, which
may have serious consequences. This thesis focusses on computer assistance for
the diagnosis of these two types of obstructions. The first part discusses vessel
quantification to improve the selection of patients with stenosis. The second part
describes a CAD system for the automatic detection of PE which may be help a
radiologist to find all emboli.

The first part is about fast and accurate vessel-diameter quantification in CT
images. Gaussian derivatives are commonly used as differential operators to localize
the vessel wall. Chapter 2 describes how Gaussian derivatives should be computed
on multi-dimensional data with anisotropic voxels and anisotropic blurring. In the
CT images the voxels and blurring are usually anisotropic, which means that the
voxel size and the amount of blur in the x- and y-directions are not equal to that
in the z-direction. Although isotropic reconstruction is becoming more and more
common for CT data, being able to handle anisotropic data (especially anisotropic
blur) will continue to be important for image analysis, also in the medical field. In
Chapter 3, we show that the computational cost of interpolation and differentiation
on Gaussian blurred images can be reduced by using B-spline interpolation and
approximation, without losing accuracy. Chapter 4 introduces a derivative-based
edge detector with unbiased localization on curved surfaces in spite of the blur in CT
images. In the last chapter of the first part, Chapter 5, we propose a modification of
the full-width at half-maximum (FWHM) criterion to create an unbiased method for
vessel-diameter quantification in CT images. This criterion is not only cheaper but
also more robust to noise than the commonly used derivative-based edge detectors.

The second part of this thesis describes the CAD system for automatic detection
of PE in CTA images. The system consists of three steps, which are described
in separate chapters. In the first step, pulmonary vessels are segmented and PE
candidates are detected inside the vessel segmentation, as described in Chapter 6.
Subsequently, shown in Chapter 7, features are computed on each of the candidates
to enable the classification of the PE candidates. In the last step, classification is
used to separate candidates that represent real emboli from the other candidates.
The system is optimized with feature selection and classifier selection, and after
that, the system for embolus detection is evaluated and results are presented in
Chapter 8.

Finally, the discussion can be found in Chapter 9, combined with some recom-
mendations for future research.
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Chapter 2

Gaussian Derivatives on
Anisotropic Data

Abstract – Gaussian derivatives are often used to analyze the
structure in medical images. In this chapter, we show how Gaus-
sian derivatives should be applied to multi-dimensional data with
anisotropic blurring and anisotropic voxel sizes, with special atten-
tion to three-dimensional computed-tomography (CT) data.

19
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2.1 Introduction

Computer vision tries to automate the interpretation of structures in an image. The
low-level image structure is usually analyzed with differential operators. Gaussian
derivatives are often used as differential operators. They are used to implement
differential invariants – such as edge detectors, shape descriptors and motion esti-
mators. In the medical field, Gaussian derivatives are commonly used to compute
features for computer-assisted interpretation of multi-dimensional images.

Interpolation and differentiation methods usually assume the images to be repre-
sented by a set of uniformly-spaced samples that are isotropically blurred. However,
multi-dimensional images – e.g., from a computed-tomography (CT) scanner – usu-
ally are anisotropic in two ways (Figure 2.1). On one hand, the volume elements
(voxels) are anisotropic if the voxel sizes are not equal in every direction. On the
other hand, the blurring is anisotropic if the point-spread function (PSF) is not
equal in every direction.

Differential operators will only produce meaningful values if both types of
anisotropy are taken into account. For example, isophote curvature – which shows
in three-dimensional data the curvedness of a surface of equal intensity – will only
be inversely proportional to the radius of the circles that locally fit to the shape
of the isophotes if the blurring is isotropic. And the gradient magnitude will only
reflect the slope of an edge if the voxel sizes are taken into account. Unfortunately,
the anisotropy is often neglected, which leads to incorrect measurements.

In this chapter, we will present a review on the computation of Gaussian deriva-
tives on multi-dimensional images with anisotropic blurring and anisotropic voxels,
with a special attention to three-dimensional CT images.

The chapter is organized as follows. We will analyze the anisotropy due to
blurring in Section 2.2, and the anisotropy due to voxel sizes in Section 2.3. In Sec-
tion 2.4, an experiment is performed to verify the theory about Gaussian derivatives
on anisotropic data.

C o n t i n u o u s
O b j e c t B l u r r i n g S a m p l i n g D i g i t a l

I m a g eA c q u i s i t i o n

Figure 2.1: The acquisition process of digital images can be modelled
by acquisition, blurring and sampling. Blurring and sampling are often
anisotropic.
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2.2 Anisotropic Blurring

In this section, we will first analyze how blurring is modelled in CT data. After
that, we show how the anisotropy of blurring can be taken into account to extract
meaningful features from the data.

2.2.1 Point-Spread Function (PSF)

In physics, an integrated weighting over the detector area is needed to perform a
measurement. This causes a blurring effect. In CT images the blurring is a function
of the beam collimation, detector size, interpolation algorithm, slice thickness, pitch,
focus-center and focus-detector distances. The blurring due to all of this is modelled
as a convolution by the PSF; a point in the object is not reproduced as a point, but
as a spreaded point in the image. The PSF in CT images is often approximated by
a Gaussian [113]. The PSF describes the impulse response of a system and its width
is a measure of spatial resolution, which is often not the same in every direction.
Therefore, the PSF is often approximated with an anisotropic Gaussian:

GN (~x, ~σ) =
1

(2π)N/2 det(~σ I)
exp

(

−1

2

~x

~σ
· ~x

~σ

)

(2.1)

where N is the number of dimensions, ~σ is the vector that contains the standard
deviations for each direction, and I represents the N × N identity matrix.

The PSF can be obtained in two ways. One way is to measure the PSF directly
as the edge-spread function (which leads to the integral of the PSF, as the Heaviside
step function is the integral of the Dirac delta function), the line-spread function
or (literally) as the point-spread function [113, 11, 92, 28]. Another way is to first
measure its Fourier counterpart – the modulation transfer function (MTF) – and
then transform the MTF to the PSF. Because the MTF is the most fundamental
measurement of spatial resolution used in radiology [11], we will elaborate on its
relation with the PSF, and how the MTF can be measured directly.

2.2.2 Modulation Transfer Function (MTF) and the PSF

The MTF is another way to describe the blurring in CT images. The MTF is the
absolute value of the normalized complex Fourier transform of the PSF. In 2D:

MTF(u, v)2D =

∣

∣

∣

∣

∣

∫ ∞
−∞

∫ ∞
−∞ PSF(x, y) e−2 π i (u x + v y) dx dy
∫ ∞
−∞

∫ ∞
−∞ PSF(x, y) dx dy

∣

∣

∣

∣

∣

(2.2)

In this equation u and v are spatial frequencies of the two-dimensional Fourier
transform. The one-dimensional Fourier transform is defined as:

F {h(x)} =

√

|b|
(2π)1−a

∫ ∞

−∞
h(x) ei b ω xdx (2.3)
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where the parameters should be chosen as: a = 0 and b = −2π. Since the Fourier
transform of a Gaussian is a Gaussian, and if the PSF can be modelled by a Gaussian,
the relation between the PSF and the MTF can be written in two short equations:

PSF = GN (~x, ~σ)
F⇒ MTF =

GN (~ν, 1
2π ~σ )

(2π)N/2 det(~σ I)
(2.4)

MTF = (2π)N/2 det(~σ I)GN (~ν, ~σ)
F−1

⇒ PSF = GN (~x,
1

2π ~σ
) (2.5)

2.2.3 Measuring the MTF

The MTF can be measured by using a test pattern that consists of a series of line
pairs (i.e. bars and spaces, or square wave). It should be measured with a sine
wave, but this is much more expensive to make. That is why everybody measures
in practice with a square wave. In an acquired image, the response of a line pair
consists of a part with a high value and a low value (Figure 2.2). The relative
amplitude of this response is called contrast. As the spatial frequency of the line
pairs per centimeter (lp/cm) increases – the pairs become smaller – the contrast
decreases due to blurring.

Test pattern
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Figure 2.2: Response r(ν) of a bar pattern. The square-wave response is
obtained with σpsf = 0.13cm.

The frequency-contrast response of a square wave is shown as a solid curve in
Figure 2.3). The three dots on this curve are obtained with the frequency and
contrast quantities in Figure 2.2.

However, the MTF is not equal to the frequency-contrast response of a square
wave [140], but to the response of a sine wave. The sine-wave response R(ν) can
be expressed in the square-wave response r(ν) as shown by Coltman [30]. The
seventh-order approximation of this relation is:

R(ν) =
π

4

[

r(ν) +
r(3ν)

3
− r(5ν)

5
+

r(7ν)

7
. . .

]

(2.6)
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Figure 2.3: The frequency-contrast response of a sine wave (dashed curve)
is equal to the MTF. The response of a square wave (solid curve) obtained
from Figure 2.2 is not equal to the MTF.

With this equation, the square-wave response (solid curve in Figure 2.3) can be
converted to the MTF (the dashed curve in Figure 2.3).

The two ways to measure the amount of blur – in the frequency domain (MTF)
and in the spatial domain (PSF) – can be compared. For example, the width of
the PSF that was used to blur the bar pattern in Figure 2.2 (σ = 0.13 cm), can
also be estimated in the frequency domain. A measurement of the width at half-
maximum (ν) of the MTF results in an estimate of ν = 1.44 lp/cm (see dashed
curve in Figure 2.3). The computation of the PSF as a Fourier transform of the
MTF results in the same estimate of σ:

G1(1.44, 1
σ 2π )

(σ
√

2π)
= 0.5 ⇒ σ = 0.13 cm (2.7)

As shown, the blur can be measured with bar-shaped line pairs in the frequency
domain and as the PSF in the spatial domain. Both methods result in the same
estimate of blur and they can be transformed from one to the other and vice versa
with a Fourier transform. The MTF or PSF should be measured in every direction
to estimate the anisotropic blurring in multi-dimensional data.

2.2.4 Correction for Anisotropic Blurring

The blurring of the PSF in the z-direction is usually much larger than the blurring
in x- and y-direction; the blurring is anisotropic. As mentioned before, the blurring
must be made isotropic to produce a meaningful measurement.

The total blur σtot in a processed image consists of two parts. The first is caused
during acquisition by the PSF σpsf , and the second is caused by the Gaussian-
derivative operators σop. The self-similarity (or semi-group) property of the Gaus-
sian (σ2

tot = σ2
psf + σ2

op) can be used to correct for the anisotropy of the PSF. The
property of separability allows us to apply the operator in each of the directions
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with a different value for σop in order to make the total blurring σtot equal in all
directions. In some cases it is undesired to increase the amount of blur, because
information is lost. However, in many cases extra blur is necessary to obtain accu-
rate measurements. For example, an iso-surface on the boundary of a sphere with
anisotropic blurring is not spherical anymore. Therefore, the isophote curvature
will fail to represent the inverse of the radius. Additional blur can make the total
blurring equal in all directions.

So, we showed how the (anisotropic) blurring in data can be measured with the
PSF and the MTF, and how the blurring can be made isotropic to allow analysis of
the structure in images.

2.3 Anisotropic Voxels

In this section, the anisotropy of voxels is analyzed. We will first mention the
terminology that is common for CT data. After that, we show how differential
operators can take the anisotropy of voxels into account.

2.3.1 CT Terminology

The elements inside a CT volume are called voxels. However, the volumetric data-
set can also be described as a ‘stack of slices’, and the elements inside a slice are
called picture elements (pixels). In the x- and y-direction, the distance between the
elements is called ‘pixel spacing’ and in the z-direction it is called ‘spacing between
slices’ (according to the DICOM standard, the standard for medical imaging).

The pixel spacing is equal to the division of the field-of-view size by the dimen-
sions of a slice. The spacing between slices is equal to the reconstruction interval.
The spacing between slices is easily confused with the slice thickness. Slice thick-
ness is not the same as the size of the voxels, but it is related to the blurring of
the data. In other words, the slices can be overlapping. For single-detector CT,
slice thickness was directly related to slice collimation and pitch. For multi-detector
CT the reconstruction algorithm allows the user in the same study to reconstruct
images with high resolution but increased noise (thin slices) and images with lower
resolution but less noise (thicker slices).

2.3.2 Natural Coordinates

Differential operators are not scale-invariant. This means that the slope of a blurred
signal will decrease as the amount of blurring increases. Blur removes low-scale
structure (like noise) and allows analysis at a higher scale. If we consider the trans-
formation x → x/σ = x̃, then x̃ is dimensionless and the operator is scale-invariant.
The dimensionless coordinate is called the natural coordinate [64]. This implies that
the derivative operator in dimensionless natural coordinates has a scaling factor:
∂n

∂xn → σn ∂n

∂x̃n . The natural coordinates and the scaling factor avoid the decrease of
the output of an image derivative at a larger scale.
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2.3.3 Correction for Anisotropic Voxels

In order to correct for the anisotropy of voxels we will perform a transformation
to natural coordinates. Our goal is to make operators that are independent of the
voxel size, which avoid the decrease of intensity for larger voxels.

The length of a voxel in the x-direction will be defined as cx. Normalizing the
Gaussian G1(cx x, σ) requires a scaling factor cx:

cx

∫

G1(cx x, σ) dx =
1

2
erf(

cx x√
2 σ

) (2.8)

where the units are pixels [px] for x and [mm/px] for cx. Applying the chain rule
results in:

cx
∂nx{G1(cx x, σ)}

∂xnx
= c1+nx

x

∂nx{G1}
∂xnx

(cx x, σ) (2.9)

where nx is the nxth-order derivative in the x-direction. So, in 3D, we can either
transform the σ’s:

∂nx∂ny∂nz

∂xnx∂yny∂znz
{G3(~x, [

σx

cx
,
σy

cy
,
σz

cz
])} =

c−nx
x c−ny

y c−nz
z

∂nx∂ny∂nz

∂xnx∂yny∂znz
{G3}(~x, [

σx

cx
,
σy

cy
,
σz

cz
]) (2.10)

or we can transform the coordinates x, y and z:

∂nx∂ny∂nz

∂xnx∂yny∂znz
{G3([cx x, cy y, cz z], ~σ)} =

c1+nx
x c1+ny

y c1+nz
z

∂nx∂ny∂nz

∂xnx∂yny∂znz
{G3}([cx x, cy y, cz z], ~σ) (2.11)

Equation (2.10) or (2.11) makes the Gaussian derivatives invariant to the size of the
voxels.

If we assume isotropic pixel spacing (cx = cy) and another value for the spacing
between slices (cz), then the anisotropy (a) is:

a =
cz

cx
=

cz

cy
(2.12)

If the coordinates are transformed so that pixel spacing in the x- and y-direction is
defined to be the unit length, then only a scaling factor is required and we can use:

∂nx∂ny∂nz

∂xnx∂yny∂znz

{

G3

(

[x, y, z], [σx, σy,
σz

a
]
)}

=

1

anz

∂nx∂ny∂nz

∂xnx∂yny∂znz
{G3}

(

[x, y, z], [σx, σy,
σz

a
]
)

(2.13)

Equation (2.10) or (2.11) makes the Gaussian derivatives invariant to the size of
voxels. These equations can easily be modified for n-dimensional data. In some
cases in 3D data, invariance to anisotropy in the z-direction is sufficient; assuming
that voxels are isotropic in the x- and y-direction. Equation (2.13) shows how the
operators can be made invariant to this type of anisotropy.
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2.4 Experiments and Results

To verify the theory about Gaussian derivatives on data with anisotropic blurring
and anisotropic voxels we will perform an experiment with a synthetic image of a
sphere.

The sphere M is defined with a radius R, and a heaviside unit-step U : M =
U(R − r). The blurred sphere is defined as: L = M ∗ G. Partial derivatives will be
denoted by subscripts, as in Mz for ∂M

∂z . Derivatives are calculated in a locally fixed
coordinate system (gauge coordinates). The vector w is defined in the direction of
the gradient. Thus, Lww is the second-order Gaussian derivative in the gradient
direction.

The position vector, expressed in spherical coordinates is: ~r = [r cos(θ)sin(φ),
r sin(θ)sin(φ), r cos(φ)]T . As the sphere is rotationally symmetric, we can solve it
in 1D, along the radial direction only. We choose the derivatives to x and y to be
zero (Lx = 0, Ly = 0) and the gradient magnitude as Lw = |Lz|, without loss of
generality.

Mz = − cos(φ)δ(R − r)

Lz =
∫∞
0

∫ π

0

∫ 2π

0
ρ2sin(Φ)Mz G(~r − ~ρ) dΘdΦdρ

= −e−
r2+R2

2 σ2
R
∫ π
0

sin(Φ) cos(Φ) e
r R
σ2 cos(Φ)

dΦ√
2 π σ3

Lw = e−
r2+R2

2 σ2
(r R+σ2)e

−
r R
σ2 +(r R−σ2) e

r R
σ2

√
2 π r2 σ

(2.14)

Lww can be derived from Lw, and the Laplacian (∆L) from these two.

Lww = e
−

(r+R)2

2σ2√
2π r3 σ3

(

(r3R + 2rRσ2)
(

1 + e
2rR
σ2

)

+

(2σ4 + r2(R2 + σ2))
(

1 − e
2rR
σ2

))

∆L = e−
(r+R)2

2σ2

rR

(

1+e
2rR
σ2

)

+(R2+σ2)

(

1−e
2rR
σ2

)

√
2π r σ3

(2.15)

The blurred sphere L can be derived from Lw by integration.

L =
−σ e−

(r−R)2

2σ2 + σ e−
(r+R)2

2σ2

√
2π r

− 1

2
erf

(

r − R√
2 σ

)

+
1

2
erf

(

r + R√
2 σ

)

(2.16)

Equation 2.16 is used to create a synthetic image of a blurred sphere (R = 4.4mm)
without aliasing (σ = 1.5mm) on anisotropic voxels (cx = cy = 1.0mm/px, cz =
1.5mm/px, a = 1.5). Extra blurring (σ = 1.4mm) is applied in the z-direction to
make the blurring anisotropic. An extra blurring of σ = 1.4mm results in a total
blurring of σz =

√
1.52 + 1.42 = 2.05 mm in the z-direction. Three cross sections

through the center of the blurred sphere are shown in Figure 2.4. Note that in the
figure the domain on the horizontal axis in the z-direction differs from the domains
in the x- and y-direction. The lack of a flat plateau in the center of the sphere is
caused by the amount of blurring in relation to the radius of the sphere.



2.5 Conclusions 27

-12 -9 -6 -3 0 3 6 9 12 15

0.2

0.4

0.6

0.8

1
I

x(px)
-12 -9 -6 -3 0 3 6 9 12 15

0.2

0.4

0.6

0.8

1
I

y(px)
-8 -6 -4 -2 0 2 4 6 8 10

0.2

0.4

0.6

0.8

1
I

z(px)

Figure 2.4: Creation of a blurred sphere (R = 4.4mm) with anisotropic
voxels (cx = cy = 1mm/px, cz = 1.5mm/px) and anisotropic blurring
(σxy = 1.4mm, σz = 2.05mm).

The image with anisotropic blurring and anisotropic voxels is used to show that
we can calculate derivatives that match the theory. The second-order derivative in
the gradient direction Lww is calculated on this image using Gaussian differential
operators as in Eq. 2.13 with a total blurring of σtot = 3.4mm. The result is
compared with Equation 2.15 (Figure 2.5). The root-mean-square (RMS) error
appears to be 1.5 · 10−8.
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Figure 2.5: Lww calculated on a sphere (R = 4.4mm) with anisotropic vox-
els (cx = cy = 1mm/px, cz = 1.5mm/px) and anisotropic blurring (σxy =
1.4mm, σz = 2.05mm). The total blurring for Lww is σ = 3.4mm. The
result of the differential operators (dots) matches Equation 2.15 (curve).

In this experiment we showed that the Gaussian derivatives can be used on data
with anisotropic blurring and anisotropic voxels. The experimental results match
the theory with an RMS value that is close to the computational accuracy.

2.5 Conclusions

In this chapter, a review was given on the computation of Gaussian derivatives on
multi-dimensional images with anisotropic blurring and anisotropic voxels, with a
special attention to three-dimensional CT images.

The blurring in CT images is modelled by the PSF or the MTF. The blurring
is usually anisotropic, which makes many differential operations (e.g., isophote-
curvature computation) meaningless. Separability and the self-similarity (or semi-
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group) property allowed a correction for anisotropic blurring.
The voxel sizes in CT images are defined by the pixel spacing and the spacing

between slices. The voxels are usually anisotropic, which should also be taken
into account to create meaningful measurements. An approach, exploiting natural
coordinates, allowed us to make the Gaussian derivatives invariant to voxel sizes.
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Gaussian Derivatives
based on B-Splines
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Abstract – Gaussian derivatives are often used as differential op-
erators to analyze the structure in images. In this chapter, we will
analyze the accuracy and computational cost of the most common
implementations for differentiation and interpolation of Gaussian-
blurred multi-dimensional data. We show that – for the compu-
tation of multiple Gaussian derivatives – the method based on B-
splines obtains a higher accuracy than the truncated Gaussian at
equal computational cost [15].
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3.1 Introduction

Computer vision aims at the automatic interpretation of structures in an image. The
low-level image structure is often analyzed with differential operators, which are used
to calculate (partial) derivatives. In mathematical analysis, the derivative expresses

the slope of a continuous function at a point (∂f(x)
∂x = limh↓0

f(x+h)−f(x)
h ). However,

differentiation is an ill-posed operation, since the derivatives do not continuously
depend on the input data [65]. The problem of an ill-posed differentiation on a
discrete image F is solved through a replacement of the derivative by a (well-posed)
convolution with the derivative of a regularizing test function φ [138, 52].

(∂i1...in
F ∗ φ)(x) = (−1)n

∫ ∞

−∞
F (ξ) ∂i1...in

φ(x + ξ) dξ

=

∫ ∞

−∞
F (ξ) ∂i1...in

φ(x − ξ)dξ = (F ∗ ∂i1...in
φ)(x) (3.1)

The Gaussian is positive (which avoids overshoot and ringing artifacts) and an inte-
gration over the kernel is normalized to one. These properties imply that variation
will diminish, which means that the Gaussian is causal. The Gaussian is the only
regularizing test function that is smooth, self-similar, causal, separable and rotation
invariant [52, 43]. The convolution of an image with a Gaussian is called blurring,
which allows the analysis at a higher scale where small structures (e.g., noise) are
removed.

Thanks to the mentioned properties, the Gaussian derivatives are often applied
in the fields of image processing and computer vision as differential operators [64].
They are used to implement differential invariant operators – such as edge detec-
tors, shape descriptors and motion estimators. In the medical field, the Gaussian
derivatives are used to compute features in huge multi-dimensional images for a
computer-aided interpretation of the data, sometimes even at multiple scales [107].
This processing requires an efficient and accurate implementation of the Gaussian
derivatives.

The naive approach to obtain the blurred derivatives of an image, is to convolve a
multi-dimensional image with a multi-dimensional truncated Gaussian (derivative)
kernel. The same result can be obtain with lower computational cost by using sepa-
rability, because the rotation-invariant multivariate Gaussian is equal to a product
of univariate Gaussians. However, the cost of both approaches increases as the scale
gets larger. Therefore, many techniques are proposed for an efficient implementation
at large scales or at multiple scales.

The FFT [58] allows the replacement of an expensive convolution in the spatial
domain by a cheaper multiplication in the Fourier domain. Usually, the cost of an
FFT is only acceptable for large scales [53]. A recursive implementation [2, 36, 158]
of the Gaussian (derivative) is even cheaper than the FFT [167], and the costs are
– like the FFT – independent of the scale. However, this implementation lacks
high accuracy, especially for small scales [10] and derivatives cannot be computed
between voxels (e.g., for rendering) or locally at some voxels (e.g., to save time
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and memory for the computation of isophote curvature on a sparse surface). The
low-pass pyramid technique [23, 33] uses down-sampling at coarser scales to reduce
the computational cost. Especially analysis at multiple or higher scales can benefit
from this approach.

However, the use of large-scale Gaussian derivatives can be avoided because
the Gaussian is a self-similar convolution operation. This means that a cascade
application of two Gaussian kernels with standard deviation σ1 and σ2, results in a
broader Gaussian function with σtot =

√

σ2
1 + σ2

2 (semi-group property). Therefore,
Lindeberg [97] proposed to first blur an image once with a large Gaussian G(σ1),
and then obtain all partial derivatives at lower cost with smaller Gaussian derivative
kernels g(σ2). In this chapter, we will compare the accuracy and computational cost
of several approaches to obtain these derivatives.

Figure 3.1 shows four ways to obtain a Gaussian derivative. One way is to
convolve an image in one pass with a truncated Gaussian derivative for each partial
derivative. The second way is the approach of Lindeberg [97] that first blurs an image
once and then obtains all the partial derivatives with small truncated Gaussian
derivative kernels. Due to truncation, the Gaussian is not continuous and smooth
anymore, although the error of this exponential function rapidly approaches zero.
In the third way, which is similar to the second way, the small Gaussian derivative
is replaced by a B-spline derivative [23, 161, 160]. The higher-order B-spline β
converges to a Gaussian as a consequence of the central-limit theorem. An advantage
of the B-spline of order n is that it is a compact kernel that guarantees Cn−1

continuity. The fourth way to compute the Gaussian derivatives makes a separation
between blurring and differentiation. After blurring the image – an operation that
can benefit from the mentioned optimizations – the derivative is computed without
blurring.

Many operators have been proposed to compute the derivative in an image (e.g.,
the Roberts, Prewitt and Sobel operators [1, 112, 146]). However, they do not
compute the derivative without adding extra blur and they are very inaccurate.

The unblurred derivative of an image can be computed as a convolution with
the derivative of an interpolation function φ (4th way in Figure 3.1). The sinc-
interpolator is considered to be the perfect interpolator, because it can reconstruct
band-limited signals from the sampled data without an error. However, in practice,
the sinc-function cannot be used as interpolator because it requires an infinite kernel
size and truncation leads to severe artifacts [105]. A quantitative comparison of
several interpolation methods can be found in papers by Meijering et al. [109, 110],
Jacobs et al. [73] and Lehmann et al. [91]. The comparisons show that for each
of the methods for differentiation and interpolation there is a trade-off between
accuracy, continuity and kernel size, and that B-spline interpolation [150, 152, 153]
appears to be superior in many cases. Therefore, we used the derivative of a B-spline
interpolator to implement the unblurred derivative (4th way in Figure 3.1).

In the last decades, we have seen a growing competition between Gaussian-
and spline-based image-analysis techniques, which are both frequently used. To
our knowledge, a comparison between the truncated Gaussian and the approaches
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Figure 3.1: Four ways to obtain the blurred derivative of an image. The
first way performs one convolution with the derivative of a Gaussian g(σtot).
The second and third way convolve the image with a Gaussian G(σ1) for
most of the blurring and then with a smaller derivative of a Gaussian g(σ2)
or a B-spline derivative β; where σtot =

√

σ2
1 + σ2

2. The fourth way con-
volves the image with a Gaussian G(σtot) for all the blurring and then with
the derivative of an interpolator φ for differentiation.

based on B-spline approximation and B-spline interpolation (Figure 3.1) for a fast
and accurate implementation of Gaussian derivatives has not been published before.
In this chapter, we will compare the accuracy (Section 3.2) and computational cost
(Section 3.3) of the four strategies.

3.2 Accuracy of Methods

In this section, the true Gaussian derivatives are compared to their approximations
to analyze the accuracy of these approximations on one-dimensional data. Thanks
to the separability of the Gaussian G, this analysis is also valid for higher dimensions.

G(x, σ) =
1

σ
√

2π
e−

x2

2σ2 (3.2)

The error ǫ of an approximation ỹ of the true continuous signal y is computed as
the normalized RMS-value, which is directly related to the energy.

ǫ =

√

∫∞
−∞ |ỹ(x) − y(x, σ)|2 dx
√

∫∞
−∞ |y(x, σ)|2dx

(3.3)

For the normalized RMS-value, the error of the impulse response of a Gaussian-
derivative kernel that is truncated at x = aσ is independent of the standard devia-
tion. For example, the normalized RMS-error of a Gaussian is ǫ =

√

1 − erf(a), and

for a first-order Gaussian derivative: ǫ =
√

1 + 2 a e−a2/
√

π − erf(a).
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3.2.1 Aliasing and Truncation of the Gaussian

Small-scale Gaussian operators may suffer from sampling artifacts. According to
the Nyquist theorem, the sampling frequency must be at least twice the bandwidth
in order to avoid overlap of the copied bands (aliasing) [64]. If the copies do not
overlap, then perfect reconstruction is possible. For a small amount of blurring (e.g.,
σ < 1 pixel) limitation of the bandwidth of the reconstructed signal is not guaranteed
and serious aliasing artifacts may be the result. Band-limitation is enforced by a
convolution with a sinc function [10]. If high-frequencies are (almost) absent in
the stop band, then aliasing is negligible and the signals with and without band-
limitation (g∗φsinc(x) and g(x) respectively) are (approximately) equal. Figure 3.2a
shows that sampling causes serious aliasing artifacts for a small-scale zeroth-order
derivative of a Gaussian, and it shows that a first- or second- order derivative requires
even more blurring for the same reduction of the aliasing effects. To avoid aliasing
artifacts, second-order derivatives are often computed at σ = 2.0 pixels. Therefore,
we will mainly focus further analysis on this amount of blurring (σtot = 2.0 px).

For a fixed kernel size N , small scales will lead to aliasing artifacts but large
scales will lead to truncation artifacts. The optimal trade-off between aliasing and
truncation is selected by minimizing the difference between a band-limited Gaussian
(g ∗ φsinc) and a truncated Gaussian. Figure 3.2b shows that the error is minimal
at σ ≈ (N/6.25)0.50 ≈

√

N/6. If the truncated kernel is applied to a blurred input
signal – e.g. blurred by the PSF or pre-filtering with σ1 – so that the total blurring is
σtot =

√

σ2
1 + σ2

2 = 2.0 px, the optimal scale can even be reduced to approximately

σ2 ≈ (N/9.9)0.56 ≈
√

N/10, as shown in Figure 3.2c. The scale with a minimal
error is used to implement the second approach in Figure 3.1.

0.5 1 1.5 2

-8

-6

-4

-2

0
1

2

log(ǫ)
σ

4 5 6 7 8 9 10

-6
-5
-4
-3
-2
-1 4

8

12

16

log(ǫ)
N/σ2.0

7 8 9 10 11 12 13 14

-8

-6

-4

-2 4

8

12

16

log(ǫ)
N/σ1.8

(a) (b) (c)

Figure 3.2: (a) The normalized RMS-error ǫ due to aliasing for a zeroth-,
first- and second-order derivative of a Gaussian at σ = [0.5 − 2.0]. (b)
The difference between a band-limited Gaussian and a truncated Gaussian
is minimal at σ = (N/6.25)0.50, where the kernel size N = [4, 8, 12, 16].
(c) On a blurred signal, the normalized RMS-error is minimal at σ =
(N/9.9)0.56.
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3.2.2 B-Spline Approximation

The B-spline approximator is used to implement the third approach in Figure 3.1.
A high-order B-spline [160], or a cascade application of kernels [161, 23], will con-
verge to a Gaussian (central-limit theorem). The B-spline approximator βn(x) of
order n is:

βn(x) :=
1

n!

n+1
∑

i=0

(

n + 1

i

)

(−1)i µn

(

x − i +
n + 1

2

)

(3.4)

where µn(x) is xn for x ≥ 0 and zero for other values, and where
(

n+1
i

)

is the
binomial coefficient. The derivatives of the B-spline can be obtained analytically in
a recursive fashion based on the following property:

∂βn(x)

∂x
= βn−1

(

x +
1

2

)

− βn−1

(

x − 1

2

)

(3.5)

The z-transform [76] is commonly used in digital signal processing to represent filters
in the complex frequency domain. For example, for cubic (n = 3) spline filtering,
the z-transform is:

B3(z) =
1 z−1 + 4 z0 + 1 z1

6
⇔ yi =

1

6
xi−1 +

4

6
xi +

1

6
xi+1 (3.6)

The output yi of this digital filter only depends on the inputs x, which makes it a
finite impulse response (FIR) filter.

The derivative of a B-spline approximator βn(x) can be used as a small-scale
Gaussian derivative. Figure 3.3a shows the normalized RMS-error between a Gaus-
sian and a B-spline is minimal for the standard deviation σ =

√

N/12 [151]. Al-
though the B-spline converges to a Gaussian for higher orders, the error is not
reduced for higher orders (Figure 3.3b) when it is applied to a blurred signal (to ob-
tain σtot = 2.0 px). The scale with a minimal error is used to analyze the accuracy
of this approach.

3.2.3 B-Spline Interpolation

The B-spline interpolator is used to implement the fourth approach in Figure 3.1.
In order to perform B-spline interpolation of the blurred image H with the approx-
imating B-spline kernels (βn in Eq. 3.4), an inverse operation Bn

inv is required.

h̃ = H ∗ Bn
inv ∗ βn (3.7)

The inverse operator can easily be calculated in the z-domain as Bn(z)−1. To obtain
a stable filter, this inverse operator can be decomposed by its negative roots with
magnitude smaller than one [152, 153]. For example, the root of the inverse of a
cubic B-spline (Equations 3.6 and 3.8) is λ = −2 +

√
3.

B3(z)
−1

=
1

B3(z)
=

6

z1 + 4 + z−1
= −6λ

1

(1 − λz−1)

1

(1 − λz1)
(3.8)
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Figure 3.3: The normalized RMS-error between a Gaussian and a B-spline
approximator is minimal at σ =

√

N/12, for kernel size N = 4, 8, 12, 16.
(b) The same relation can be found on a blurred signal.

Multiplication of two parts in the z-domain is equivalent to a cascade convolution
with both parts in the spatial domain. The last part in Equation (3.8), with z1,
can be applied backward, so that it also becomes a z−1 operation. This results in a
stable and fast filter, which should be applied forward and backward:

1

1 − λz−1
⇔ yi = xi + λ yi−1 (3.9)

The output yi of this digital filter does not only depend on the input xi, but also
on the output yi−1, which makes it a recursive – or infinite impulse response (IIR)
– filter. The recursive inverse operation makes the B-spline interpolator compu-
tationally more expensive than the B-spline approximator at equal order n. For
more information about B-Spline interpolation, we refer to the work of Unser et
al. [152, 153, 150].

3.2.4 Comparison of Accuracy

An experiment was performed to estimate the normalized RMS-error between the
impulse response of a continuous Gaussian derivative (σtot = 2.0 px to avoid aliasing)
and each of the four approaches (Figure 3.1). Measuring for each approach the error
of the impulse response gives an indication of the accuracy in general, because a
discrete image can be modelled as a sum of impulses with varying amplitude. The
first approach, which is based on a one-pass truncated Gaussian of σ = 2.0 pixels,
used an unblurred impulse as input signal. The second and third approach, which
are based on a small-scale truncated Gaussian and on a B-spline approximator, used
a sampled Gaussian as an input signal to obtain a total blurring of σ = 2.0 pixels.
The fourth approach, which is based on B-spline interpolation, used a sampled
Gaussian of σ = 2.0 pixels as input signal.

Truncation of the one-pass Gaussian is often performed at 3σ or 4σ, which cor-
responds to a kernel size of 12 or 16 pixels for σ = 2.0 pixels. Figure 3.4 shows
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that for these kernel sizes the normalized RMS-error in the second-order derivative
is 5.0 ·10−2 or 2.4 ·10−3 respectively. The results show that B-spline approximation
requires much smaller kernels to obtain the same accuracy as the truncated Gaussian
(4 or 6 px respectively). The figure also shows that B-spline interpolation and cas-
cade application of small-scale Gaussians may be interesting if higher accuracies are
required, but for most applications the approach based on B-spline approximation
will be sufficiently accurate.
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Figure 3.4: The normalized RMS-error ǫ in estimating the zeroth-, first-
and second-order Gaussian derivative (σ = 2.0px) for the four approaches
based on the one-pass truncated Gaussian (g(σtot), dashed), the cascade
application Gaussians (g(σ2), dashed), the B-spline approximator (β, solid)
and the B-spline interpolator (φ, solid). The first approach requires much
larger kernels than the others to obtain the same accuracy.

3.3 Computational Cost

Our comparison of computational cost will focus on the calculation of first- and
second-order derivatives at a low scale (σ = 2.0 px) in three-dimensional (3D)
data, because these derivatives are frequently used in the medical field. For these
parameters, we will show that – in most cases – it is beneficial to use the B-spline
approximator. For larger scales, more derivatives or higher-dimensionality it will be
even more beneficial to make a separation between the blurring and differentiation.
Therefore, our analysis can easily be extended to the computation of an arbitrary
number of derivatives at higher scales on multi-dimensional data.

Figure 3.4 showed that the truncated Gaussian requires 12 or 16 pixels to obtain
the same accuracy as the B-spline approximator of 4 or 6 pixels respectively. For
these sizes the B-spline approximator (B-spl.A) is more accurate than the cascaded
Gaussians (G(

√

N/10)) and computationally cheaper than the B-spline interpolator
(B-spl.I ) because no inverse is required (Eq. 3.7). Therefore, we will focus on the
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comparison of the B-spline approximator with the truncated Gaussian. Despite its
small kernel, the B-spline is not always cheaper than the truncated Gaussian because
it requires preprocessing to obtain the same amount of blur. The computational cost
of this global blurring step can be reduced – especially for large scales – by using a
recursive implementation [158].

The estimation of the computational cost C is based on the number of multi-
plications, which is equal to the kernel size. Three approaches are distinguished to
analyze the performance for different purposes (Table 3.1). In the first approach, all
volume-elements (voxels) are processed in a 3D volume. In the second, the deriva-
tives are computed at some voxel-locations, and in the third, interpolation and
differentiation is allowed at arbitrary (sub-voxel) locations in the volume. Finally,
our estimation of the computational cost is verified with an experiment.

Table 3.1: The computational cost C in a 3D volume of d derivatives
based on the truncated Gaussian (kernel size k) and B-spline approximation
(order n).

Blur All Voxels Some Voxels Some Points

Trunc. Gauss – 3 d (k + 1) d (k + 1)3 d (k)3

B-spline approx. 3 (k + 1) 3 d (n) d (n)3 d (n + 1)3

3.3.1 Cost of Differentiation on All Voxels

The computation of Gaussian derivatives on all voxels allows the use of a separable
implementation with discrete one-dimensional filters. The continuous B-spline of
order n with kernel size n + 1 is zero at the positions −(n + 1)/2 and (n + 1)/2.
Therefore, the number of non-zero elements in a discrete B-spline kernel is n. The
truncated Gaussian with kernel size k is not zero at its end points and therefore it
requires k + 1 elements in the discrete kernel to avoid the loss of accuracy.

For a ‘fast’ computation (n = 3, k = 12) of three first-order derivatives on all
voxels, the B-spline approximator is 1.8 times faster than the truncated Gaussian
despite the required preprocessing. For the nine first- and second-order derivatives,
the B-spline is 2.9 times faster. For a ‘more-accurate’ computation (n = 5, k = 16)
of three or nine derivatives, the B-spline approximator is 1.6 resp. 2.5 times faster
than the truncated Gaussian (horizontal lines in Figure 3.5).

3.3.2 Cost of Differentiation on Some Voxels

If only a small percentage p of the volume needs to be processed (e.g, to compute
shape descriptors on the surface of an object) – or if storage of multiple derivatives
of the whole image consumes too much memory – the non-separable implementation
may be more efficient to compute the derivatives than the separable implementation.
However, in 3D data, the cost of a non-separable local operation increases with a
power of three instead of a factor of three (Table 3.1).
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The non-separable implementation is more efficient than the separable for the
‘fast’ B-spline approximator (n = 3) if less than p = 33% of the volume is processed,
and for the ‘more-accurate’ (n = 5) if less than p = 12% is processed (Figure 3.5).

Figure 3.5 also shows that the B-spline implementation (n = 3, d = 3) is more
efficient than the truncated Gaussian if more than p = 0.6% of the voxels is processed
(d = 9 reduces the trade-off point to p = 0.2%). For example, the B-spline (n =
3, d = 9) is 8 times faster than the truncated Gaussian at p = 2.0%.

If we would have assumed that the blurring for the B-splines was incorporated in
the preprocessing, then the B-spline approximator would even have been 81 times
faster than the truncated Gaussian for each voxel.
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0.1 1 10 100

30

100

300

1000

p

C

0.1 1 10 100

30

100

300

1000

p

C

0.1 1 10 100

30

100

300

1000

p

C

0.1 1 10 100

30

100

300

1000

p

C

d = 3 d = 9 d = 3 d = 9

Figure 3.5: The curves show the computational cost C for processing a
percentage p of the voxels with a non-separable implementation in a 3D
volume with a truncated Gaussian (dashed) and the B-spline (solid) for d
derivatives. The horizontal lines show the cost of processing all voxels with
a separable implementation. The plots show that the B-spline is expected to
be more efficient if more than p = 0.6% of the data is processed.

3.3.3 Cost of Interpolation and Differentiation on Arbitrary
Points

To interpolate and differentiate at arbitrary (sub-voxel) points in the volume con-
tinuous kernels are needed and a separable implementation cannot be used. The
n-th order B-spline has a continuous kernel size of n + 1 (Table 3.1).

Figure 3.6 shows that if more than p = 0.8% of the data is processed the B-spline
is more efficient than the truncated Gaussian. For example, if nine derivatives are
computed at a number of points that equals p = 10% of the voxels, the B-spline
(n=3) is more than 16 times faster than the truncated Gaussian (k = 12).

3.3.4 Validation of Cost of Differentiation on Voxels

To validate our estimation of the computational cost, we measured the time that
was required to compute the nine first- and second-order derivatives on a 3D volume
of 512x512x498 voxels with a Pentium Xeon 3.2 GHz processor. In this experiment,
we compared the implementations based on the truncated Gaussian (k = 12) and
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Figure 3.6: The computational cost C for processing arbitrary points as
a percentage p of the voxels in a 3D volume with a truncated Gaussian
(dashed) and the B-spline (solid) for d derivatives. The plots show that the
B-spline is expected to be more efficient if more than p = 0.8% of the data
is processed.

the B-spline approximator (n = 3) as an example to show that our assumptions are
valid. The measured results in Figure 3.7 are in good agreement with our analysis.
The measurements show that the B-spline is more efficient if more than 0.3% of
the data is processed (estimated 0.2%). The B-spline appears to be 6 times faster
than the truncated Gaussian if 2% of the volume is processed with a non-separable
implementation (estimated 8 times faster). And if all voxels are processed with a
separable implementation the B-spline appears to be 2.1 times faster (estimated 2.9
times faster).
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Figure 3.7: The measured computation time t in seconds for processing
a percentage p of the voxels in a 3D volume (512x512x498 voxels) with a
truncated Gaussian (k = 12, dashed) and a B-spline approximator (n = 3,
solid) for 9 derivatives. The horizontal lines show the cost of processing all
voxels with a separable implementation. The plot shows that, for equivalent
accuracy, the B-spline is more efficient if more than p = 0.3% of the data
is processed.
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3.4 Conclusions

We analyzed the accuracy and computational cost of several common implemen-
tations for differentiation and interpolation of Gaussian blurred multi-dimensional
data. An efficient implementation is extremely important for all fields that use
Gaussian derivatives to analyze the structure in data. A comparison between an
implementation based on the truncated Gaussian and alternative approaches based
on B-spline approximation and B-spline interpolation has not been published before,
to the best of our knowledge.

If the vesselness or isophote curvature of a data set needs to be computed (requir-
ing six or nine derivatives respectively), the B-spline approach will perform much
faster than the approach based on truncated Gaussians. These operators are very
important in the field of medical imaging for shape analysis. Our analysis shows
that, for the computation of first- and second-order Gaussian derivatives on three-
dimensional data, the B-spline approximator is faster than the truncated Gaussian
at equal accuracy, provided that more than 1% of the data is processed. For exam-
ple, if 2% of a 3D volume is processed, B-spline approximation is more than 5 times
faster than the truncated Gaussian at equal accuracy. Our analysis can be extended
easily to an arbitrary number of derivatives on multi-dimensional data.

Higher accuracy will not always lead to better results. However, in many cases,
the same accuracy can be obtained at lower computational cost, as was shown in
this chapter. Another advantage of the B-spline of order n is that Cn−1 continuity
is guaranteed, whereas the truncated Gaussian is not even C0 continuous.
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Abstract – Conventional edge-detection methods suffer from the
dislocation of curved surfaces due to the PSF. We propose a new
method that uses the isophote curvature to circumvent this. It is
accurate for objects with locally constant curvature, even for small
objects (like blood vessels) and in the presence of noise.
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4.1 Introduction

Many clinical applications of medical imaging require that edges are accurately lo-
cated. An example is the diagnosis of a vascular disease, where the grading of
stenoses is an important factor in determining the treatment therapy [56]. However,
inherent to the acquisition step is a blurring effect, which can be modelled by the
convolution with a point-spread function (PSF). This blurring function causes con-
ventional edge-detection methods to inaccurately locate edges, leading to errors in
quantification and visualization.

The dislocation of curved edges due to the PSF was shown several times in
the literature. Vessel quantification measurements have shown that an adaptive
threshold causes an error in the diameter estimation of cylindrical structures [56,
125, 71]. Frangi et al. [56] and Krissian et al. [89] used a simplified model to
approximate the cross-section of a tube. Later, Krissian et al. [90] showed that the
radius estimation of tubes in CT images can be improved by modelling the PSF
correctly.

Many deconvolution methods have been proposed to undo the blurring caused
by the PSF, which include approximations of the inverse filter and iterative meth-
ods [79]. Most deconvolution methods are ill-posed and hence unstable and noise
enhancing, which deteriorates the result [98]. Regularization can be used to reduce
the sensitivity to noise, at the expense of a considerable increase in computational
cost for iterative methods [25].

We propose a new non-iterative edge-localization method that yields an exact
correspondence between the edge that is detected and the true surface of objects
in the real word. The locally measured isophote curvature is used to correct for
the dislocation of the curved surface due to Gaussian blurring, in 2D and 3D [14].
The analysis in this chapter and the proposed method are applicable where the
images show rather homogeneous objects and where the PSF can be approximated
by a Gaussian. Although the PSF is not completely isotropic and shift invariant
for computed tomography (CT) [41], this approximation can safely be made for CT
and several other medical acquisition modalities [113].

This chapter is organized as follows. In Section 4.2, existing methods for edge
detection are summarized. In Section 4.3, the dislocation of curved edges is analyzed
mathematically. An approximation for curved surfaces in 3D is made in Section 4.4.
Section 4.5 is about the implementation of the proposed method. Finally, in Sec-
tion 4.6, experimental results are discussed.

4.2 Existing Edge-Detection Methods

Object boundaries are usually detected with first- and second-order derivatives.
The gradient, i.e. a vector of first-order derivatives, may indicate the presence of
an edge and the maximum of the gradient magnitude is commonly used to locate
edges. The zero-crossings of the second-order derivative in the gradient direction
(Lww) are located where the gradient magnitude is maximal [24]. For simplicity,
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the zero crossings of the Laplacian (∆L), which is the trace of the Hessian matrix,
can also be used to locate edges [104]. The Laplacian is easy to calculate, but the
zero crossings are not located where the gradient is maximal [115, 157]. However,
our goal is not to find the position of maximal gradient in the blurred image, but to
find the location of the edge before blurring. For example, if the edge of a circular
object with radius R is not defined as the position where the gradient is maximal
after blurring, but as the location before blurring, the zero-crossing positions r0 of
both methods (∆L and Lww) give a dislocation of the curved edges. The disloca-
tion (r0 − R) of these methods goes in opposite directions (Figure 4.1). ∆L gives
an overestimation and Lww gives an underestimation of the radius. The dislocation
is caused by the isophote curvature κ in relation with the standard deviation σ of
the Gaussian blurring. Since both ∆L and Lww appear to be dislocated in oppo-
site directions, Van Vliet and Verbeek [154] proposed the PLUS operator, which
sums ∆L with Lww. This operator reduces the dislocation of curved edges. Men-
donça [111] recently proposed a two-step method that fits a curve through the zero
crossings of Lww and corrects for the bias in the localization by shifting the curve
according to the dislocation that is known if the curvature is locally constant. We
will derive a filtering method that corrects for the dislocation and does not require
curve extraction. The methods are analyzed in the next section.

0.1 0.2
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0.02
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(r0−R)/R

∆L

PLUS

Lww

Figure 4.1: The zero-crossings r0 of the Laplacian (∆L) and the second-
order derivative in the gradient direction (Lww) are dislocated in the oppo-
site direction. Therefore, the PLUS operator (∆L + Lww) was proposed by
Van Vliet and Verbeek [154].

4.3 Analysis of Curved Edges and Surfaces

In this section, the dislocation of edge detectors is mathematically analyzed and a
new operator is derived. The zero crossings of this operator are located exactly at
surfaces with locally constant curvature. First, the notation, assumptions and prob-
lem definition are mentioned. The filter is derived for 2D and 3D in the Subsections
4.3.4 and 4.3.5 respectively. Finally, at the end of this section, conclusions will be
drawn.
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4.3.1 Background and Notation

Partial derivatives will be denoted by subscripts, as in Mx for ∂M
∂x or Lyy for ∂2L

∂y2 .

Derivatives are calculated in a locally fixed coordinate system (gauge coordi-
nates). The vector w is defined in the direction of the gradient and vector v (and
u, in 3D) are perpendicular to w. Thus, Lww is the second-order derivative in the
gradient direction. The first order derivative in the gradient direction (Lw) is equal
to the gradient magnitude and the first-order derivative tangential to the iso-surface
(Lv) is equal to zero.

The isophote curvature in 2D is denoted by κ. In 3D, it consists of two values
(the principal curvatures: κ1 and κ2, sorted by magnitude: |κ1| > |κ2|). The vectors
corresponding to these values are perpendicular to the gradient and perpendicular
to each other. The sum of principal curvatures will be denoted as κΣ (= κ1 + κ2).

4.3.2 Assumptions

Three assumptions are made during the derivation.
First, regions are assumed to be rather homogeneous. Therefore, edges can be

modelled by the Heaviside unit step U(x).
Second, the curvature is assumed to be locally constant. Locally constant cur-

vature means that the curvature is constant inside the footprint of the blurring
function. The unblurred objects M = U(R − r) with constant curvature will be a
disk (interior of circle) in 2D, a ball (solid sphere) and a cylinder in 3D with radial
coordinate r (distance to the origin) and radius R.

Third, the shape of the PSF, which causes the blurring, is assumed to be Gaus-
sian:

G =
1

(
√

2πσ2)N
exp

(

− ~r.~r

2σ2

)

(4.1)

where σ is the standard deviation, N is the number of dimensions and (~r.~r) is the
dot product of the position vector with itself. In cartesian coordinates the position
vector ~r = [x, y, z]T .

The blurred object L is defined as an N-dimensional convolution: L = M ∗ G.

4.3.3 Problem Definition

The most commonly used edge detectors are the detectors of Canny [24] and Marr-
Hildreth [104] based on Lww and ∆L, respectively. Figure 4.1 shows that both
dislocate the edges in opposite directions. The PLUS operator (Lww + ∆L) results
in an edge detector with a better localization. However, if σκ is larger than 0.2, the
performance of the PLUS operator also diminishes (as shown in Section 4.6). The
equation of the PLUS operator in 2D can be written as:

PLUS = Lww + ∆L = 2

(

Lww − 1

2
κLw

)

(4.2)
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We want to correct for the dislocation of curved surfaces. Therefore, we use the
curvature term in (4.2) to obtain a better localization. This can be achieved by
solving:

Lww − α(σ κ) κLw = 0 (4.3)

for the function α(σ κ), where α(σ κ) is expected to be approximately 0.5 for small
values of σ κ (like the PLUS operator). The product of the standard deviation of
the Gaussian blurring σ and the local isophote curvature κ is taken as the parameter
of this function α(σ κ), because it is a dimensionless quantity and therefore scale
invariant.

4.3.4 Curved Edges in 2D

The simplest object with (locally) constant curvature in 2D, is a disk M = U(R−r).
The position vector, expressed in polar coordinates, is: ~r = [r cos(φ), r sin(φ)]T .
The derivatives of M are:

Mx = −cos(φ)δ(R − r)
My = −sin(φ)δ(R − r)

Mw =
√

M2
x + M2

y = δ(R − r)

Mww =
M2

xMxx+2MxMxyMy+M2
yMyy

M2
x+M2

y
= δ′(R − r)

∆M = Mxx + Myy = δ′(R − r) − δ(R−r)
r

(4.4)

The gradient magnitude of the blurred object Lw can be obtained by the convolution
of Mw with a Gaussian G. The final equations are rotation invariant. Therefore, we
may choose Ly = 0 and Lw = |Lx| without loss of generality.

Lx = Mx ∗ G
=
∫∞
0

∫ 2π

0
ρMx(~ρ)G(~r − ~ρ)dΦ dρ

=
∫∞
0

∫ 2π

0
−ρ cos(Φ) δ(R − ρ)

(

1
2πσ2 e−

ρ2+r2
−2r ρ cos(φ−Φ)

2σ2

)

dΦ dρ

= −R 1
2πσ2 e−

R2+r2

2σ2

∫ 2π

0
cos(Φ)e

r R cos(φ−Φ)

σ2 dΦ

Lw = R
σ2 e−

R2+r2

2σ2 I1(
rR
σ2 )

(4.5)

where In(·) is the modified Bessel function of the first kind. Lww can be derived
from Lw. These results are in agreement with the result of Mendonça [111]. As
shown in (4.4), ∆L can be calculated from Lw and Lww.

Lww = e−
r2+R2

2σ2

(

−R2

σ4 I0

(

rR
σ2

)

+

( r R
σ4 + R

rσ2 ) I1

(

rR
σ2

))

∆L = e−
r2+R2

2σ2

(

−R2

σ4 I0

(

rR
σ2

)

+ r R
σ4 I1

(

rR
σ2

)

)

(4.6)
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The curvature κ can be obtained from ∆L = Lww +Lvv = Lww −κLw. Notice that
κ = 1/r. Finally, an edge detector with zero crossings at position r0 = R can be
defined: Lww − α κLw = 0; and this equation can be solved for α.

α = 1 + r2

σ2 − r R
σ2

I0( rR
σ2 )

I1( rR
σ2 )

= 1 + R2

σ2 − R2

σ2

I0

(

R2

σ2

)

I1

(

R2

σ2

) (at r = R)
(4.7)

Curvature is inversely proportional to the radius. This can be used to define α as a
function of σ κ:

α(σ κ) = 1 +

(

1

σκ

)2


1 −
I0

(

(

1
σκ

)2
)

I1

(

(

1
σκ

)2
)



 (4.8)

This equation is shown in Figure 4.2. If σκ approaches zero, then α = 0.5, and
our operator becomes the PLUS operator. For σ κ > 0.5, the entire object is inside
the center part of the Gaussian PSF. The α in (4.8) avoids dislocation of the zero
crossings for an object with locally constant curvature in 2D. So, the proposed
method can locate the edge of a disk without a bias.
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Figure 4.2: Function α in (4.8) allows the localization of edges with locally
constant curvature in 2D without a bias.

4.3.5 Curved Surfaces in 3D

The curvature term of the PLUS operator in 3D depends on the sum of curvatures.

PLUS = 2
(

Lww − 1
2 (κ1 + κ2)Lw

)

(4.9)

Therefore, the κ in the 2D problem definition is replaced by the sum of curvatures
κΣ in 3D:

Lww − α κΣ Lw = 0 (r = R) (4.10)

Simple objects in 3D with constant curvature and different ratios of κ2/κ1 are balls
(κ2/κ1 = 1) and cylinders (κ2/κ1 = 0). Both objects are described below.
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Ball

The derivation for a ball is similar to that of a disk. The position vector, expressed in
spherical coordinates is: [r cos(θ)sin(φ), r sin(θ)sin(φ), r cos(φ)]T . The derivatives
of M are:

Mx = −cos(θ)sin(φ)δ(R − r)
My = −sin(θ)sin(φ)δ(R − r)
Mz = −cos(φ)δ(R − r)

Mw =
√

M2
x + M2

y + M2
z = δ(R − r)

Mww = (M2
xMxx + M2

y Myy + M2
z Mzz+

2(Mx(MxyMy+MxzMz)+MyMyzMz))/
(M2

x + M2
y + M2

z ) = δ′(R − r)

∆M = Mxx+Myy+Mzz = δ′(R − r) − δ(R−r)
r

(4.11)

The gradient magnitude of the blurred object Lw can be calculated by a convolution.
We choose Lx = 0, Ly = 0 and Lw = |Lz| without loss of generality.

Lz =
∫∞
0

∫ π

0

∫ 2π

0
ρ2sin(Φ)Mz G(~r − ~ρ) dΘdΦdρ

= −e−
r2+R2

2 σ2
R
∫ π
0

sin(Φ) cos(Φ) e
r R
σ2 cos(Φ)

dΦ√
2 π σ3

Lw = e−
r2+R2

2 σ2
(r R+σ2)e

−
r R
σ2 +(r R−σ2) e

r R
σ2

√
2 π r2 σ

(4.12)

Lww can be derived from Lw, and ∆L from these two.

Lww = e
−

(r+R)2

2σ2√
2π r3 σ3

(

(r3R + 2rRσ2)
(

1 + e
2rR
σ2

)

+

(2σ4 + r2(R2 + σ2))
(

1 − e
2rR
σ2

))

∆L = e−
(r+R)2

2σ2

rR

(

1+e
2rR
σ2

)

+(R2+σ2)

(

1−e
2rR
σ2

)

√
2π r σ3

(4.13)

The sum of curvatures κΣ can be obtained with ∆L = Lww − κΣ Lw. Notice that
the sum of curvatures on a ball is κΣ = 2/r, because each of the two principal com-
ponents of isophote curvature is 1/r. Finally, an edge detector with zero crossings
at position r = R can be defined: Lww − α κΣ Lw = 0; and this equation can be
solved for α, resulting in:

α =
2(R

σ )
4
+2

(

1−e
2(R

σ )
2
)

+(R
σ )

2

(

3+e
2(R

σ )
2
)

2

(

1−e
2(R

σ )
2

+(R
σ )

2

(

1+e
2(R

σ )
2
)) (4.14)

Replacing R by 2/κΣ will define α to be a function of the product of κΣ and σ.

α(σ κΣ) =

2
(

2
σ κΣ

)4
+2



1−e
2

(

2
σ κΣ

)2


+
(

2
σ κΣ

)2



3+e
2

(

2
σ κΣ

)2




2



1−e
2

(

2
σ κΣ

)2

+
(
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(4.15)
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This equation is shown in Figure 4.3. It can be used to locate the edge of a ball
without a bias.
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Figure 4.3: Function α in (4.15) can be used to locate the edge of a ball
in 3D without a bias.

Cylinder

For a cylinder, the 3D Gaussian can be decomposed in one component in the di-
rection of the central axis of a cylinder (z-direction) and two components in the
cross-sectional plane. Because all derivatives in the z-direction are zero, the solu-
tion for the cylinder is identical to that of the disk after replacing the 2D κ by
the 3D κΣ in (4.8). This function α is used to accurately quantify the diameter of
tubular structures (such as blood vessels).

4.3.6 Conclusion of the Analysis

A method for unbiased edge localization was derived for blurred disks, balls and
cylinders. For small values of σ κ, function α approaches 0.5 and our operator
approximates the PLUS operator, as expected. Increasing σ κ yields different values
for α. Instead of extracting a contour in 2D at the zero crossings of Lww and
estimating the required dislocation, as Mendonça et al. proposed [111], we designed
an edge-detector with its zero-crossings at the correct location that can also be
applied in 3D.

The analysis helps us to obtain a better understanding of the small-vessel radius-
estimation results of others [56, 125, 71, 89], and it yields more accurate quantifica-
tion. The accuracy of the new edge detector will be verified in Section 4.6.

The function α(σ κΣ), which avoids dislocation, is not invariant to the ratio
between the principal isophote curvatures. α is not the same for a cylinder (κ2/κ1 =
0) and a ball (κ2/κ1 = 1). It is different for small values of σκ (e.g., for σκ smaller
than 0.2). Therefore, a more general approximation for curved surfaces is presented
in the next section.
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4.4 Approximation for Curved Surfaces in 3D

Because α is not invariant to the ratio κ2/κ1, the sum of curvature components
does not give enough information to correct for the dislocation of the curved sur-
face. Therefore, not only the sum of curvature components, but also the ratio
between the curvature components is used to correct for the dislocation. These two
dimensionless parameters allow the creation of a two-dimensional look-up table in
a limited domain, with σ κΣ (that was used in the previous section) on one of the
axis. An approximation of α as a function of σκΣ and κ2/κ1 is:

α(σ κΣ, κ2

κ1
) ≈ −1 +

κ2
2

2 κ2
1

+
(

3
2 − κ2

2

2 κ2
1

)

e

(σ κΣ)2

4

(

6.7−7.2 · 1.0374
( 5

2
−

4 κ2
κ1

)
2
)

(4.16)

Equation (4.16) was obtained with a toroidal object (donut) – as a model of a
curved vessel – stored in a discrete data set. For several values of the two radii of
the toroid, we computed the corresponding value of α that produced the unbiased
edge location, and a function was fitted numerically through the values of α.

4.5 Implementation

In this section, the steps needed for implementation of the proposed method are
described.

4.5.1 Implementation in 2D

Steps for implementation in 2D are listed below.
Separable Gaussian derivatives are used to calculate the first- and second-order

derivatives of the image [114]. The blurring of the PSF and the Gaussian operators

can be taken into account using: σ =
√

σ2
psf + σ2

op.

The derivatives are used to calculate Lw, Lww and ∆L, using (4.4). After that,
κ can be calculated using κ = (Lww − ∆L)/Lw. In edge regions, Lw will be larger
than zero.

The zero crossings of the filter Lww −α(σ κ)κLw must be detected to show the
edges. To speed up the calculations, a 1D look-up table (LUT) can be used for α,
indexed by the product of κ and σ (Figure 4.2).

4.5.2 Implementation in 3D

Steps for implementation in 3D are listed below.
Gaussian derivatives are calculated. The total blurring is made isotropic in x-,

y- and z-direction using σ =
√

σ2
psf + σ2

op.
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The derivatives are used to calculate Lw, Lww and ∆L using (4.11). After that,
κΣ can be calculated using κΣ = (Lww − ∆L)/Lw.

The zero crossings of the filter Lww − α(κΣ σ)κΣ Lw must be detected to find
the location of the surfaces.

• To detect spherical structures use (4.15) to fill a 1D LUT, indexed by the
product of κΣ and σ.

• To detect cylindrical structures (like vessels) use (4.8) to fill a 1D LUT, indexed
by the product of κΣ and σ.

• If the ratio κ2/κ1 is not approximately 1 or 0, (4.16) can be used to fill a 2D
LUT.

The two principal components of the isophote curvature (κ1 and κ2), which can
be used if the 3D object does not resemble a cylinder or a sphere, are derived from
the equations in the article by Van Vliet et al. [155], which result in:

κG = L−4
w [L2

x(LyyLzz − L2
yz)+

L2
y(LxxLzz − L2

xz) + L2
z(LxxLyy − L2

xy)+
2(LyLz(LxzLxy − LxxLyz) + LxLz(LyzLxy

−LyyLxz) + LxLy(LxzLyz − LzzLxy))]
κH = κΣ/2

κ1= κH +
√

κ2
H − κG

κ2= κH −
√

κ2
H − κG

(4.17)

The two principal components should be sorted by magnitude. Therefore, they must
be swapped if κH is smaller than zero.

4.6 Experiments and Results

The proposed method was tested on synthetic images and on CT data to verify
the accuracy and robustness of the algorithm. Synthetic images were obtained by
first blurring a continuous object, then sampling and finally adding white Gaussian
noise. The CT data was obtained with a Philips Mx8000 IDT 16-slice CT scanner.

After creation of the images, the method proposed in this chapter was used
to locate the edges. The zero crossings were used to indicate the edge at sub-
voxel accuracy. We used continuous Gaussian derivatives to interpolate the blurred
derivatives of the image (as shown by Van den Boomgaard [10] and Ter Haar Romeny
[64]).

In the first subsection, an experiment is described to validate the theory and to
make a comparison with other methods. In the second subsection, results of the
edge localization of small circular objects are shown to study the robustness for
sampling. In the third subsection the sensitivity of the algorithm in the presence of
noise is studied. In the fourth, the behavior of the method on an image with varying
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curvature is shown. In the fifth, our approximation for objects in 3D that are not
spherical or cylindrical is verified. The sixth subsection shows that the assumptions
are valid for CT data, using quantitative measurements of a phantom. And the last
subsection shows that the method can be applied to the CT data of a real patient.

4.6.1 Localization Accuracy

An experiment was performed with a disk in a digitized 2D image to compare the
location errors of various methods (Figure 4.4). Equation (4.6) gives the theoretical
dislocation. It can be seen that experimentally obtained results (dots) match the
theory (curves). The dislocation of the proposed method is negligable compared to
the other methods.
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-0.2

-0.1
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(r0−R)/R

∆L PLUS

Lww

iCurv

Figure 4.4: Experimental (dots) and theoretical (curves) relative disloca-
tion of Lww, PLUS, ∆L and the proposed method ( iCurv). The dislocation
of the proposed method is very small compared to the other methods.

4.6.2 Sampled Image of Small Circular Object

Even for small disks, e.g., with the radius R = 2px (pixels), the method is able
to locate edges with a relative dislocation |r0 − R|/R less than 10−8 as shown in
Figure 4.5. This figure has been obtained with σpsf = 2px and σop = 2px. It
allows a comparison with the results of Verbeek et al. [154]. A relative dislocation
of 1 means that the radius is estimated twice as large as the actual radius. The
dislocation of the proposed method is not exactly zero due to the limited working
precision. The figure shows that the relative dislocation of the proposed method is
much more accurate than ∆L, Lww and the PLUS operator. The relative dislocation
is also much smaller than the generalized Radon transform [99].

4.6.3 Suppression of Noise

In order to test the robustness of the edge detector in the presence of noise, white
Gaussian noise was added to the image of a disk (Figure 4.6).

The second-order Gaussian-derivative kernels are analyzed to understand the
relation between noise and dislocation, before the results of the experiment are
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Figure 4.5: Relative location error for disks in 2D with radius R from 2 to
10 pixels for σ = 2.8. Results of the experiment (dots) and theory (curves)
are shown. The dislocation of the proposed method ( iCurv) is much smaller
than other methods.

Input Output Threshold

Figure 4.6: Example of a noisy 2D image of a disk with radius R = 6
pixels and SNRi = 15.6 dB. Input, output of the proposed method and
thresholded output are shown from left to right. The bottom row reflects a
cross section through the center of the image of the top row. The output
suppresses noise and the zero crossing is located with a small error.

discussed.
The signal-to-noise ratio (SNR) in decibel is defined as:

SNR[dB] = 20 log10

(

µs

σn

)

(4.18)

where µs is the mean signal amplitude and σn is the standard deviation of the noise.
The relation between the standard deviation of the noise before (σni) and after (σno)
Gaussian filtering, for the D-order Gaussian derivative with N dimensions, is [67]:

(

σno

σni

)2

=

∫ ∞

−∞

(

dDG
dxD

)2

d~x (4.19)
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This integral can be solved:

(

σno

σni

)2

=
((2D)!)/(D! 2D)

2N+D πN/2 σN+2D
op

(4.20)

For a second-order Gaussian derivative kernel convolved with a step-edge, the
slope at the zero-crossing is d2G/dx2

∣

∣

x=0
. The first-order approximation for the

relation between σno and the standard deviation of the dislocation σ(r0−R) is given
by this slope, as shown in Figure 4.7.

σno

σ(r0−R)
=

d2G
dx2

∣

∣

∣

∣

x=0

=
1√

2πσ3
op

⇒ (4.21)

σ(r0−R) =
√

2π σ3
op σno (4.22)

To find the relation between noise at the input and the dislocation, σno must be
eliminated with (4.20).
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Figure 4.7: A first-order approximation for the relation between the stan-
dard deviation of the noise σno and of the dislocation σ(r0−R) is slope at
the zero-crossing.

The relative dislocation (r0 − R)/R as a function of the relative filter size σκ
for various SNRi’s is shown in Figure 4.8. The results are based on five experi-
ments. The relative dislocation as a function of the SNRi for various σop is shown
in Figure 4.9. Both figures show a close correspondence between theoretical and
experimental results. The other methods (Lww, ∆L and PLUS ) let the systematic
error raise for increasing scale. The proposed method is independent of scale in
two-dimensional images. In three-dimensional images, the stochastic error is even
lower, as shown by (4.20) and (4.22). The figures show that the systematic error is
completely removed by the proposed method.

4.6.4 Slowly Varying Curvature

In this experiment, the curvature was not constant under the footprint of the Gaus-
sian, but slowly varying. The edge-detection methods have been applied to an image
with a filled ellipse (Figure 4.10), which was blurred with σ = 5px at a ten-times



54 Correction for the Dislocation of Curved Edges

0.2 0.4 0.6 0.8 1.

0.0001

0.001

0.01

0.1
∆L

PLUS

iCurv

σκ
|r0−R|/R

0.2 0.4 0.6 0.8 1.

0.0001

0.001

0.01

0.1
∆L

PLUS

iCurv

σκ
|r0−R|/R

0.2 0.4 0.6 0.8 1.

0.0001

0.001

0.01

0.1
∆L

PLUS

iCurv

σκ
|r0−R|/R

0.2 0.4 0.6 0.8 1.

0.0001

0.001

0.01

0.1
∆L

PLUS

iCurv

σκ
|r0−R|/R

Figure 4.8: Relative dislocation for a 2D image of a disk with R = 25.5 px
as a function of σκ for various SNRi = {4, 20, 40, 100} dB. Theory (grey),
mean relative dislocation (black) and the sum of mean and standard devia-
tion of the relative dislocation (black, dashed) are indicated for ∆L, PLUS
and iCurv.
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Figure 4.9: Relative dislocation for a 2D image of a disk with R = 25.5 px
as a function of SNRi in decibel for various σop = {2, 10, 20} px. Theory
(grey), mean relative dislocation (black) and the sum of mean and standard
deviation of the relative dislocation (black, dashed) are indicated for ∆L,
PLUS and the proposed method ( iCurv).



4.6 Experiments and Results 55

1.5 2 2.5 3 4 5 6

.001

.01

.1

1

∆L
Lww

PLUS
Mend
iCurv

|r0−R|
σ

1.5 2 2.5 3 4 5 6

.001

.01

.1

1

∆L
Lww

PLUS

Mend
iCurv

|r0−R|
σ

1/κ ∈ [7, 50] px 1/κ ∈ [7, 9] px 1/κ ∈ [7, 50] px

Figure 4.10: A filled ellipse and the dislocation on its edge as a function
of the total blurring. On the edge of the ellipse, the radius of curvature is
slowly varying from 7 to 9 pixels and from 7 to 50 pixels. The method of
Mendonça (Mend) was also included in this experiment. The dislocation
was measured where the curvature is highest (1/7 px−1). For low change of
curvature, our method ( iCurv) performs best. For higher change of curva-
ture, PLUS (dotted) performs best.

higher resolution (σpsf = 0.5px) to avoid sampling errors. The method of Men-
donça [111] was not tested in other experiments, because the results are expected
to be similar our results. This experiment shows a difference (Figure 4.10) that
can be explained by the location where the (non-constant) curvature is estimated.
His method is estimating the curvature far away from the true edge – at the zero-
crossings of Lww – while our filtering method does it everywhere – including the
real edge location. In general, we can draw two conclusions from the experiments
that we performed on ellipses. First, the total blurring σ has to remain smaller than
1/κ, to avoid large dislocations. Second, the results give an indication that for small
changes in curvature our method performs best, and for larger changes in curvature
the PLUS operator performs best.

4.6.5 Toroidal Object

An experiment was performed to verify the quality of the approximation for three-
dimensional objects that are not spherical or cylindrical. The result is shown in
Figure 4.11. The dislocation of our method is not zero, because (4.16) is – in contrast
to other equations in this chapter – only an approximation. The figure shows that,
especially in the range that is important for vessel quantification (−0.5 < κ2/κ1 <
0.5), the maximum dislocation of our method is small in comparison with others.

4.6.6 CT Data of Phantom

In order to show that our method can be applied to CT data, and to perform quanti-
tative measurements, a phantom was scanned of which the size is accurately known
[46]. The labels and radii of the arteries represented in the three-dimensional cere-
brovascular phantom are: vertebral (VA, 1.19mm), internal carotid (ICA, 1.75mm),
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Figure 4.11: Dislocation (in pixels) as a function of the ratio between κ2

and κ1 for a toroidal object (σ = 8px, σ κΣ = 1+κ2/κ1

1.7 ).
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Figure 4.12: CT data of vascular phantom. (a) Surface rendering.
(b) Theoretical (curve) and experimental dislocation of the various edge-
detection methods.

and anterior-, middle- and posterior-cerebral (ACA, 1.00mm; MCA, 1.39mm; PCA,
1.00mm) arteries (Figure 4.12a). In the reconstructed volume, the voxel size is 0.30
and 0.3125 mm in z- and xy-directions respectively, with a slice thickness of 1.5 mm.
The spherical aneurism in the center of the phantom, and the integral of (4.12), were
used to estimate the standard deviation of the PSF: σpsf = 0.66 and 0.47 mm in z-
and xy-direction respectively. The scales of the Gaussian derivatives were adjusted

to make the total blurring isotropic with σ =
√

σ2
psf + σ2

op = 0.884 mm.

The edge detectors were all applied in 3D. For quantitative validation of the
radius estimation, two-dimensional cross sections of the vessels were made. The
eigenvectors of the Hessian were used to determine the orientation of the vessel.
Cross sections were made at several locations and orientations. The estimated radii
were averaged and the dislocations are summarized in Figure 4.12b. The results
show that our method performs better than ∆L and PLUS. For the vessels in this
phantom, it does not perform much better than Lww at this scale. The results also
show that the proposed method reduces the bias and that the experimental points
match the theory (curve in figure) within a 10% error range.
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4.6.7 CT Data of Pulmonary Vessels

In this experiment we verify the applicability of the method for the radius estimation
of pulmonary vessels in contrast-enhanced CT data of a real patient. Figure 4.13a
shows a surface rendering of the data.

In the reconstructed volume, the voxel size is 0.60 and 0.584 mm in z- and
xy-directions respectively, with a slice thickness of 1.3 mm. The PSF can be ap-
proximated by a Gaussian: σpsf = 0.83 and 0.76 mm in the z- and xy-direction
respectively. The total blurring is σ = 1.393 mm.
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Figure 4.13: CT data of pulmonary vessels. (a) Surface rendering.
(b) Theoretical (curve) and experimental dislocation of the various edge-
detection methods.

In the patient data, we do not have a ground truth for the quantization of the
vessel radius. Therefore, we assume that the dislocation of our method is zero.
Figure 4.13b shows the dislocation of the other methods relatively to our method.

The experimental points seem to match the theoretical curve well if we assume
a 10% error range. Therefore, we can conclude that our method can be applied to
CT data in order to estimate the radius of tubular objects without a bias.

4.7 Conclusion

The proposed method uses the locally measured isophote curvature to correct for
the dislocation of a curved surface in 2D and 3D. It is a separable, non-iterative
filter operation that requires only one scale to locate edges of objects of different
sizes, without surface extraction.

The Laplacian (∆L), the second-order derivative in gradient direction (Lww)
and the PLUS operator show a systematic error for edges with locally constant
curvature. Due to a mathematical derivation, we were able to design and implement
an edge detector that removes the systematic error. The theory helps us to obtain
a better understanding of the small-vessel radius-estimation results of others.

Because the systematic error is removed, the method is able to locate edges
with locally constant curvature very accurately. The method is more accurate than
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conventional methods for circular, cylindrical and spherical objects that are smaller
than the footprint of the Gaussian PSF, or with small sampled objects (e.g., radius
of 2 pixels) and in the presence of noise, or when the curvature is slowly varying, as
was shown by the results.

To validate the assumptions (Subsection 4.3.2) for CT data, experiments were
performed on CT data of a phantom and a patient. The patient data showed that
the radius of pulmonary vessels could be estimated within a 10% error range, and
the phantom data showed that our method detects edges without a bias.

All experimental results are in full agreement with the theory presented in this
chapter.

Future work may include an improvement of the solution for surfaces in 3D that
are not cylindrical or spherical.
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Abstract – The full-width at half-max (FWHM) criterion is often
used for both manual and automatic quantification of the vessel
diameter in medical images. The FWHM criterion is easy to un-
derstand and it can be implemented with low computational cost.
However, it is well known that the FWHM criterion can give an
over- and underestimation of the vessel diameter. In this chapter,
we propose a simple and original method to create an unbiased
estimation of the vessel diameter based on the FWHM criterion
and we compared the robustness to noise of several edge detectors.
The quantitative results of our experiments show that the proposed
method is more accurate and precise than other (more complex)
edge detectors, even for small vessels.
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5.1 Introduction

Quantification of the local vessel diameter, or the cross-sectional vessel area, is
essential for the correct diagnosis of vascular diseases. For example, the relative
decrease in diameter of a stenosis is an important factor in determining the treatment
therapy [56]. However, inherent to image acquisition is a blurring effect, which can
be modelled by the convolution with a point-spread function (PSF). This blurring
function causes conventional methods [12, 24, 69] to inaccurately locate the vessel
boundary, leading to a bias in most vessel-diameter quantification methods [54, 70,
125].

Recently, Manniesing [103] proposed a method to reduce the average bias over
vessels with different diameters. However, the bias – which depends on the di-
ameter – was not shown for each of the vessels separately. Mendonça [111] and
Bouma [16] proposed a method to remove the bias caused by derivative-based edge
detectors. However, the computation of nine image derivatives is expensive in com-
parison to intensity based methods, such as the FWHM criterion [55, 71, 133]. The
FWHM criterion is often used because it gives a reproducible and precise – although
not accurate due to bias – estimation of the vessel diameter.

In this chapter, we propose a simple method based on FWHM that removes the
bias for vessels at low computational cost. We will analyze the signal-to-noise ratio
of several edge detectors and show that the FWHM is not only cheaper but also
more robust to noise than the derivative-based edge detectors. Finally, the proposed
method will be compared with the edge-detection methods – such as the maximum
gradient magnitude, Marr-Hildreth [104] and Canny [24] – on synthetic data and on
computed-tomography (CT) data of a phantom.

5.2 Method

Grey-level thresholding is a fast operation that is still widely used for image seg-
mentation [142]. A bright object with a high intensity IH can be separated from a
dark background with a low intensity IL by using a threshold at Ithr = (IH +IL)/2.
For large objects with straight edges, this intensity indicates the correct location of
the separation between two objects.

Some methods use one iso-value – which is fixed at half the intensity of the
object before blurring – for segmentation and visualization [13] of vessels. However,
a global threshold based on this value shows a large underestimation of the diameter
for small vessels, and the vessel boundary may even be missed while it is still clearly
visible in the images.

Other methods use the FWHM criterion to determine the vessel diameter. This
criterion adapts the threshold to the local maximum and minimum intensity on
the edge transition. As the maximum intensity of a small vessel decreases due to
blurring, the threshold will also decrease. However, this method also shows a large
dislocation for small vessels.

In this chapter, we propose an unbiased vessel-diameter quantification method
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based on FWHM. Figure 5.1 shows the dislocation (r0 − R) of the vessel with true
radius R and a detected radius r0 for the thresholding methods based on an iso-value
or on the FWHM criterion. The analysis is based on the assumptions that the vessel
has a circular cross-section and that it was Gaussian blurred with standard deviation
σ during acquisition. Even when the point-spread function (PSF) is not completely
Gaussian, this approximation can be made for several imaging modalities, including
CT [113]. White Gaussian noise was used to analyze the robustness of the method.
To verify the validity of the assumptions, the method was used on CT data.
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Figure 5.1: The dislocation (r0 − R) of the vessel boundary for two
threshold-based methods. The fixed iso-value segmentation shows an un-
derestimation, and the FWHM criterion shows both an under- and over-
estimation of the vessel with radius R and Gaussian blur with standard
deviation σ.

5.2.1 Method for Unbiased Quantification based on FWHM

The gradient magnitude (Lw) of a disk, with intensity IH = 1.0 inside and IL = 0.0
outside the disk, at distance r from the center is [16]:

Lw(r,R, σ) =
R

σ2
exp

(

−r2 + R2

2σ2

)

I1

(

r R

σ2

)

(5.1)

Where I1 is the modified Bessel function of the first kind. With this equation, we
can compute numerically the intensity L, the location of the thresholds and the
relation between the detected radius r0 and the true radius R of a cylindrical vessel.
This relation is shown in Figure 5.2. Note that for very large disks (R > 5σ), R
and r0 are approximately equal and Ithr is 0.5. For large disks with R/σ > 1.6 (or
σ/R < 0.6) the disk is underestimated with FWHM. To compensate for that Ithr

is smaller than 0.5. For small disks with R/σ < 1.6 (or σ/R > 0.6), the disk is
overestimated with FWHM. To remove the overestimation Ithr is larger than 0.5.
The relation in Figure 5.2 allows a correction by mapping the dislocated ‘input’
to the corrected ‘output’ radius, and it can be implemented as a look-up-table
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operation (see Appendix A on page 135). Diminishing the bias leads to a more
accurate measurement.
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Figure 5.2: (a) The relation between the true radius R of the vessel and
the radius detected with FWHM r0 after Gaussian blur with standard devi-
ation σ and (b) the relation between the true radius and the threshold Ithr

for a corrected segmentation of the vessel. These corrections of the FWHM
criterion diminish the bias from the radius estimation.

The stability of this mapping is analyzed by looking at the effects on the output
of a perturbation on the input. Figure 5.3 shows that a perturbation of 2% on the
detected input radius will lead to a small perturbation on the output (less than
10%), when R > 0.7σ (r0 > 1.23σ). This is small in comparison to the error of the
uncorrected radius (Figure 5.3b: dashed). For very small vessels (e.g., R < 0.7σ),
the precision can be increased by averaging multiple measurements along the vessel.

5.2.2 Analysis of the Robustness to Noise

To analyze the robustness to noise of several edge detectors, the signal-to-noise
ratio (SNR) is derived for a Gaussian blurred image (L, which is used for FWHM),
gradient magnitude (Lw), the Laplacian (∆L, which is used by Marr-Hildreth) and
the second-order derivative in the gradient direction (Lww, which is used by Canny).
Our analysis will focus on an image with zero-mean white Gaussian noise on the
input with standard deviation σni. The SNR in decibel is defined as:

SNR[dB] = 20 log10

(

µs

σn

)

(5.2)

where µs is the signal amplitude and σn is the standard deviation of the noise. First,
the computation of σn will be discussed for several edge detectors, and after that
the computation of µs.
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Figure 5.3: The effects of 2% perturbation on the radius detected with
the FWHM r0 on the corrected radius R′. (a) The two curves indicate the
perturbation on the estimated radius R′. (b) dashed: The sum of systematic
and stochastic errors in the uncorrected FWHM radius and (b) solid: the
stochastic error in the estimation of the corrected method.

Noise Distribution of Edge Detectors in 2D

The relation between the standard deviation of the noise before (σni) and after (σno)
filtering with a FIR-based kernel K is [67]:

(

σno

σni

)2

=

∫ ∞

−∞
(K)

2
d~x (5.3)

Four FIR-based kernels that will be used in our analysis of noise in a two-dimensional
(2D) image are the zeroth-, first- and second-order Gaussian derivatives in the x-
direction (L, Lx and Lxx) and the Laplacian (∆L = Lxx + Lyy). The relation
between input and output noise is:

σ2
L =

1

4πσ2
op

σ2
ni σ2

Lx =
1

8πσ4
op

σ2
ni

σ2
Lxx =

3

16πσ6
op

σ2
ni σ2

∆L =
1

2πσ6
op

σ2
ni

(5.4)

where σop is the standard deviation of the Gaussian operator.

The gradient magnitude Lw =
√

L2
x + L2

y cannot be computed as a finite-impulse

response (FIR) filtering operation. Although, Lw is a rotated version of Lx, we
cannot simply assume that the distribution of Lw is equal to that of Lx, because the
rotation of Lw is dependent on Lx. Therefore, we will first compute the distributions
of L2

x and L2
w (the distribution of L2

y is of course identical to L2
x). The probability
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density function (P) of L2
x can be computed through the cumulative distribution

function (C):

CLx2(x) =

∫

√
x

−√
x

G(y − 0, σLx) dy

PLx2(x) =







∂CLx2(x)

∂x
=

1

σLx

√
2π x

exp

(

− x

2σ2
Lx

)

, x ≥ 0

0, x < 0

(5.5)

We assume that the covariance between L2
x and L2

y can be neglected on an image
with white Gaussian noise. The density PLw2 can be computed as a convolution
between PLx2 and PLy2.

PLw2(x) =

∫ x

0

PLx2(y)PLy2(x − y) dy =
1

2σ2
Lx

exp

(

− x

2σ2
Lx

)

, x ≥ 0 (5.6)

Finally, the function PLw is computed through the distribution C,

CLw(x) =

∫ x2

0

PLw2(y) dy

PLw(x) =
x

σ2
Lx

exp

(

− x2

2σ2
Lx

)

, x ≥ 0 (5.7)

resulting in:

µLw =

∫

PLw(x)xdx =

√

π

2
σLx =

1

4σ2
op

σni

σ2
Lw =

∫

PLw(x) (x − µ)2 dx =
4 − π

2
σ2

Lx =
4 − π

16π σ4
op

σ2
ni (5.8)

The second-order derivative in the gradient direction Lww is a rotated version
of Lxx. Lww is rotated by Lx and Ly, and it is independent of Lxx. Therefore, we
can assume that its variance is equal to that of Lxx on white Gaussian noise.

σ2
Lww =

3

16π σ6
op

σ2
ni (5.9)

These equations were experimentally verified (Subsection 5.3.1). As shown by the
equations, the variance of noise σ2

no can be made scale invariant with a factor σ2n+2
op ,

where n is the maximum order of the derivatives (so n can be 0 (L), 1 (Lw) or 2
(Lww,∆L)).

Noise Distribution of Edge Detectors in 3D

The variance after filtering for three-dimensional (3D) images is computed in the
same way, resulting in:

σ2
L =

1

8π3/2 σ3
op

σ2
ni σ2

∆L =
15

32π3/2 σ7
op

σ2
ni (5.10)
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σ2
Lw

=
3π − 8

16π5/2 σ5
op

σ2
ni µLw

=
1

√
2 π5/4 σ

5/2
op

σni (5.11)

σ2
Lww

=
3

32π3/2 σ7
op

σ2
ni (5.12)

The variance of noise σ2
no in 3D decreases faster than in 2D. To make σ2

no scale
invariant, a factor σ2n+3

op is needed, instead of σ2n+2
op .

Signal Amplitude of Edge Detectors

A disk in a two-dimensional image with intensity IH = 1.0 inside and IL = 0.0
outside the disk has the following equations [16] for Lww and ∆L:

Lww(r,R, σ) = e−
r2+R2

2σ2

(

−R2

σ4
I0

(

rR

σ2

)

+ (
r R

σ4
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R

rσ2
) I1
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σ2
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(5.13)

∆L(r,R, σ) = e−
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+
r R

σ4
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(

rR

σ2

))

(5.14)

where R is the radius of the disk, r is the distance to the center, and In is the
modified Bessel function of the first kind. From Lw (Eq. 5.1), the intensity L can
be computed.

The amplitude of a signal is defined as the distance between the maximum
absolute peak value and the mean of the signal (which is zero).

The amplitude of L on a disk is always located at the center of the disk.

L(0, R, σ) = 1 − exp

(

− R2

2σ2

)

(5.15)

For R < 2σ, the maximum of Lww and ∆L is also located at the center of the disk.

Lww(0, r, σ) = − R2

2σ4
exp

(

− R2

2σ2

)

(5.16)

∆L(0, r, σ) = −R2

σ4
exp

(

− R2

2σ2

)

(5.17)

Other amplitudes can be computed numerically with the Equations 5.1, 5.13
and 5.14.

Differential operators are not scale-invariant. This means that the slope of a
blurred signal will decrease as the amount of blurring increases. If we consider
the transformation x/σ → x̃, then x̃ is dimensionless and the operator is scale-
invariant. The dimensionless coordinate is called the natural coordinate [64], which
has a scaling factor: ∂n

∂xn → σn ∂n

∂x̃n . The scaling factor avoids the decrease of the
amplitude of the signal at a larger scale.

SNR of Edge Detectors

As mentioned before, the signal amplitude µs can be made scale invariant with a
factor σn

op and the standard deviation of noise σno can be made scale invariant with
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a factor σn+1
op in 2D and σ

n+3/2
op in 3D. So, to make the signal-to-noise ratio scale

invariant a factor σop is needed in 2D, and σ
3/2
op in 3D.

Figure 5.4 shows the SNR for these methods near the edge of a cylindrical vessel
when computed in 3D data or in 2D cross sections. The figure shows that FWHM
(L) can obtain a higher SNR at a blurring scale that is (almost) twice as low (or
fine) as that of the others. The low scale has the advantage that it avoids an extra
bias and the interference with neighboring objects. The high SNR leads to a precise
measurement and it makes the FWHM method more robust to noise than the other
edge detectors.
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Figure 5.4: The signal-to-noise ratio (µs/σno) in decibel for several oper-
ators (L, Lw, Lww and ∆L) based on Gaussian derivatives with standard
deviation σop in an image with white Gaussian noise (σni) that contains a
disk with radius R.

As an example, Figure 5.5 shows the response of FWHM, which is based on L,
and the derivative-based edge detectors to a disk in a noisy 2D image. The figure
shows that FWHM has a stronger response than the others.

L Lw Lww ∆L

Figure 5.5: Example of cross-sectional responses of Gaussian-derivative
operators (σ = 2.5 px) to a disk (R = 7.0 px) in a noisy 2D image (SNRi =
0 dB). The figure shows that FWHM, which is based on L, has a stronger
response than the derivative-based edge detectors.
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5.3 Experiments and Results

Three experiments were performed to analyze the proposed method quantitatively.
In the first experiment, we used noisy synthetic data to verify the derivation of the
noise distributions. In the second and third experiment, the accuracy and precision
of the corrected FWHM criterion was validated. In the second experiment we used
noisy synthetic data with cylindrical structures and in the third experiment we
used a computed-tomography (CT) image of a phantom.

5.3.1 Noise Distributions on Synthetic Data

For the derivation of the noise distribution (Subsection 5.2.2), we assumed indepen-
dence for some operations to estimate the mean and the variance of an image after
applying an edge detector. With this experiment we verified whether the assump-
tions are valid for images that contain white Gaussian noise.

The experiment was performed on a 2D image of 300x300 pixels and on a 3D
image of 50x50x50 voxels. Both images contained white Gaussian noise with zero
mean and σni = 1. Gaussian operators were used, with an exponentially sampled
σop in the range from 2.0 to 16.0 pixels in 7 steps. For the operators L, Lw, Lww

and ∆L the output variance σ2
no was measured, and for Lw the mean µLw was also

measured.
In 2D, the correlation between log(σop) and log(σ

−1/n
no ) was larger than 0.999 for

all operators. The correlation between log(σop) and log(µ
−1/n
Lw ) was also larger than

0.999. The root-mean-square (RMS) error in estimating the values of Table 5.1 for
2D was on average 0.06.

In 3D, the correlation between log(σop) and log(σ
−2/(2n+1)
no ) was larger than 0.999

for all operators, and the correlation between log(σop) and log(µ
−2/(2n+1)
Lw ) was also

larger than 0.999. The RMS error in estimating the values of Table 5.1 for 3D was
on average 0.07.

These results show that the derived distributions accurately predict the measured
distributions.

Table 5.1: The RMS error in estimating the distribution values that were
predicted by the equations in Subsection 5.2.2.

2D 3D
Eq. value RMS Eq. value RMS

σL 5.4 4π 0.11 5.10 8π3/2 0.11
σ∆L 5.4 2π 0.04 5.10 32π3/2/15 0.08

µLw 5.8 4 0.03 5.11
√

2π5/4 0.05
σLw 5.8 16π/(4 − π) 0.06 5.11 16π5/2/(3π − 8) 0.06
σLww 5.9 16π/3 0.04 5.12 32π3/2/3 0.04
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5.3.2 Unbiased FWHM on Synthetic Data

To verify the theory presented in this chapter and to analyze the robustness of our
method, noisy synthetic data was created that contained cylinders as a vessel model
(Figure 5.6a). The intensities in the synthetic images were 1.0 inside the unblurred
cylinders and 0.0 outside, and the radii of the cylinders were in the range from 1.6 to
5.8 pixels. The standard deviation of the PSF σpsf was 1.5 and 2.2 pixels in xy- and
z-directions respectively. White Gaussian noise was added with standard deviation
σnoise = 0.085 (which is equivalent to a signal-to-noise ratio of 21 and 9.4 decibel
for large and small vessels respectively). Some extra blurring σop was added in the

xy-direction to make the total blurring isotropic with σtot =
√

σ2
psf + σ2

op = 2.2

pixels.
The half-max radius was computed for each cross-section as an average of the

radii in 32 directions. The proposed method was applied for each cross section to
remove the bias. For each vessel with a different radius, the mean µ and standard
deviation σ of both the uncorrected and corrected radius were computed over 100
cross sections.

The dislocations are summarized in Figure 5.6b, where the dashed curves show
the stochastic errors.

For the smallest cylinders of only 1.6 pixels, the error of the uncorrected FWHM
method was larger than three times the stochastic error of the unbiased method.
From this we can conclude that, even for small cylinders, the unbiased method is
the most accurate in more than 99% of the measurements. The precision can easily
be increased by adding extra blur in the direction along the vessel or – as mentioned
before – by averaging multiple measurements along the vessel.

The results show that the proposed method diminishes the bias from the diameter
estimation.

5.3.3 Unbiased FWHM on CT Data

In order to show that our method can be applied to CT data, and to perform quanti-
tative measurements, a three-dimensional cerebrovascular phantom [46] was scanned
of which the size is accurately known (Figure 5.7a). The labels and the diameters
of the arteries represented in the phantom are: posterior communicating (PcomA,
1.0mm), posterior-cerebral (PCA, 2.00mm), middle-cerebral (MCA, 2.78mm) and
internal carotid (ICA, 3.50mm) arteries. In the reconstructed volume, the voxel size
was 0.3125 and 0.30 mm in xy- and z-directions respectively, with a slice thickness
of 1.5 mm. The standard deviation of the PSF was 0.47 and 0.66 mm in xy- and z-
direction respectively. Some extra blurring was added in the xy-direction to remove
noise and to make the total blurring isotropic.

The measurements were performed in the following way. Two points were se-
lected manually on each of the mentioned vessels. The points were centered with
the center of mass of the FWHM region in a cross-sectional plane. The orientation
of the plane was based on the structure tensor [77]. Each of the edge detectors was
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Figure 5.6: (a) Slice of a synthetic image that contains a cylinder with a
radius of R = 1.8 pixels. (b) The dislocation (r0−R) of the vessel boundary
for the biased and the corrected FWHM criterion for several vessels with
radius R (mm). The stochastic errors (µ− σ and µ + σ) are indicated with
the dashed curves and the theoretic bias of the uncorrected FWHM criterion
is indicated by the solid curve.

used to detect the vessel boundary in this plane, and the area of the polygon through
the contour points was used to estimate the average diameter. The diameter was
measured over 4.0 cm in 40 steps and these measurements were used to compute
the mean and the standard deviation.

The dislocations are summarized in Figure 5.7b. The results show that the
proposed method is able to remove the bias for all vessels in a 10% error range,
while others obtain an overestimation of more than 100%.

5.4 Conclusions

In this chapter, we proposed a new method for unbiased vessel-diameter quantifica-
tion based on the FWHM criterion at low computational cost. We analyzed the SNR
of several edge detectors on cylindrical structures and we showed that the FWHM
is more robust to noise than the derivative-based edge detectors. The quantitative
results obtained with synthetic and CT images showed that the proposed method
is accurate and precise, even for vessels with a radius smaller than the point-spread
function.
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Figure 5.7: (a) Surface rendering of the CT data of the phantom. (b) The
dislocation (d0−D) of the vessel boundary for Marr-Hildreth (∆L), FWHM,
Canny (Lww) and corrected FWHM for several vessels with diameter D
(mm). The theoretical curves are shown in grey.
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Chapter 6

Pulmonary Vessel Segmentation
and PE Candidate Detection

H. Bouma, J.J. Sonnemans, A. Vilanova and F.A. Gerritsen.
Based on a paper in IEEE Trans. Medical Imaging [18]

Copyright c© 2009 IEEE, http://www.ieee.org

.

Abstract – In this chapter, we propose a new method for the
segmentation of pulmonary vessels in contrast-enhanced CT images
that includes pulmonary embolus (PE) candidates and excludes
many false detections, such as lymphoid tissue and parenchymal
diseases.
We will show that our system for the automatic detection of PE
candidates is able to find almost 90% of the emboli at 41 false
detections per data set (before classification). The detectors based
on the bothat transform and vessel tracking appear to improve
the sensitivity most. The number of false detections is reduced by
taking into account the size of a candidate and the distance to the
mediastinum.
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6.1 Introduction

Computer-aided detection (CAD) can help the radiologist to find pulmonary em-
bolism (PE) in contrast-enhanced CT images. In these images, PE can be recognized
as a dark region inside pulmonary vessels. However, there are also other regions with
the same intensity as PE, such as lymphoid tissue, parenchymal diseases, pleural
fluid and partial-volume voxels on the vessel boundary (Figure 6.1). The main
problem of PE detection is to separate look-alikes from real PE. On one hand, the
mentioned look-alikes are easily included. On the other hand some emboli – for
example ‘sudden stops’ (i.e., completely embolized vessels) – are easily excluded.

Pleural fluid Fluid due to pneumonectomy

Consolidation Fibrosis

Figure 6.1: The axial CT images show that pleural, parenchymal or lym-
phoid diseases in the lung may lead to tissue-like intensity values around
peripheral pulmonary vessels.

To exclude many look-alikes and to reduce the search area, the pulmonary vessels
are segmented. Several methods have been proposed for the segmentation of the
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pulmonary vessels [82, 85, 106, 139] or vessels in general [22, 37, 48, 83]. However,
these methods for vessel segmentation do not focus on the inclusion of complete
occlusions inside the segmentation of pulmonary vessels .

In this chapter, we propose a method to reduce the search area for candidate
detection that includes (at least a part of) the emboli and excludes (most of the)
look-alikes, even when the pulmonary vessels are completely occluded. Vessel seg-
mentation is discussed in Section 6.2 and candidate detection in Section 6.3. Each
part was experimentally tested and results are shown in Section 6.4.

6.2 Vessel Segmentation

Figure 6.2 shows the design of our CAD system. Our method for vessel segmen-
tation consists of the following steps: segmentation of the body (Subsection 6.2.1),
the lungs and the mediastinum (i.e. the region that contains the heart) (6.2.2). The
lung and the mediastinal regions are used to segment the major pulmonary vessels
(6.2.3) and peripheral pulmonary vessels (6.2.4). Finally, all peripheral vessels are
connected to the major vessels in the mediastinum with vessel tracking (Subsec-
tion 6.2.5). The goal of vessel segmentation is not to obtain a perfect segmentation
of the pulmonary arteries and veins, but to reduce the search area for candidate
detection.

6.2.1 Body Segmentation

The body is the largest object in a thorax CT scan. In the CT scan, the body
can easily be separated from the background with a threshold operation at −500
Hounsfield Units (HU), since the body mainly consists of water (0 HU) and the
background consists of air (−1000 HU). After this threshold operation, which creates
a rough ‘tissue’ segmentation, three slice-based operations are performed. First, the
largest object is chosen to select the body. Second, a binary morphological closing
is performed to remove noise. And third, all holes in the object are filled to include
the lungs in the body segmentation.

6.2.2 Lung Segmentation

A rough selection of the lung region can be obtained in CT images by taking the
two largest dark regions inside the body of (approximately) equal size and – in the
sagittal view – at the same location, which corresponds to lung parenchyma (i.e.
the cellular substance inside the lungs) [116]. This region can be selected with a
threshold operation, because the CT values of lung parenchyma are lower than those
of tissue, bone and fat. The largest dark region is always accepted as lung. The
second lung is chosen more carefully for two reasons. First, it may be impossible to
detect a second lung because of pneumonectomy, and second, the second lung may
already have been included in the detection of the first lung. To avoid inclusion of
another dark object (e.g., a part of the colon), the second lung is assumed to be the
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Figure 6.2: The CAD system for pulmonary embolism consists of vessel
segmentation, candidate detection, feature computation and classification.
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second-largest object with a minimal overlap of 40% in the axial direction and a size
of at least 30% of the size of the first lung. The minimal-size assumption appears
to be important for lung detection, as shown by an experiment in Subsection 6.4.1.

The lung region – with an intensity below -300 HU – is filled with region growing.
A morphological closing is used to remove holes in the segmentation and to include
small vascular structures [4, 5, 147, 148] (and not to obtain a smooth lung boundary
near the hilum or the mediastinum [72, 149]).

To obtain a segmentation of the mediastinum, the large region between the
lungs is selected and several openings are applied to obtain a smooth mediastinal
segmentation.

All voxels in a mask with intensity brighter than −300 HU and a small geodesic
distance through this mask to the mediastinum are removed from the lung segmen-
tation to exclude tissue (see Figure 6.3).

CT image Incorrect segmentation Correct Segmentation

Figure 6.3: The lung segmentation aims at the inclusion of small vessels
and the exclusion of tissue because tissue may lead to false detections. A
morphological closing will lead to an incorrect segmentation that includes
both small vessels and soft tissue. Excluding voxels with an intensity above
-300 HU that are close to the mediastinum leads to a correct segmentation.

6.2.3 Segmentation of Major Vessels

The major contrast-enhanced pulmonary vessels can be segmented with a thres-
holding operation and region growing, because they are brighter than surrounding
objects. However, emboli can be so large that even these large vessels are com-
pletely obstructed. Near these obstructions, region growing may fail to connect the
large pulmonary vessels. Therefore, the segmentation of large pulmonary arteries
consists of two high-intensity regions. The first region is grown from the lungs and
the second is grown from the mediastinum. In this way, the size of a possible ‘gap’
will be minimized, which is important for vessel tracking.

The large contrast-enhanced pulmonary vessels inside the lung (with intensity
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higher than 150 HU to make a robust distinction between vessels and tissue) are
propagated inside the bright region towards the mediastinum, to give an initial
segmentation of the large pulmonary vessels, and it stops before other objects are
included (e.g., the superior vena cava).

The large vessels with high intensity inside the mediastinum [84, 85] are propa-
gated inside the bright region in opposite direction; towards the lungs (Figure 6.4).
Based on the lung anatomy, we know that all pulmonary vessels must be connected
to the major vessels in the mediastinum.

Figure 6.4: Surface rendering of major vessels in the mediastinum and all
pulmonary vessels.

6.2.4 Segmentation of Peripheral Vessels

As mentioned in the previous subsection, a high threshold value is required for
the segmentation of the major pulmonary vessels, because the major vessels are
surrounded by tissue. Reducing the threshold would include many PE look-alikes
in the vessel segmentation, such as lymphoid tissue.

The high threshold value cannot be used for the peripheral pulmonary vessels.
Their lower intensity is caused by the partial volume effect due to the point-spread
function (PSF). The advantage of the small pulmonary vessels is that they are
located in the periphery of the lungs and most of the larger vessels and tissue are
located near the mediastinum, which allows the use of a lower threshold in the
periphery for segmentation.

The peripheral-vessel segmentation is selected as the region inside the lungs
that is brighter than -150 HU with a radius below 2.4 mm and a distance to the
mediastinum of at least 15 mm. An experiment was performed to find the optimal
distance threshold (Subsection 6.4.3).

6.2.5 Tracking of Pulmonary Vessels

Tracking is used to fill a possible gap due to a complete obstruction between periph-
eral and major vessels. In healthy vessels without emboli, the segmentations of pe-
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ripheral and major vessels are well connected (and overlapping). However in patients
with PE, the clot can be so large that vessels are completely obstructed [81, 82].
In these cases it may be hard to find the path connecting the peripheral arteries in
the lungs to the major vessels in the mediastinum. Locally it may be impossible
to make a distinction between an embolized vessel and tissue. So, on one hand,
vessel-tracking methods that start from the mediastinum and grow without known
end-points have to cope with uncertainty, and their segmentation is likely to ex-
plode. On the other hand, each peripheral vessel certainly has a connection to a
major vessel in the mediastinum. Thus, we propose to use a tracking algorithm
to find the cheapest path from each unconnected vessel towards the mediastinum.
Both this path and the unconnected vessel may indicate the presence of an embolus.

The tracking algorithm [21, 22, 38] uses three input segmentations: The first
segmentation is the main tree, which includes all major and peripheral vessels that
are connected to the vessels in the mediastinum. The second segmentation consists
of the unconnected vessels, which includes all the remaining vessel parts in the lung
that are not connected to the main tree. The third is the search area, which is inside
and between the lungs with an intensity above −150 HU. The tracker is connecting
the second region (unconnected vessels) to the first region (main vessel tree) through
the third region (search area). The paths between the unconnected vessels and the
main vessel tree are added to the vessel segmentation (Figure 6.5) and they are also
used in the next step: PE candidate detection.

Figure 6.5: An embolus (arrow head) is creating a gap in the segmentation
between the main vessel tree and other vessels. The tracker is connecting the
unconnected vessels (vertical hatching) to the main vessel tree (horizontal
hatching) and the area between both (diagonal hatching) is added to the
vessel segmentation.

The major vessels, peripheral vessels and the path to unconnected vessels are
combined with an OR-operation to form the search area for candidate detection.
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6.3 Candidate Detection

The purpose of candidate detection is to extract a group of connected voxels inside
the pulmonary vessels that includes (at least partially) an embolus. It reduces
the search area inside the pulmonary-vessel segmentation and groups PE candidate
objects. The reduction of the search area allows an efficient feature computation
and the grouping allows classification of the candidate objects. Candidate detection
aims at an acceptable sensitivity (in our case approximately 90%) and a minimal
number of false detections. After detection, the candidates are classified as negatives
and positives to obtain an optimal performance of the CAD system (Figure 6.6).
The sensitivity of the detection step refers to the fraction of emboli that is detected,
and the sensitivity of the whole CAD system refers to the fraction of emboli that is
classified as positive.

P u l m o n a r y
v e s s e l

s e g m e n t a t i o n
C a n d i d a t e
D e t e c t i o n

F e a t u r e
C o m p u t a t i o n

C l a s s i f i c a t i o n
T D
F D

F e a t u r e s

T P
F P

Figure 6.6: Candidate detection produces true and false detections (TD
and FD). After detection, the candidates are classified as negatives and
positives. The output of the CAD system consists of true and false positives
(TP and FP).

A pulmonary embolus appears in CTA images as a dark region inside the pul-
monary vessels. Four methods are used to detect candidate voxels inside the vessel
segmentation (Figure 6.2). One of these methods corresponds to the tracked path
to unconnected vessels, which was explained in Subsection 6.2.5. The other three
methods are intensity-based detectors that aim at finding the dark embolic region.

The first detector based on intensity directly uses the CT attenuation value.
Inside the vessels of contrast-enhanced CT images, emboli are darker than contrast-
enhanced blood. The CT value allows a separation between these regions.

The second detector uses the eigenvalues of the Hessian matrix. A dark spot
can be detected with a positive first eigenvalue λ1 of the Hessian, assuming that the
eigenvalues are sorted by decreasing magnitude (|λ1| > |λ2| > |λ3|).

Cλ1
=







λ1, λ1 > 0
λ3, λ1 ≤ 0 and λ2 > 0 and λ3 > 0
0, otherwise

(6.1)

The third detector is the bothat transform (i.e. black tophat [141] or local
contrast [107]), which enhances locally dark areas, like emboli.
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The three intensity-based detectors are applied inside the vessel segmentation,
more than 1 mm distant from the boundary. The output of each detector is thres-
holded to create a binary mask. An experiment was used to obtain the optimal
threshold values for these detectors (Subsection 6.4.5).

The four different detectors respond to different emboli. Therefore, the sensitiv-
ity can be improved by combining the masks of the detectors with an OR-operation.
The connected voxels are grouped to form candidates and small candidates are re-
moved. The minimal size and the most relevant combinations are selected with two
experiments (Subsection 6.4.6 and 6.4.7 respectively).

6.4 Experiments and Results

To evaluate our system for pulmonary vessel segmentation and embolus candidate
detection, 38 CT data sets were used. The data sets contained in total 202 PE
annotations, which were confirmed by a radiologist. Discontinuous emboli were
counted as separate lesions. The sensitivity (Sens) was based on the number of
annotated emboli that contained at least partially a candidate divided by the total
number of annotated emboli. The false detections (FD) are candidates outside the
annotated embolic regions. The data was acquired with either a Siemens Sensation 4
or a Philips Mx8000 four-slice CT scanner. The voxel size of the data in the x- and
y-direction was approximately 0.6 mm, the voxel size in z-direction was 0.6 mm and
the slice thickness was 1.3 mm.

6.4.1 Lung Detection

The method for lung detection assumes that the largest air cavities in the body are
the lungs. The largest object V1 is always accepted. The second-largest object V2

is accepted if it is larger than 30% of the size of the first object (V2 > 0.3 · V1). If
the second object is smaller than 30%, the two lungs are assumed to be connected.
This condition avoids the inclusion of other objects (e.g., the colon). With this
experiment we verified whether our assumptions for lung detection are valid.

Figure 6.7 shows a histogram of the ratio between the size of the second-largest
object and the size of the largest object (V1/V2). In 21% of the cases, the left and
right lung were connected (in one of these cases only one lung was available), which
could easily be detected by looking at the relative size of the second object (less
than 3%). In other cases, the two lungs were detected separately and the size ratio
was larger than 30%.

6.4.2 Vessel Tracking

An experiment was performed to analyze the usefulness of tracking the paths to un-
connected vessels (Subsection 6.2.5), which are included as a candidate for embolus
detection.
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Figure 6.7: Histogram for lung detection. Histogram of the ratio between
size of the second-largest object V2 and the size of the largest object V1. In
21% of the cases, the whole lung volume was included in the first object,
which can easily be detected by looking at the ratio V2/V1.

In this experiment, the number of true and false detections are analyzed with and
without vessel tracking. Without vessel tracking, the sensitivity is 88% at 67.6 false
detections per data set (FD/ds). When vessel tracking is applied, both numbers
increase (94% sensitivity at 92.4 FD/ds). The cost criterion was chosen in such a
way that 40 FD/ds are as costly as 10% missed PE (false negatives). Thus, vessel
tracking is accepted to improve sensitivity.

6.4.3 Peripheral Vessel Segmentation

The segmentation of peripheral vessels includes the vessels with a low threshold
value and excludes tissue near the mediastinum with a minimal distance to the
mediastinum. The distance-to-mediastinum was varied, to find a good trade-off
between the exclusions of tissue and embolus candidates inside the vessels, and the
number of true and false detections was analyzed. In this experiment, vessel tracking
was enabled.

Without exclusion of detections near the mediastinum the sensitivity is 95%
at 146 FD/ds. For any distance threshold below 18 mm, the sensitivity is hardly
affected, but when going further the sensitivity is reduced rapidly (e.g., at 24 mm it
decreases to 77%). To remain on the safe side, we have chosen to remove detections
that are closer to the mediastinum than 15 mm (sensitivity of 94%), which reduces
the number of false detections per data set to 92.4.

6.4.4 Candidates in Major and Peripheral Vessels

To see how many true and false detections are included in the major- or peripheral-
vessel segmentations (described in Sec 6.2.3 and 6.2.4), tracking is disabled. Ta-
ble 6.1 shows that the peripheral vessels contain most of the true detections and
less false detections than the major vessels. The small vessels already contain 70%
of the PE and only 25 false detections per data set. Because some emboli are de-
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tected in both the major and peripheral vessels, we cannot simply sum the separate
measurements for these vessel types to obtain the results for both vessels. When
emboli are searched in both small and large vessels, almost 20% of the PE are added
to the result of small vessels and more than 40 false detections are added.

Table 6.1: Sensitivity and number of false detections per data set for major
and peripheral vessels. The results show that the small vessels contain most
of the emboli and least of the false detections.

Vessel Type Sens. FD/ds

Major 55 % 31.5
Peripheral 70 % 24.9
Combined 88 % 67.6

6.4.5 Candidate Detectors

The four types of candidates are based on (1) CT attenuation value, (2) eigenvalues
of the Hessian, (3) bothat transform and (4) vessel tracking. For each candidate
type, we want to know the optimal threshold and its usefulness in combination with
other types.

The free-response receiver-operator characteristic (FROC) curves of the detec-
tors based on CT value, the eigenvalues and the bothat transform are shown in
Figure 6.8. Lines of equal cost are represented in the figure as dashed lines. We
have chosen the slope of the dashed lines so that 15 false detections per data set
(FD/ds) are as costly as 10% missed PE (false negatives). We are more strict for
candidate detection than for candidate removal, because the different detectors will
be combined with an OR-operation. Based on these costs, thresholds of 0 HU, 1
and 150 were chosen to detect candidates based on the CT value, the eigenvalues
and the bothat transform respectively.

6.4.6 Size of Candidates

Every physical measurement is disturbed by noise. Due to noise and small flow voids,
perfect homogeneous areas do not exist and dark regions can be detected everywhere
(Figure 6.9). If the size of an object is only a few pixels then the detection of this
object is probably caused by noise. Therefore, the size of a detection is also used to
remove false candidates.

Figure 6.10 shows that many false detections that are smaller than 40 voxels can
be removed without a high reduction of the number of true detections. This size
corresponds to the volume of a ball with a radius of only 2.1 pixels (=1.3 mm).
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Figure 6.8: FROC for the thresholds of three candidate types: CT value,
eigenvalues and bothat. Voxels are accepted as candidate voxels if they
are above the threshold of a candidate type. The dashed lines represent
lines of equal costs (10% missed PE = 15 FD/ds). Based on these costs,
thresholds of 0 HU, 1 and 150 were chosen for intensity, eigenvalues and
bothat respectively.

Figure 6.9: Sub-optimal contrast enhancement causes noise in the pul-
monary vessels.
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Figure 6.10: FROC for candidate size. Detections are excluded if they are
smaller than the minimum required size. The sensitivity (Sens) and false
detections per data set (FD/ds) are shown for several sizes (in voxels). The
dashed lines represent lines of equal costs (10% missed PE = 40 FD/ds).

6.4.7 Combining Candidates

Figure 6.11 shows several combinations of candidate types. All four candidates
combined result in a sensitivity of 89% at 41.4 FD/ds, which is mainly obtained
by bothat and tracking (3+4, 88% at 39.4 FD/ds). So, the two most important
candidate types are based on contrast changes (bothat) and complete occlusions
(vessel tracking).
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Figure 6.11: FROC for several combinations of the candidate types (1)
intensity, (2) eigenvalues, (3) bothat and (4) vessel tracking. The dashed
lines represent lines of equal costs (10% missed PE = 40 FD/ds).

Some of the emboli are missed by the detection system. Only a few (3.5% = 7 PE)
are completely missed by this system, independent of the parameter settings. All 7
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are located very close to the mediastinum. The others (7.4% = 15 PE) were excluded
while reducing the number of false detections, e.g., because the intensity was too
high, the candidate was too small or because it was too close to the mediastinum.

6.5 Conclusions

Our CAD-system for the automatic diagnosis of pulmonary embolism consists of
three steps: candidate detection, feature computation and classification. In this
chapter, we focussed on the first step.

We showed that our system for the automatic detection of PE candidates was
able to find almost 90% of the emboli at 41 false detections per data set. Of the
four features that were used for candidate detection – which were based on intensity,
eigenvalues of the Hessian, bothat transform and vessel tracking – the last two
appeared to improve the sensitivity most. This shows that contrast changes (bothat)
and complete occlusions (vessel tracking) are important in the detection step. The
number of false detections could be reduced with the distance to mediastinum and
the candidate size.

For lung detection the two largest dark objects were selected. The size ratio
between the first and second object appeared to be a good indicator to detect
whether the second object should be accepted as lung.

Future work may focus on the separation between arteries and veins to reduce
the search area, because emboli can only be found inside arteries. Furthermore, it
may focus on the segmentation of whole emboli instead of the (partial) detection of
PE, or it may include further analysis of the difference between pulmonary embolism
in small peripheral vessels – where most emboli are located – and large proximal
vessels.
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Abstract – In this chapter, we propose features that can be used
to classify pulmonary embolism (PE) in contrast-enhanced CT im-
ages. To classify the embolus, we did not only focus on character-
istics of the embolus, but also on features that describe the blood
vessels. Therefore, we propose features based on intensity, loca-
tion, size, shape of lumen and shape of a vessel as new features
for the classification of PE. The analysis of each of the feature dis-
tributions shows that the features contain a significant amount of
information, although the features cannot be characterized by one
normal distribution, rather by multiple Gaussians. The most sig-
nificant separation in subsets is obtained with the features based
on isophote curvature and distance-to-parenchyma.
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7.1 Introduction

A computer-aided diagnosis (CAD) system for pulmonary embolism (PE) aims at
the distinction between real PE and look-alikes (Figure 7.1). Lung and vessel seg-
mentation reduces the search area and the detection step creates PE candidates.
However, the number of false detections is still too large to serve as output of the
CAD system. These false detections are mainly caused by parenchymal diseases,
the partial volume effect on the vessel boundary, sub-optimal contrast enhance-
ment, lymphoid tissue, flow voids in veins, noise and motion artifacts. To make a
distinction between real PE and look-alikes, features are computed that allow the
classification of candidates.

Only a few attempts have been made to find discriminating features. Masu-
tani [107] proposed to use the intensity, local contrast, length, volume, curvilinearity
of an embolus and the vascular size for boundary removal. Zhou [168, 169] used the
features based on intensity, the edge strength, length, volume and the shape of the
candidate in relation to the local vessel (roundness and compactness). Pichon [119]
used the size and intensity in a special way. The intensities inside a vessel were
projected on the vessel surface by computing the first quartile of intensities on a ray
between the surface and the medial axis of the vessel.

Previous work mainly focussed on the intensity and shape of emboli, although
other objects can have the same intensity as emboli and emboli can have a wide
variety of shapes. Furthermore, the shape of the embolus can be difficult to iden-
tify in a CT image, especially if it seems to be connected to the lymphoid tissue
(Figure 7.1a).

The regular shape of the pulmonary vessel tree (which consists of bifurcations
and tubular branches [126]) has not yet been fully exploited. Therefore, we propose
to use the shape of a vessel, the shape of lumen (i.e. contrast-enhanced blood) inside
these vessels, and the location of a candidate as new features for the classification
of pulmonary embolism in CT images.

t i s s u e
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c a v a f l o w  v o i d s

b r o n c h u s
(a) Tissue (b) Streaks (c) Vein (d) Bronchus

Figure 7.1: Dark structures that are not caused by emboli but have a
similar appearance: (a) Lymphoid tissue and PE (b) Streak artifacts due to
beam hardening (c) Flow voids in veins (d) Airway with bronchial wall and
a neighboring vessel
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7.2 Features for PE Classification

For the separation of the candidates into the classes ‘embolus’ and ‘not embolus’,
we designed features based on intensity, the shape of a vessel and vessel lumen, the
location of an embolus and the size of an embolus. Each of the features for candidate
classification is described in this subsection.

For each candidate, which is a group of connected pixels, we compute the fol-
lowing statistics of a feature: the mean (µ), the 5th percentile (min), the 95th
percentile (max) and the standard deviation (σ). The percentiles are used to get
a robust measurement of the extremes. For the features that are not measured on
the whole object, but for example only on the edge of a candidate, the relative size
(size) is also computed as a coverage percentage.

7.2.1 Intensity

The three intensity-based features are described below.

CT value

The first feature is based on the CT value. In contrast-enhanced CT images, emboli
are darker than contrast-enhanced blood and brighter than lung parenchyma. With
the CT value, these objects can be separated. The intensity is measured as the CT
value in Hounsfield Units (HU). This feature discriminates between dark objects
(lung parenchyma and bronchi are darker than -500 HU), bright objects (contrast-
enhanced blood and bones are brighter than 200 HU) and objects of intermediate
intensity (emboli, tissue and flow voids are approximately 0 HU). However, it does
not make a separation between emboli, tissue and flow voids (Figure 7.1).

Eigenvalues

The second feature based on intensity is from differential geometry and it uses
the eigenvalues of the Hessian matrix (i.e. the matrix of second-order derivatives).
These eigenvalues allow the separation between convex and concave cross-sectional
intensity profiles. In healthy vessels, the cross-sectional intensity profile is convex
or flat (Figures 7.2a and 7.2b), although, in the presence of noise, small decreasing
values may still occur. On the other hand, if there is an embolus inside the vessel,
dark spots can be found inside the vessel, which have a concave intensity profile
(Figures 7.2c and 7.2d). In 1D profiles, this can be characterized by a positive
second-order derivative. In 3D images, a dark spot can be detected with a positive
first eigenvalue λ1 of the Hessian, assuming that the eigenvalues are sorted by de-
creasing magnitude (|λ1| > |λ2| > |λ3|). Therefore, we propose a feature Cλ1

, which
is mainly based on the first eigenvalue of the Hessian matrix.

Cλ1
=







λ1, λ1 > 0
λ3, λ1 ≤ 0 and λ2 > 0 and λ3 > 0
0, otherwise

(7.1)
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This feature responds to dark areas that are surrounded by bright lumen, like emboli
but unfortunately also to flow voids. The feature based on the first eigenvalue
gives a good response to dark regions, even for emboli near the boundary or near
bifurcations.
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(a) Small vessel (b) Large vessel (c) PE at center (d) PE near boundary

Figure 7.2: Intensity profiles of healthy vessels (a) small and (b) big; and
cross sections of PE in vessels (c) at center and (d) near wall.

BotHat

The third feature based on intensity that can be used to detect emboli is from
grey-level mathematical morphology. The bothat transform (or black tophat trans-
form [141], or local contrast [107]) enhances locally dark areas, like emboli. This
transform consists of a grey-level closing of a 3D image (im) and a subtraction. The
closing removes dark structures and the subtraction enhances the dark structures.

bothat(im) = closing(im) − im; (7.2)

The closing operation was implemented with 4 mm dilations and 2 mm erosions to
enhance dark areas near bright regions. Larger kernels did not improve the measure-
ments and the difference between the number of dilations and erosions allowed us to
detect the dark transition in complete occlusions (sudden stops). The operation was
executed only inside the vessels to avoid interference with other vessels. When the
bothat transform is only applied inside the vessels, all dark areas will be extracted,
including the dark boundary of a vessel, which has a lower intensity than the center
of a vessel due to the blurring of the PSF. Therefore, the boundary was removed
with morphological erosions [107]. The bothat transform allows the elimination of
noise, small flow voids and other areas with a shallow intensity valley.

7.2.2 Shape

Isophote Curvature

The first feature based on the shape is isophote curvature. Isophote curvature
expresses the local shape of an iso-surface (i.e. a surface through points of equal
intensity) and it can be used to measure the shape of bright lumen. We propose
this shape feature to make a distinction between the transition ‘lumen-tissue’ and
‘lumen-PE’, because PE cannot always be distinguished from tissue with intensity
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features (Figure 7.1a). The shape feature can indicate whether the candidate was
found inside or outside a vessel.

The lumen surface of pulmonary vessels consists of three shapes. First, the shape
of a tubular branch is similar to a ridge; convex in one direction and approximately
straight in the other (κ2 ≈ 0). Second, the shape of a bifurcation is like a saddle;
convex in one direction and concave in the other. Third, the shape of lumen around
an embolus is not like a saddle or a ridge, but like a cup or a valley; the shape of
the lumen is concave in both directions (Figures 7.3 and 7.4).

P E

Figure 7.3: Iso-surface rendering [13] of the bright lumen. The concave
shape of the ‘elliptical hole’ indicates the presence of an embolus.

The two principal components of isophote curvature in 3D are κ1 and κ2. The
corresponding orientations are perpendicular to the surface and in the direction
of the maximal and minimal curvatures and ordered by value (κ1 > κ2). Each
curvature is inversely proportional to the radius of a circle that fits the iso-surface in
the corresponding principal direction. These curvatures can be calculated efficiently
with the equations of Ter Haar Romeny [64] and Van Vliet [155]. The principal
curvatures are used to calculate the curvedness (CN) and the shape index (SI)
(Figure 7.4) [86].

CN =
1

2

√

κ2
1 + κ2

2 (7.3)

SI =
2

π
arctan

(

κ1 + κ2

κ1 − κ2

)

(7.4)

The measures CN and SI help us to classify the shapes with two thresholds. The
shape index (SI < −0.3) selects the surfaces that are concave, and the curvedness
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−1.0 −0.5 0.0 0.5 1.0

Figure 7.4: The shape index (SI) describes the local shape of a surface:
cup (-1), valley, saddle (0), ridge or cap (1). The shape of a healthy vessel
(ridge), a bifurcation (saddle) and an embolus (valley) can be distinguished
with the shape index.

(CN > 0.1) excludes flat surfaces.

Cκ =

{

30−100 SI
0.7 , SI < −0.3 and CN > 0.1

0, otherwise
(7.5)

where 0.7 is used to normalize the output of feature Cκ between 0 and 100.
Isophote curvature uses second-order derivatives to determine the shape of an

iso-surface. In order to calculate derivatives, a local neighborhood must be taken
into account. We used the Gaussian as a smooth regularizing function to obtain the
derivatives. However, the measurement of the transitions ‘lumen-PE’ and ‘lumen-
tissue’ is easily spoiled due to the much larger intensity transition between tissue
and parenchyma. Therefore, we want to concentrate only on the relevant intensities.
Erf-clipping [156] is a fuzzy thresholding technique that aims at the maximization
of bandwidth for intensities near the threshold value. It allows us to focus on
the relevant intensities while preserving a smooth transition and as much partial-
volume edge information as possible (Figure 7.5). The intensity range is chosen
automatically with an intensity histogram. The extrema (minima or maxima) in
the histogram are localized with edge focussing [9]. The erf-clipping intensity ranges
from that of water (0 HU) to the mode of the contrast-enhanced lumen in the large
vessel segmentation.

Isophote curvature allows the detection of the concave lumen surface at embolic
locations. However, it will also respond to movement artifacts and at locations
where arteries and veins touch each other (Figure 7.6).

Circularity

The second feature that expresses the shape of the lumen is its circularity (or ec-
centricity). The cross-section perpendicular to the centerline of a vessel shows a
circular shape of lumen in healthy pulmonary vessels. A false detection outside the
pulmonary vessel will not influence the shape of the cross-section, but an embolus
inside the vessel causes a non-circular cross-section. The shape of the bright lumen
is especially important in large vessels, where false candidates due to tissue must be
separated from a real embolus. Several methods have been proposed to determine
circularity/eccentricity.
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L Lw κ

Figure 7.5: Intensity (L), gradient magnitude (Lw) and isophote curvature
(κ) of a CT image without erf-clipping (top row) and of the same image
with erf-clipping (bottom row). Note the shape of Lw and the negative
(dark) values of κ in the erf-clipped images. Erf-clipping allows analysis of
the shape of the lumen.

Figure 7.6: Touching vessels may lead to a concave shape on the vessel surface.
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Eccentricity can be based on the eigenvalues of the Hessian matrix (λ1 ≥ λ2 ≥
λ3).

Ecc =
|λ2|
|λ3|

{λ2 < 0 and λ3 < 0} (7.6)

This method cannot be used to calculate the eccentricity of the lumen of large ves-
sels, because neighboring objects would spoil a measurement with large differential
operators.

Another method to determine circularity is based on area (A) and the perimeter
(P) of a cross section perpendicular to the centerline of a blood vessel.

Circ =

√

A/π

P/(2π)
=

2
√

πA

P
(7.7)

Area and perimeter can be determined with binary operations or, more accurately,
with erf-clipping. This method can be used to determine the circularity of large
vessels. However, it requires an accurate estimation of the direction of the centerline
and the measure is very sensitive to bifurcations. Therefore, we propose another
method.

The eccentricity of the new method is based on eigenvalues of the Hessian matrix
(Eq. 7.6). However, the eccentricity is not calculated on the original image, but on
a distance transform of the lumen segmentation. The distance transform allows the
analysis of large vessels, and after this operation, the circularity of the large object
can be measured with the eigenvalues. This method can be applied to large vessels
and it is not disturbed by bifurcations.

Stringness

The third feature that uses shape, does not measure the shape of lumen inside ves-
sels, but it measures the shape of the vessel. The feature measures the tubularity of
peripheral (segmental and smaller) pulmonary vessels. In peripheral vessels – which
are smaller than more proximal (main and lobar) pulmonary vessels – the intensity
of contrast-enhanced blood decreases due to a blurring by the PSF. Therefore, lumen
is less clearly visible in these vessels, and in many cases it is not possible to measure
the shape of lumen. So, on one hand, the features based on the shape of lumen
cannot be used in the peripheral vessels. On the other hand, these features are not
needed in these vessels because (in normal cases) these vessels are not surrounded
by lymphoid tissue. Measuring that a candidate is detected inside a (small) tubular
structure allows the exclusion of tissue.

There are several methods that can be used to measure the tubularity of vessels.
The methods of Frangi and Danielsson are two methods based on the Hessian that
try to measure the tubular shape of vessels.

Frangi proposed vesselness to measure tubularity [54]. The vesselness filter is
designed to enhance tubular structures, like blood vessels. It is a non-linear com-
bination of the eigenvalues of the Hessian matrix. The eigenvalues are ordered by
magnitude.

|λ1| ≥ |λ2| ≥ |λ3| (7.8)
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Hence, the orientation of the vessel will be in the direction of λ3; i.e. the direction
where the intensity is most flat. Vesselness V is defined as:

V =







0 λ1 > 0 or λ2 > 0
(

1 − e(− R2
A

2α2 )

)

e
(− R2

B
2β2 )

(

1 − e(− S2

2c2
)
)

λ1 ≤ 0 and λ2 ≤ 0
(7.9)

where

RA =
|λ2|
|λ1|

, RB =
|λ3|

√

|λ1λ2|
, S =

√

∑

i

λ2
i (7.10)

The three quantities RA, RB and S are designed to punish low eccentricity, high
blobness and low structuredness, respectively. The parameters α, β and c are set to
tune the sensitivity of the different components. Usually α and β are approximately
0.5, to give equal weight.

Stringness is another feature to measure tubularity. This feature uses spherical
harmonics to create an orthogonal basis to define magnitude, shape and orientation.
We will only summarize its implementation. A detailed explanation can be found
in the papers of Danielsson [34] and Lin [96]. The feature uses eigenvalues of the
Hessian matrix that are ordered by value.

λ1 ≥ λ2 ≥ λ3 (7.11)

Hence, the orientation of the vessel will be in the direction of λ1; the direction where
the intensity is least convex. The energy is:

||f2||2 = f2
xx + f2

yy + f2
zz +

1

2
(5(f2

xy + f2
xz + f2

yz) − fxx(fyy + fzz) − fyyfzz) (7.12)

where fxy is a second-order partial derivative to x and to y. The three eigenvalues
are mapped on p2.
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 (7.13)

Finally, the stringness p′string can be computed using p2 and ||f2||.

p′string =
8 p20p21p22√

3||f2||
√

p2
21 + p2

22

(7.14)

The ordering of eigenvalues by value improves the orientation estimation near
stenoses and occlusions (like emboli) in comparison to the ordering by magnitude,
because the eigenvalue that is assumed to be almost zero can even obtain a large
positive value without affecting the orientation. Therefore, we propose to use the
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method of Danielsson to measure tubularity in PE candidates. The stringness mea-
sures whether a candidate is found in a small peripheral vessel without surrounding
tissue. This feature does not discriminate between candidates outside a vessel or
candidates inside a major vessel and thus it contains no information if the value is
low. The feature is important because many emboli can be found inside peripheral
vessels. Furthermore, most false detections (e.g., caused by tissue or parenchymal
diseases) are less tubular than peripheral vessels.

7.2.3 Location

Distance to Parenchyma

The first feature that uses the location of a candidate is based on the distance
to the lung parenchyma. In CT images, contrast-enhanced pulmonary vessels are
very bright and they are surrounded by very dark lung parenchyma. Due to the
blurring of the point-spread function (and the partial-volume effect) the boundary
of a vessel consists of intermediate grey values, which include intensities that are
equal to that of emboli. Dark spots that are located inside vessels (and far away
from the parenchyma) are not caused by the partial-volume effect. Therefore, the
distance-to-parenchyma can be used to discriminate emboli from the false detections
on the vessel boundary.

A two-pass distance transform [130] is used to compute the distance for each posi-
tion inside a foreground object (in our case the pulmonary vessels) to the background
surrounding the object (parenchyma). This distance feature allows the removal of
false detections on the vessel boundary. However, it does not produce meaningful
values if the vessel is surrounded by tissue. In the presence of tissue, the isophote
curvature and circularity features, which are based on the shape of lumen, should
be able to make a distinction between PE inside the vessel and tissue around it.

Small Peripheral Vessels

The second feature that uses the location of a candidate is based on the distance
to the mediastinum. The major vessels close to the mediastinum are surrounded
by tissue. This tissue can cause false candidates because its intensity is equal to
that of PE. However, the advantage of a large vessel is that its lumen can easily be
segmented with a threshold operation. The contrast-enhancement of small periph-
eral vessels inside the lungs is worse than that of large vessels, but the advantage of
peripheral vessels is that they are not surrounded by tissue in normal cases. This
feature allows the application of other features in the region for which they are
optimized (e.g., stringness for small vessels and isophote curvature in large vessels).

The small and large vessels are distinguished with a proximity feature based on
the distance to mediastinum in combination with the vessel radius. This proximity
feature is computed as the geodesic distance from the hilum segmentation through
the pulmonary vessels towards the peripheral vessels to avoid a misclassification of
peripheral vessels near the mediastinum. The assumption that peripheral vessels
are not surrounded by tissue (or objects with a similar intensity) is violated in the
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cases with a parenchymal lung disease.

Unconnected Vessel Parts

The third feature that uses the location of a candidate is based on lumen connec-
tivity. The connectivity feature is used to detect complete embolic occlusions of
the pulmonary vessels. The distinction between complete occlusions and lymphoid
tissue cannot always be made with local features. The feature based on lumen
connectivity uses non-local information.

In the previous chapter, we already described how pulmonary vessels that are
not connected to the mediastinum are detected with vessel tracking. The connec-
tivity information is preserved for classification. The feature allows the detection
of complete obstructions and it allows the separation of these obstructions from
lymphoid tissue near the mediastinum.

Path to Unconnected Vessel Parts

The fourth feature that uses the location of a candidate is based on the previous
feature that uses unconnected vessel parts. Not only a peripheral vessel that cannot
be connected to more proximal vessels is suspected of a complete embolization, but
also the gap between an unconnected vessel and the mediastinum is important for
embolus detection, because it is probably caused by an embolus.

The gap is detected with a tracking algorithm that minimizes the costs for a path
from the peripheral vessels, through areas of intermediate intensity values, towards
the contrast-enhanced pulmonary vessels. A path is certainly available in this region,
because all pulmonary vessels are connected to the mediastinum. A path inside a
candidate indicates the presence of an embolus. This feature does not discriminate
in any of the cases where the path is not present and partial obstructions will be
missed by this feature. However, partial obstructions will not cause a sudden stop
and some contrast-enhanced blood will flow around the embolus, which allows other
features to make the distinction.

7.2.4 Size

A candidate is a group of connected pixels. Its size can be used as a feature to reject
false detections. Every physical measurement is disturbed by noise. Due to noise
and small flow voids, perfect homogeneous areas do not exist and dark regions are
detected anywhere. Areas with a shallow intensity valley are eliminated with the
bothat transform, but some noise-related valleys are deep enough to be classified as
embolus. However, if the size of a candidate is only a few pixels, then the detection
of this object is probably caused by noise. Therefore, size is also used as a feature
to remove false candidates. This feature does not discriminate between emboli and
large false detections.



98 Features for Pulmonary-Embolus Classification

7.3 Experiments and Results

In this section, we will perform three experiments to analyze each of the feature
distributions separately, to allow a better understanding of feature selection and
classification in the next chapter.

The experiments were performed on 38 data sets containing 2498 candidates.
Of these candidates, 620 were labelled as true detection (T = 620), because they
were detected inside one of the 202 emboli (on average 3.1 detections per PE). The
other 1878 candidates were labelled as false detection (F = 1878, ratio T/F = 0.33).
These labelled candidates were used to analyze the features. The feature numbers,
feature labels and histograms can be found in Figure 7.7 (page 104).

The design of the features already shows that there are multiple types of emboli
and multiple types of false detections. For example, the emboli can be completely
occluding, partially occluding, inside small vessels with poor contrast enhancement
or in large vessels adjacent to contrast-enhanced blood. The false detections can
be caused by flow voids, tissue or the partial volume effect. Some features are
optimized for a specific type of embolus or false detection (e.g., stringness for small
vessels, distance to parenchyma for the partial volume effect and isophote curvature
for the boundary of contrast-enhanced blood). Based on this design, we expect that
the features are not normally distributed (which is relevant for the selection of a
classifier) and that the information can be classified with a decision tree.

In the first experiment, the chi-squared test is used to show that each feature con-
tains a significant amount of information. This test is closely related to the decision-
tree classifier that is used in the next chapter. The second and third experiment
show that the shapes of the feature distributions are not normal, rather multi-modal.

7.3.1 Significance of Features

The features will help us to separate the true (PE) from the false (non-PE) detec-
tions. In the ideal case, the perfect feature(s) will separate the set in pure subsets
containing either true or false detections. In the worst case, the subsets will have
the same ratio of T and F as the original set (T/F = 0.33). In practice, even a
feature with random outcome may result in a change of that ratio, but this change
is expected to be non-significant. A difference is (statistically) significant if it is un-
likely to have occurred by chance. The significance is tested by hypothesis testing.
The null hypothesis states that the difference occurred by chance. Hypothesis test-
ing will determine the maximum probability (p-value) that a difference is observed
while the null hypothesis is true. The smaller the p-value, the more significant.

The p-value is estimated with a χ2 (chi-squared) value. To compute the χ2 value
for each feature, a condition is used to separate all candidates from a set into two
subsets; Subset 1 contains candidates with values below a threshold and Subset 2
with values above. The χ2 test is used to determine whether the difference in ratios
of true and false detections in the subsets is significant, and it is equal to the criterion



7.3 Experiments and Results 99

of the tree classifier [122] that is used in the next chapter.

ETi = T
Ti + Fi

T + F
(7.15)

EFi = F
Ti + Fi

T + F
(7.16)

χ2 =

v
∑

i=1

(Ti − ETi)
2

ETi
+

(Fi − EFi)
2

EFi
(7.17)

where T and F are the number of true and false detections in the original set, v
is the number of subsets, Ti and Fi are the number of true and false detections in
the subsets, and ETi and EFi are the expected number of true and false detections
in the subsets. The p-value can be estimated in the χ2 distribution with the value
of χ2 and the degree of freedom. Two subsets (v = 2) give one degree of freedom
(df = v−1 = 1). A change of ratios in the subsets is considered significant (p < 0.05)
at χ2 > 3.8, highly significant (p < 0.01) at χ2 > 6.6, and (very) highly significant
(p < 0.001) at χ2 > 10.8. The threshold was chosen to optimize χ2.

Table 7.1 shows the features with a χ2 > 10.8. The feature numbers are related
to the numbers in Figure 7.7. The most significant changes can be observed for
the standard deviation of the distance-to-parenchyma (Feature 25), which has a
subset with a low ratio (T/F = 144/832 = 0.14), and for the standard deviation of
the isophote curvature (Feature 21), which has a subset with a high ratio (T/F =
227/303 = 0.75). So, the most significant separation in subsets can be obtained
with the features based on isophote curvature and distance-to-parenchyma. The
results do not allow a conclusion about the relevance of individual features with a
low χ2 value, since they may still improve the classification in combination with
other features. However, most of the features, even when used separately, result in
a highly significant change in the ratio between true and false detections.

7.3.2 Normal Distributions

Some classifiers and metrics make assumptions about the shape of the probabil-
ity density function (PDF) of a feature; often a Gaussian distribution is assumed.
Therefore, we will test the normality of each feature, compute some statistics de-
scribing the shape of the PDF, and analyze how well the two classes can be discrim-
inated with the individual features.

The Kolmogorov-Smirnov (KS) test [94] is used to determine whether samples
come from a specific distribution.

KS = max
∀x

(|G(x) − H(x)|) (7.18)

where G(x) is the portion of samples less or equal to x and H(x) is the cumulative
distribution function (CDF) at x. In our case, the KS test is used as normality test
and H(X) is a Gaussian CDF. The null hypothesis for the KS test is that a feature
has a normal distribution. The KS test will determine the maximum probability that
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Table 7.1: Features that are highly significant (p < 0.001) for the sepa-
ration of the data in subsets. The table shows the chi-squared test (χ2),
threshold for separation (thr), frequencies in the left and right subsets for
true (T ) and false (F ) detections and ratios of frequencies (T/F ). For
feature numbers and corresponding names see Appendix B on page 137.

Subset 1 Subset 2
Feat χ2 Thr Frequency Ratio Frequency Ratio

T1 F1 T1/F1 T2 F2 T2/F2

2 49 12.2 475 1654 0.29 145 224 0.65
3 62 99.6 250 450 0.56 370 1428 0.26
4 94 41.4 238 361 0.66 382 1517 0.25
6 13 20.2 539 1725 0.31 81 153 0.53
8 23 71.8 532 1443 0.37 88 435 0.20
9 16 216.5 304 748 0.41 316 1130 0.28

10 33 129.4 268 577 0.46 352 1301 0.27
13 31 224.9 349 1286 0.27 271 592 0.46
15 29 298.0 281 1086 0.26 339 792 0.43
16 22 176.0 237 921 0.26 383 957 0.40
17 85 0.0 168 906 0.19 452 972 0.47
18 65 -1.0 188 918 0.20 432 960 0.45
19 65 -1.0 188 918 0.20 432 960 0.45
20 74 73.6 349 1400 0.25 271 478 0.57
21 117 15.9 393 1575 0.25 227 303 0.75
22 84 11.7 134 790 0.17 486 1088 0.45
23 54 17.3 521 1759 0.30 99 119 0.83
24 114 17.7 97 732 0.13 523 1146 0.46
25 133 4.3 114 832 0.14 506 1046 0.48
26 29 6.2 437 1094 0.40 183 784 0.23
33 70 267.4 414 1552 0.27 206 326 0.63
34 11 98.0 515 1441 0.36 105 437 0.24
35 13 20.0 576 1810 0.32 44 68 0.65
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a difference is observed while the null hypothesis is true. For true detections, the
difference is significant (p < 0.05) at KS > 0.054 and highly significant (p < 0.01)
at KS > 0.065. For false detections, the difference is significant at KS > 0.031
and highly significant at KS > 0.037. All features differ significantly from a normal
distribution (Table 7.2). Only the features based on intensity (Features 1 and 4)
and the minimum BotHat (Feature 10) do not differ very significantly from a normal
distribution. The Lilliefors normality test [94] confirms that most features differ very
significantly from a normal distribution.

Two measures to describe the shape of the distribution are skewness and kurtosis.
Skewness is a measure of asymmetry. A distribution has a positive skewness if the
higher value tail is longer than the lower value tail, and a negative skew for the
opposite.

Skewness =
µ3

µ
3/2
2

(7.19)

where µi is the central moment µi = E[(X − E[X])i] and E is the expected value.
Of course, the skewness for a Gaussian distribution is zero, because it is symmetric.

Kurtosis is a measure of peakedness. A high kurtosis has a sharper peak and
fatter tails, while low kurtosis has a more rounded peak and thin tails.

Kurtosis =
µ4

µ2
2

(7.20)

where µi is the central moment. The kurtosis for a Gaussian distribution is three.
Table 7.2 shows that the features based on the intensity (Features 1,3,4) have a low
skew and a kurtosis close to three, which explains why their KS value was lower
than that of other features.

7.3.3 Multi-Modal Distributions

Some classifiers and metrics assume that the probability density function (PDF) of a
feature is uni-modal. The usefulness of multi-modal mixture models for probabilis-
tic modelling is currently widely acknowledged. Most of the literature on mixtures
models focusses on Gaussian densities. The standard method to fit Gaussian mix-
ture models (GMM) to the observed data is expectation maximization (EM), which
converges to the maximum likelihood estimate of the mixture parameters [50].

In our data, many of the feature distributions for PE classification are charac-
terized by a distribution with peaks (Figure 7.7). These peak-shaped modes may
be difficult to handle for some classifiers. Some of the peaks are caused by missing
values. For example, isophote curvature is only measured on the edge of contrast-
enhanced lumen, which cannot be found inside every candidate. Missing values are
commonly replaced by the average value of a feature, but we have chosen to insert
a value outside the valid measurement range to separate the missing value from the
other measurements. However, most of the peaks are not caused by a missing value,
but by measuring a low value (e.g., zero), which is the case for the eigenvalues or
the stringness.
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Table 7.2: Statistics for the features with the most normal distribution (low
KS-value): Kolmogorov-Smirnov test (KS), mean (µ), standard deviation
(σ) for false (F) and true (T) detections, skewness (Skew) and kurtosis
(Kurt). For feature numbers and corresponding names see Appendix B.

Feat KS µ σ Skew Kurt
F T F T F T F F

1 0.02 0.04 63 62 23 24 0.4 3
2 0.12 0.13 -12 -4 21 25 1.6 7
3 0.06 0.11 131 122 34 34 0.2 2
4 0.04 0.05 53 46 13 13 0.0 3
9 0.07 0.11 240 232 113 136 2.6 25

10 0.04 0.05 166 156 86 94 1.0 10
11 0.10 0.16 332 326 173 211 5.0 51
12 0.18 0.23 64 66 50 68 7.0 80
22 0.25 0.22 16 20 10 12 3.1 21
23 0.35 0.35 9 12 7 10 6.7 78
24 0.21 0.15 25 30 14 15 2.3 12
25 0.19 0.12 6 7 4 3 2.9 23

Each feature distribution was modelled with a bi-modal GMM and EM. The
number of Gaussians was limited to two, because it is most simple and most similar
to the classification with a binary decision tree, which is used in the next chapter.
A threshold operation is applied at the point of equal probability between the two
means to make an optimal separation between the two modes (or subsets). Table 7.3
shows features with two modes of approximately equal occurrence (0.3 < F1/F2 <
3.3) and one relatively thin mode (σ1/σ2 < 0.02 or σ1/σ2 > 50). The table shows
that most of the features have such a thin peak.

Although a feature may not allow the separation of samples inside the peak, it
does not mean that the feature is useless. For example, Table 7.1 showed that the
standard deviation of isophote curvature (Feature 21) – which contains a thin peak
– allows a highly significant separation.

7.4 Conclusions

In this chapter, we proposed features that can be used to classify pulmonary em-
bolism on the basis of intensity, location, size, shape of lumen and shape of a vessel.
We also analyzed each of the feature distributions separately. The results showed
that the features contain a significant amount of information, although the features
cannot be characterized by one normal distribution, rather by multiple Gaussians.
The shape of the distributions should be taken into account when selecting a clas-
sification algorithm. The most significant separation in subsets could be obtained
with the features based on isophote curvature and distance-to-parenchyma.
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Table 7.3: Statistics for the features with a peak-shaped mode in the dis-
tribution: threshold (thr) to separate the modes/subsets, ratio between the
standard deviations of Subset 1 and Subset 2 (σ1/σ2), frequencies of true
(T) and false (F) detections, and the ratio between the frequencies (F1/F2,
T1/F1, T2/F2). For feature numbers and corresponding names see Ap-
pendix B.

Subset 1 Subset 2
Feat thr σ1/σ2 Rat Freq Rat Freq Rat

F F1/F2 T1 F1 T1/F1 T2 F2 T2/F2

5 1.3 0.00 0.4 172 574 0.30 448 1304 0.34
7 0.0 0.00 0.5 198 623 0.32 422 1255 0.34

13 27.7 0.01 0.8 221 847 0.26 399 1031 0.39
15 0.0 0.00 1.0 229 916 0.25 391 962 0.41
16 0.0 0.00 0.3 108 398 0.27 512 1480 0.35
17 0.0 0.00 0.9 168 906 0.19 452 972 0.47
18 -1.0 0.00 1.0 188 918 0.20 432 960 0.45
19 -1.0 0.00 1.0 188 918 0.20 432 960 0.45
20 -1.0 0.00 1.0 188 918 0.20 432 960 0.45
21 -1.0 0.00 1.0 188 918 0.20 432 960 0.45

26 0.0 0.00 0.9 338 909 0.37 282 969 0.29
27 -1.0 0.00 0.9 343 914 0.38 277 964 0.29
28 -1.0 0.00 0.9 343 914 0.38 277 964 0.29
29 -1.0 0.00 0.9 343 914 0.38 277 964 0.29
30 -1.0 0.00 0.9 343 914 0.38 277 964 0.29
34 0.0 0.00 1.5 350 1113 0.31 270 765 0.35

Future work may include the use of path-related features, like the occludedness,
radius and intensity along a centerline of a vessel. Also the handling of flow voids
in veins, movement artifacts, parenchymal lung diseases, and noise in large arteries
due to sub-optimal contrast enhancement should be included in the feature model
for PE classification.



104 Features for Pulmonary-Embolus Classification

CT value
1: (µ) 2: (min) 3: (max) 4: (σ)

20 70 110

100

10 50

100

200

80 140 200

100

30 50 70

100

Eigenvalues
5: (µ) 6: (min) 7: (max) 8: (σ)

0 150 300

400

800

0 70 130

400
800
1200
1600

0 290 580

400

800

0 100 200

100
200
300
400

BotHat
9: (µ) 10: (min) 11: (max) 12: (σ)

40 310 580

100

200

0 190 380

100

200

70 500 930

100

200

300

10 130 240

100

200

300

Stringness
13: (µ) 14: (min) 15: (max) 16: (σ)

0 1410 2820

400

800

0 230 450

400
800
1200
1600

0 2830 5650

400

800

0 1010 2010

400

Isophote curvature
18: (µ) 19: (min) 20: (max) 21: (σ)

0 40 70

400

800

0 40 70

400

800

0 50 90

400

800

0 5 10 15 20

400

800

Distance-to-parenchyma
22: (µ) 23: (min) 24: (max) 25: (σ)

10 30 50

100

200

300

400

10 20 30 40

100
200
300
400

40 70

100

200

300

5 10 15

100

200

300

Figure 7.7: Histograms of the features for false (grey) and true (white)
detections (see also Figure 7.8).



7.4 Conclusions 105

Circularity
27: (µ) 28: (min) 29: (max) 30: (σ)

0 40 80

400

800

0 40 70

400

800

0 50 90

400

800

0 10 20 30

400

800

33: Size 34: Peripheral vessel

50 940 1840

400

800

0 50 100

400

800

35: Unconnected vessel 36: Path-to-unconnected

0 50 100

400
800
1200
1600

2 4 6 8 10 12

400

800

1200

1600

17: Isopote curvature (size) 26: Circularity (size)

0 50 100

400

800

10 20 30 40

400

800

Figure 7.8: Histograms of the features for false (grey) and true (white)
detections (see also Figure 7.7).
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Abstract – We developed a computer-aided diagnosis (CAD) sys-
tem for the detection of pulmonary embolism (PE) in contrast-
enhanced CT images. This chapter focusses on the classification of
PE candidates and the evaluation of our system.
The results show that the bagged tree classifier optimizes the sys-
tem with the two features Stringness and Distance-to-parenchyma.
The system was trained on 38 contrast-enhanced CT data sets and
evaluated on 19 other data sets. The evaluation showed that the
performance of the CAD system was only slightly over-estimated
and that the system generalizes well.
The sensitivity of the CAD system is 63% at 4.9 FP/ds, which
allowed the radiologist to improve the number of detected PE with
22%.
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8.1 Introduction

Computer-aided diagnosis (CAD) for pulmonary embolism (PE) can help the radi-
ologist to find suspicious areas in the contrast-enhanced CT images [135]. Unfor-
tunately, a realistic CAD system does not only detect true candidates (pulmonary
emboli) but also false candidates (look alikes). Classification aims at the separation
of these two candidate types so that only the true detections will be marked as
positives. The classifier should be able to discriminate and generalize. The general-
ization ability of a classifier refers to its performance on realistic test data that was
not used during the training stage [74].

In the last years, several CAD systems for PE have been proposed and evaluated.
Masutani et al. [107] was one of the first who described a computerized method for
detecting PE in CTA images. However, Masutani used a limited number of positive
data sets (11 data sets) and a low number of emboli (21 PE) for evaluation. The
same remark can be made about Pichon et al. [119], who used 3 data sets with 22
PE. Therefore, it is uncertain how well these systems generalize.

Das et al. [35] evaluated a CAD system for peripheral emboli, which are located
in segmental and subsegmental vessels. On one hand, the results of this system
are good in the region where it is most important to assist the radiologist. On
the other hand, it is unclear how the system performs, if all emboli were taken into
account. Digumarthy et al. [39] evaluated a CAD system only on patients with good
opacification, without significant motion artifacts and without significant pulmonary
diseases. The results are also good, but again, the evaluation does not show how
the system performs on representative data. Maizlin et al. [101] evaluated the same
system on more realistic test data and the results are much worse (a sensitivity of
52% at 6.4 false positives per data set, FP/ds).

The studies of Buhmann et al. [20] and Zhou et al. [168] are the only studies
that reported the system performance on a large database of realistic test data that
contained breathing artifacts and parenchymal diseases without the exclusion of
emboli based on size or location. However, their results are poor when all emboli
are taken into account (Buhmann: 47% at 3.9 FP/ds and Zhou: 52% at 11.4 FP/ds).

The goal of this chapter is to classify PE candidates, to estimate the performance
of our CAD system and to evaluate this estimation using the candidates as described
in Chapter 6 and the features specified in Chapter 7. For classifier selection, feature
selection, training and testing, we used 38 positive data sets (202 PE), and for the
evaluation of the system, 19 other positive data sets (116 PE) were used. The data
sets were selected to demonstrate a variety of thrombus load, considerable breathing
artifacts, sub-optimal contrast and additional parenchymal diseases. The anatomic
classification of an embolus was defined by its most proximal location (main, lobar,
segmental or sub-segmental) and none of the emboli were excluded for evaluation.

The chapter is organized in two sections. In Section 8.2, we will train the clas-
sifier. This section covers feature selection, classifier selection and performance
estimation. In Section 8.3, we will evaluate the performance of the CAD system.
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8.2 Training and Testing

The no-free-lunch theorem states that no optimization algorithm (e.g. classifier)
can be expected to perform better than another [166]. Empirical comparisons of
classification algorithms confirm that there is no single best algorithm, but that
the algorithm that performs best depends on the investigated data set [26, 80, 95].
Therefore, we experimentally tested several classifiers on several features. The com-
parison of classifiers (Subsection 8.2.5) and features (Subsection 8.2.4) requires an
estimation of the classification error (Subsection 8.2.2). This error estimation re-
quires sampling of the available data to generate a training and a test set (Subsec-
tion 8.2.1), which will be discussed first.

8.2.1 Cross Validation and Bootstrapping

Sampling is used in the field of pattern recognition to extract subsets from the
complete set of candidates; e.g., to generate subsets for training and testing. There
are four important sampling methods to obtain a training and a test set from a
set with a limited number of candidates: bagging, boosting, cross validation and
bootstrapping. Sampling based on bagging or boosting is used to improve the
performance of a classifier, which is discussed in Subsection 8.2.8. Sampling based on
cross-validation or bootstrapping is used to estimate the performance of a classifier,
which is discussed in this subsection.

In k-fold cross-validation, the data set is randomly split in k subsets (folds), and
the classifier is trained on k−1 folds and evaluated on the remaining fold [87]. This
sampling is repeated several iterations to reduce the variation in the performance
estimation.

Bootstrapping is based on random sampling with replacement [45]. Given a
data set of n detections, a bootstrap subset is created by sampling n instances
uniformly from the data with replacement. Because bootstrapping uses sampling
with replacement, the training part is expected to contain 62.3% unique instances
because one sample can be selected multiple times. In bootstrap estimation, this
selection process is independently repeated several times to yield several bootstrap
subsets which are treated as independent sets.

Empirical and theoretical comparisons show that leave-one-out cross-validation
is almost unbiased, but it has a high variance [45]. Bootstrapping, on the other hand,
has a low variance, but a high bias. Therefore, repeated runs of five- or ten-fold
cross-validation are often considered a good trade-off between the bias and variance
in performance estimation for the problem of feature and classifier selection [7,
87]. In 1997, Efron e.a. [44] proposed the 632+ bootstrap to decrease the bias
of bootstrapping, but he concluded that the attempt to decrease bias was ‘too
expensive in terms of added variability’. He also remarked that ‘cross-validation is
reasonably unbiased’ and that the bias of 5-fold cross-validation is only high if ‘the
error-rate curve is still sloping at a given training set size’.

So, we will use 5-fold cross validation to sample our data, because it is cheap
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and because of the low bias. To estimate the variation, we will analyze the number
of required iterations (Subsection 8.2.3) and we will check the slope of the learning
curve for a given training set size to see how important the bias is (Subsection 8.2.7).

8.2.2 Performance Measure

Classifier selection and feature selection refers to algorithms that select the best
classifiers or the best set of features that lead to the smallest classification cost.
Common criteria to evaluate the performance of classifiers and features are the area
under the ROC curve (AUC) and the weighted Ln-norm of the classification error.

Since the AUC of the (normalized) receiver operator characteristic (ROC) curve
is a portion of a unit square, its value will always be between 0 and 1. The AUC can
be interpreted as the probability that, if we pick a positive and a negative sample,
the classifier will assign a higher score to the positive sample [47]. Since random
guessing produces a diagonal line, no classifier should have an AUC less than 0.5.
The main advantage of this error measure is that it is even suitable when class priors
or cost parameters are unknown [49, 144]. However, the ROC curve and the AUC are
less suitable to compare whole CAD systems, because the set of negatives is not well
defined [88]. All points in the 3D data, except the regions inside emboli, are potential
negatives. In the detection step, the CAD system can generate an arbitrarily large
number of negatives and boost the results of the ROC. Thus, for CAD applications,
the ROC curve is commonly replaced by the free-response ROC (FROC) curve,
which uses the non-normalized number of false positives (per data set) instead of
the normalized specificity on the horizontal axis. Unfortunately, the area under
the FROC curve of one system cannot straightforwardly be compared to that of
another. Nevertheless, there are at least two ways that allow the usage of an AUC
in relation to embolus classification. The first way is to limit the region of interest
on the FROC curve. For example, the area under the curve up to 10 false positives
per data set allows a fair comparison of different CAD systems. Another way is
to compare only the performance of the classification step – and not whole CAD
systems – on the same detections. This AUC value does not allow the comparison
of different systems, but only the comparison of different classifiers and features on
the same training data. We will present the AUC value as in the latter approach,
for feature selection and classifier selection, because this measure is independent of
cost parameters.

Another performance criterion is based on the weighted Ln-norm of the classifi-
cation error:

E = min

(

100

((

α
FP

ds

)n

+

(

1 − TP

TP + FN

)n)1/n
)

(8.1)

with weight (or cost parameter) α = 1/30. We have chosen this weight so that 5
false positives per data set (FP/ds) are as costly as 20% missed PE (false negatives).
In this equation the minimum operation (min) refers to the selection of the optimal
point on the FROC curve. For (F)ROC analysis, the Manhattan distance (n = 1)
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is most commonly used in literature, although the Euclidian distance (n = 2) is also
frequently used as an error measure.

8.2.3 Precision of the Performance Estimation

We performed an experiment to estimate how many iterations of cross-validation
are required to obtain a certain precision. The experiment was performed on the
two features: Stringness and Distance-to-parenchyma (feature numbers 13 and 25
respectively) with the PRTools [42] tree classifier treec (splitting criterion = Fisher,
pruning level = 3). The cost parameter is not incorporated in the splitting criterion,
because it does not lead to trees with lower costs, and cost sensitive labelling of the
leafs appears to be more effective [49]. In the following subsections, we will show
why these features and this classifier were chosen. In this experiment, the average
L2-error appears to be µ = 29.6. We want the 90% confidence interval (which is
between −1.64σ and 1.64σ) to be less than 1.0, which corresponds to a standard
deviation of σ = 1.0/(2 ∗ 1.64) = 0.3. Figure 8.1 shows that 400 iterations are
required to obtain this precision. Therefore, we will choose 400 iterations for our
experiments.

50 100 200 400 800 1600

0.2

0.4

0.6

0.8

1

iter

σ

Figure 8.1: Standard deviation (σ) of the L2-error for several number of
iterations.

8.2.4 Feature Selection

Feature selection and classifier selection seem like a chicken-and-egg problem; you do
not know where to start. However, it is clear that, to reach the optimal result, one
should do feature selection for each classifier separately [145]. In this subsection,
feature selection is discussed for the tree classifier. In Subsection 8.2.5, we will
present the results of feature selection for other classifiers.

To find the best set of features the technique of l-forward and r-backward feature
selection was used. We tried several initializations, to avoid getting stuck in a local
optimum. The forward selection (l = 2, r = 1) was not only initialized with an
empty set of features, but also with other features and feature pairs. And the
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backward selection (l = 1, r = 2) was not only initialized with all features, but also
with the result of forward selection or another chosen group.

The selection technique showed that at least two features are required to obtain
an L1-norm smaller than 45: Stringness and Distance-to-parenchyma (feature num-
bers 13 and 25 respectively). As an illustration, we show the results of backward
feature selection (l = 0, r = 1) in Figure 8.2 and Table 8.1. The results show that
these features (13+25) are required to avoid an increase of the cost. Forward feature
selection gives similar results, the other features are not able to reduce the cost any
further.

Table 8.1: Backward feature selection shows an increase of the L1-error
after the removal of one of the last two features (13+25). For feature num-
bers and corresponding names see Appendix B on page 137.

#Feat Features L1 L2 AUC

10 .. + 18 47.5 33.6 0.870
9 .. + 33 47.9 34.0 0.863
8 .. + 09 45.7 32.3 0.872
7 .. + 01 44.3 31.7 0.870
6 .. + 35 41.6 29.6 0.866
5 .. + 36 42.7 30.5 0.864
4 .. + 34 41.6 29.8 0.867
3 05+13+25 42.5 30.5 0.859
2 13+25 41.3 29.7 0.862
1 13 74.7 53.4 0.751
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Figure 8.2: Backward feature selection shows an increase of the cost after
the removal of one of the last two features (13+25).

An increase of the number of features may degrade the performance of a classi-
fier (curse of dimensionality), especially if the number of training samples is small
relative to the number of features [74]. For example, the L1-norm in Figure 8.2
increases for more than 6 features. A simple explanation is that more features re-
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quire more parameters to be estimated. For a fixed sample size, the reliability in
estimating a parameter decreases.

Although the other features are not able to reduce the cost, it does not mean
that they do not contain any information. An exploration of the cost of the features
with an AUC > 0.6 and feature pairs with an AUC > 0.8 is shown in Table 8.2.
Other features and features pairs also contain valuable information for classification
(AUC > 0.8). However, the best result is obtained with the pair stringness and
distance-to-parenchyma (13+25). The selection of these two features is probably
caused by the large amount of PE inside the small tubular vessels and the large
amount of false detections on the vessel wall (caused by the partial volume effect).

Table 8.2: The L1-norm, L2-norm and AUC of features (AUC > 0.6) and
feature pairs (AUC > 0.8). For feature numbers and corresponding names
see Appendix B.

Features L1 L2 AUC

33 69.7 51.4 0.766
13 72.5 52.1 0.751
17 82.0 58.4 0.667
25 90.4 65.6 0.696

13+25 41.3 29.7 0.862
25+34 50.0 41.1 0.807
13+22 54.2 38.8 0.837
13+33 57.5 43.8 0.816
05+25 59.5 44.8 0.806
13+17 59.6 47.9 0.815
13+18 61.9 47.3 0.801

8.2.5 Classifier Selection

In order to find the best classifier, feature selection was not only applied to the
tree classifier (Subsection 8.2.4), but also to other classifiers. In this subsection, the
results of classifier selection and the corresponding optimal features are presented.

We experimentally minimized the L1-norm on the training data with 400 iter-
ations of 5-fold cross validation for several classifiers from PRTools [42]. For each
classifier we performed feature selection as described in Subsection 8.2.4. The re-
sults in Table 8.3 show that the L1-norm is minimized with the tree classifier and
the two features: Stringness and Distance-to-parenchyma (feature numbers 13 and
25 respectively). The table also shows that these features are not optimal for other
classifiers. For example, the linear-logistic classifier obtains its optimum by using
the four features: BotHat, Stringness, Size and Path-to-unconnected-vessels (09, 13,
33 and 36 respectively).

In the design of the CAD system, the features are optimized for specific proper-
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Table 8.3: Comparison of classifiers from PRTools [42]. The decision
tree with two features (13+25) performs best. For feature numbers and
corresponding names see Appendix B.

Classifier Features L1 L2 AUC

Linear Bayes normal 13+25 71.8 53.8 0.712
Linear PCA 13+25 72.4 53.6 0.719
Linear logistic 13+25 78.1 55.6 0.756

09+13+33+36 58.2 41.4 0.814
09+13+25+33+36 62.2 44.2 0.816

Linear discriminant 13+25 79.9 56.8 0.752
09+13+33+36 59.6 42.5 0.807

Quadratic Bayes normal 13+25 74.3 56.9 0.688
Quadratic discriminant 13+25 76.2 54.2 0.757

33+35 72.9 57.9 0.683
Subspace 13+25 78.6 56.3 0.739

05+17+25 65.1 46.1 0.793
Nearest mean 13+25 82.9 61.1 0.740

09+13+33+36 57.9 40.9 0.822
EM clustering (k=2) 13+25 82.4 60.5 0.738

13+33+36 60.2 42.8 0.817
k-Nearest neighbor (k=30) 13+25 46.1 34.0 0.864
Binary decision tree 13+25 41.6 29.9 0.862



8.2 Training and Testing 115

ties of the embolus or its environment (e.g., stringness for small vessels, distance to
parenchyma for the partial volume effect and isophote curvature for the boundary
of contrast-enhance blood). This design brings about that rule-based systems or
decision trees have a better performance for this task.

To help decide which classifiers are suited to a particular data set, the StatLog
comparison [80] developed descriptors. They concluded that data with extreme
distributions (skew > 1 and kurtosis > 7) tend to favor symbolic learning algorithms
(e.g., decision trees). Table 8.4 shows the skew and kurtosis of some of our features.
The values in this table indicate that a decision tree may be a good inducer for our
data, which is in good agreement with our experimental results.

Table 8.4: Skew and kurtosis for several features. The high values indicate
that a decision tree may be a good classifier.

Feat Skew Kurtosis

13 2.5 10.0
17 1.3 3.2
25 2.5 18.7
33 9.5 123.9

8.2.6 Optimizing the Tree Classifier: Pruning

The results of classifier selection (Subsection 8.2.5) showed that the tree classifier
performs better than the other classifiers. Therefore, further analysis will focus on
this classifier. To prevent overcomplex trees that attempt to fit noise, forward prun-
ing (early stopping) was used, which is based on the chi-squared test for stochastic
independence [122]. Figure 8.3 clearly shows that a low pruning level increases both
the error on the test data and the gap between the training and test errors, which
indicates a poor generalization. From the figure, we conclude that the pruning level
must be at least 3 to minimize the classification error.

8.2.7 Learning Curve

For 5-fold cross-validation, 80% of the data (a fraction of 0.8) is selected for training
and 20% for testing. To find a good balance between the size of train and test data,
and to analyze the learning curve, we changed the fraction of data that was used
for training. Figure 8.4 shows a higher L1-error for low fractions (TrainF) than for
higher fractions. So, most of the data should be used for training. The figure also
shows that the curve is still decreasing for high training fractions, which allows us
to conclude that more data would further reduce the classification error. Especially
for a high pruning level (e.g., 8) it would have been beneficial to have more training
data. However, for this amount of data, there is not a clear difference between the
pruning levels between 3 and 10 (Figure 8.3). Besides, a higher pruning level will



116 Classification of Pulmonary-Embolus Candidates

2 4 6 8 10

34

36

38

40

42

44

Prune

L1−norm

Figure 8.3: L1-norm on the training data (lower curve) and test data
(upper curve) for various pruning levels of the tree classifier and two fea-
tures (13+25). The pruning level should at least be 3 to minimize the
classification error.

lead to a steeper slope at the end of the learning curve and a biased estimation of the
performance of the classifier [44], which is undesired. Both error curves – not only
on the test data, but also on the training data – are decreasing in Figure 8.4, which
shows that the classifier is hardly overtrained, even for a low number of samples.
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Figure 8.4: Most of the data should be used for training, and pruning
reduces the classification error. The L1-norm is shown for several pruning
levels of (1 = dotted, 3 = dashed and 8 = solid) on the training data (lower
curves) and test data (upper curves) for various fractions of data used for
training.

8.2.8 Bagging and Boosting

Sampling based on bagging or boosting is used to improve the performance of a
classifier [8].

Bagging is a sampling method that is based on bootstrapping and aggrega-
tion [19]. The classifiers that are generated by different bootstrap samples can be
combined (aggregated) by average voting.
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Boosting is a sampling method that iteratively classifies the data and enhances
the importance of misclassified samples by increasing the weights of these sam-
ples [57]. Samples that are erroneously classified are boosted in importance so that
the next iteration will attempt to fix the errors.

We will use bagging to improve the tree classifier for several reasons [26]. Bagging
is safer than boosting; it does not occasionally perform well, but it consistently
outperform un-bagged trees. Besides, bagging requires only little tuning. Finally,
for bagging, a low number of iterations is needed to converge.

To avoid overtraining, bagging is done in a double loop. In the inner loop, the
aggregated tree classifier is trained with bootstrapping and in the outer loop, the
performance is estimated with cross validation. The Figures 8.5 and 8.6 show that
bagging improves the classification results for the decision tree. As the number of
averaged trees (votes) increases, the L1-norm decreases (Figure 8.5). The bagged
tree classifier (32 votes) obtains the same L1-norm with a smaller training set than
an un-bagged tree classifier (Figure 8.6). Especially trees with a low pruning level
(e.g., Prune = 3) benefit from bagging.

8.2.9 Feature Extraction

There are two common ways to reduce the dimensionality of a feature space. We
already discussed the first way, feature selection, which was used to select the optimal
subset of features from a larger set of features. The second way, feature extraction,
tries to map a higher dimensional feature space to a lower dimensional space. The
data can be projected to vectors (e.g., principal components), planes or curves.

With feature selection, we found two optimal features for the tree classifier:
Stringness (Fstr) and Distance-to-parenchyma (Fd2p). A new feature can be ex-
tracted from these two by projecting the samples on a vector that represents the
distance to the decision boundary of the classifier. The decision boundary of the
bagged tree classifier is shown in Figure 8.7a for the two features. A curve was found
with a minimum square fit on the decision boundary of the bagged tree classifier
(Figure 8.7a, dashed).

C(x) = 1.052(79.8/x0.165) (8.2)

It appeared that this curve is close to class separation based on a support-vector
machine (SVM) [31] (Figure 8.7b). We used PRTools [42] for the tree classifier and
LIBSVM [27] for support-vector classification. Because of the computational cost,
we did not include SVM in the classifier and feature selection. However, this figure
shows that a good separation can be found with SVM.

One feature Fextr was extracted from the two features Fstr and Fd2p.

m(x) =







670 − 0.92x x≤ 0
680 − 0.95x + 0.000442x2 0 <x≤ 2800
10.3 − 0.00136x 2800 <x

(8.3)

Fextr =

[

300 − m

(

σstr

σd2p
Fd2p − Fstr

)

+ Fstr

]

/700 (8.4)
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Figure 8.5: Bagging improves the classification results of the decision tree.
L1-norm for several number of votes of the bagged tree classifier with prun-
ing of 3 (dashed) and 8 (solid) with a data fraction of 0.8.

0.2 0.4 0.6 0.8 1.

34

36

38

40

42

44

46

48

TrainF

L1−norm

0.2 0.4 0.6 0.8 1.

34

36

38

40

42

44

46

48

TrainF

L1−norm

Prune = 3 Prune = 8

Figure 8.6: Bagging (32 votes) especially improves the classification results
of the decision tree for low pruning levels. L1-norm for several fractions of
the data that are used for training for an un-bagged (dashed) and a bagged
(solid) tree classifier with pruning levels of 3 and 8.
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where σstr/σd2p ≈ 175. Figure 8.7c shows in grey values how this feature is re-
lated to the decision boundary. On the extracted feature, the two classes can
be parameterized by two Gaussian probability models with means (µp = −35,
µn = 95) and standard deviation (σp = 161, σn = 116) and a Fisher distance
of (µp − µn)2/(σ2

p + σ2
n) = 0.43.
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(a) Bagged Tree (b) SVM (c) Fextr

Figure 8.7: The (a) bagged tree classifier and the (b) support-vector ma-
chine are shown as solid curves for the two features: Stringness (Fstr) and
Distance-to-parenchyma (Fd2p). The dashed curve represents the fitted de-
cision boundary (Eq. 8.2). (c) The extracted feature (Eq. 8.4) is shown as
grey values in the range {0.14 − 0.74}.

Table 8.5 shows that the costs of misclassification can be reduced with this
extracted feature. This is not just caused by the dimensionality reduction, but also
by the smoothness of the boundary of the extracted feature (Occam’s razor).

Table 8.5: Classification results of the bagged tree classifier with the fea-
tures Stringness (13) and Distance-to-parenchyma (25) and the results based
on the extracted feature. The table shows that the extracted feature performs
better than the bagged tree classifier with the two selected features (13 and
25).

Features L1 L2 AUC

13+25 41.4 29.6 0.862
Fextr 37.7 26.7 0.890

8.2.10 FROC-Curves on Test Data

Figure 8.8 shows the FROC curve for classification with the feature that was ex-
tracted from Stringness and Distance-to-parenchyma (Eq. 8.4) and Figure 8.9 shows
an FROC curve based on the average and the median number of false positives per
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data set. Each point on the FROC curve corresponds to another decision boundary
and another threshold operation on the extracted feature. We used threshold averag-
ing to obtain the 68% confidence intervals [47, 100]. For each of the thresholds, the
mean and standard deviations of the corresponding ROC points are generated based
on 400 iterations of 5-fold cross validation on the 38 training data sets, giving the
average ROC location and the vertical and horizontal confidence intervals. A joint
confidence region (or local confidence ellipse) is computed for each threshold under
the assumption of a bivariate normal distribution. This region is constructed with
the separate horizontal and vertical confidence intervals at a given threshold. The
local confidence regions are used to create the upper and lower confidence bands.

The average performance of the system is estimated to be 70% sensitivity at
5.0 FP/ds, or 75% at 6.5 FP/ds (Figure 8.8). The median of the false positives
shows a slightly better performance because the result is not influenced by data sets
with a large number of false positives (outliers).

8.2.11 Analysis of False Positives

Training the CAD system on 38 data sets resulted in a classifier that obtained
70% sensitivity at 5 FP per data set. The false positives were analyzed to gain
understanding of the most important causes for misclassification. Each of the false
positives was assigned at least one cause for misclassification. For example, a single
detection can be caused by a lack of contrast in the veins and also by a movement
artifact.

Table 8.6 (page 123) shows that the four major causes for FP are: flow voids
in the veins or sub-optimal contrast enhancement in the veins (35%), movement
artifacts (29%), noise in large arteries (13%), and an incorrect automatic evaluation
of the candidates (14 + 7 = 21%), which covers 82% of the false detections (due to
overlap this is less than the sum of 99%).

Note that the most important causes for false positives of our CAD system (false
detections in the veins and movement artifacts, which are shown in the Figures 8.10
and 8.11) were not included in the model that was used for the current implemen-
tation of candidate detection and feature computation.

8.3 Evaluation of the CAD System

Our system for the automatic detection of pulmonary embolism in CT images con-
sists of three steps. First, vessel segmentation and candidate detection. Second,
feature computation, and third, classification of the PE candidates. The classifier
was trained on 38 data sets. While tuning the detection system and optimizing the
classifier, the training data may be ‘worn out’ and the estimated performance can
be too optimistic [93]. Therefore, the system was evaluated on 19 positive data sets
that were not used in any of the steps described until now. The evaluation results
of detection and classification are discussed separately.
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Figure 8.8: (a) FROC curve (solid) of the CAD system on the training
data with confidence bands (dashed) based on 68% confidence intervals and
(b) detail of this ROC curve.
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Figure 8.9: FROC curve on the training data with averaged (solid) and
median (dashed) number of FP/ds.
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PE in artery Flow void in vein

Figure 8.10: A flow void in a vein is an important cause for false positives.
Locally, it may be hard to see the difference between an embolus and a flow-
void.

No movement Breathing Beating heart

Figure 8.11: Movement artifacts are an important cause for false positives.
The movement may create concave and blurred boundaries in the CT data,
which are similar to PE. (a) Sagittal view without movement. (b) Sagittal
view with breathing artifacts. (c) Coronal view with beating heart.
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Table 8.6: The table shows the FP that are related to a cause (FPc) and
the data sets that contained such a cause (DSc), each in relation to the total
number (FPt resp. DSt). Most of the FP were caused by flow voids in the
veins and motion artifacts.

Description of Cause (c) FPc/FPt DSc/DSt
Vein with flow void or without contrast 35% 53%
Movement artifact 29% 53%
Certainly PE 14% 42%
Noise in the large arteries 13% 26%
Bronchial wall and tissue 7% 24%
Maybe PE 7% 24%
Touching vessels 6% 26%
Parenchymal lung disease 5% 16%
No enhancement of arteries 5% 8%
Partial volume effect 4% 18%
Peripheral vessels touching mediastinum 4% 16%
Bifurcation 4% 11%
Superior vena cava 3% 11%
Large vessels in the mediastinum 3% 8%
Uncertain 3% 13%
Boundary of mediastinum 1% 3%

8.3.1 Detection Results

Initially, 92 PE were annotated by a radiologist in the 19 evaluation data sets
(Table 8.7). Discontinuous thrombi were counted as separate lesions. The most
proximal location of the thrombus defined its anatomic classification (main, lobar,
segmental or subsegmental). In the detection step, 15% (14 PE) were missed by
the system at 63 FP/ds. However, the system was also able to find 26% (24 PE)
extra. These additional findings have been confirmed by a radiologist in a second
inspection.

The detection seems to work slightly better for lobar and segmental PE (both
88% sensitivity) than for sub-segmental (81%). Although we cannot draw a firm
conclusion about the performance of the system inside the main pulmonary vessels
purely based on the two annotations, we know that emboli in the mediastinum can
be missed based on the design of the detection system.

8.3.2 Classification Results

Figure 8.12 shows the FROC curve of the CAD system for all vessel types and
Figure 8.13 shows curves for each vessel type separately. The FROC curve shows
that the sensitivity of the CAD system is 58%, 63% and 73% at 4.0, 4.9 and 15 FP/ds
respectively. These points on the FROC curve are within a 1.0σ range of our
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Table 8.7: PE annotated by the radiologist and detected by the CAD system
in the 19 evaluation data sets.

Vessel Annotated Detected

Subsegmental 32 26 (81%)
Segmental 34 30 (88%)
Lobar 24 21 (88%)
Main 2 1 (50%)
Initial annotated PE 92 78 (85%)
Additional PE found with CAD 24 (+26%) 24
Total annotated PE 116 102 (88%)

False Positives – 1197 (63 FP/ds)

estimation, so the evaluation results do not differ significantly from the training
results.

In the introduction (Section 8.1), we already discussed the work and results of
others. This discussion is summarized in Table 8.8 to allow a comparison with our
results. For a completely fair comparison, an evaluation of different systems on
the same data would be preferable. Because this was not possible in our study,
we tried to obtain a reliable estimate of the system performance by using enough
representative data for training and evaluation. The table shows that it is unclear
how well the systems of Masutani et al. and Pichon et al. generalize, because their
systems were evaluated on a low number of emboli. The table also shows that the
system of Das et al. was evaluated on a large number of patients and it performs well
on the most relevant PE, but it is unclear how the system will perform on all emboli,
because only the results for peripheral emboli are reported. Digumarthy et al. and
Maizlin et al. evaluated the same system. The evaluation results of Digumarthy
on data without sub-optimal opacification, motion artifacts and diseases is good.
However, the evaluation by Maizlin on a small number of more representative data
sets showed that the results of the system (both sensitivity and FP/ds) are worse
than those of our system.

The only studies in the table (besides ours) that reported the system performance
on a large database of realistic test data that contained breathing artifacts and
parenchymal diseases without the exclusion of emboli based on size or location are
the studies of Zhou et al. and Buhmann et al. The table shows that we are able to
obtain a higher sensitivity at a lower number of false positives than their systems.

Besides, it is important to note that – with the CAD system – the radiologist
was able to improve the number of annotations with 22% at only 4.9 FP/ds.

8.4 Conclusions

Our system for the automatic detection of pulmonary embolism (PE) consists of
vessel segmentation, candidate detection, feature computation and classification.
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Figure 8.12: (a) FROC curve of the CAD system on the evaluation data
and (b) detail of this FROC curve.
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Figure 8.13: (a) FROC curves for PE found in the vessel types: sub-
segmental, segmental, lobar and the additional found PE and (b) detail of
the FROC curves.
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Table 8.8: Comparison of systems for PE detection. The table shows the
number of emboli (PE) and the number of positive data sets (ds) used for
evaluation, sensitivity (Sens, %), false positives per data set (FP/ds), and
a remark about the evaluation.

Reference PE ds Sens FP/ds Remark

Masutani [107] 21 11 100 7.7 Low #PE.
Pichon [119] 22 3 86 6.3 Low #PE.
Das [35] 168 seg 33 88 4 Only

120 sub 78 Peripheral PE.
Digumarthy [39] 270 39 92 2.8 No motion;

No diseases
Maizlin [101] 45 8 58 6.4 Low sens. %;

Low #ds
Zhou [168] 225 14 52 11.4 Low sens. %
Buhmann [20] 352 40 47 3.9 Low sens. %

Proposed 116 19 58 4.0 Artif. & disease;
system 63 4.9 22% additional PE

73 15 (see Fig. 8.12)

This chapter focussed on the classification of PE candidates and the evaluation of
the CAD system.

With 5-fold cross-validation, we estimated the performance of several classifiers.
The results show that the performance is optimized by using the bagged tree clas-
sifier with the features Distance-to-parenchyma and Stringness. These two features
indicate that there are many PE inside small tubular vessels and many false detec-
tions due to the partial volume effect on the boundary of vessels.

In the design of the CAD system, each of the features is optimized for a specific
type of embolus or false detection. This design explains why decision trees are good
classifiers for this task. Furthermore, the shape of the feature distributions indicates
that decision trees are favored.

The system was trained on 38 contrast-enhanced CT data sets and evaluated
on 19 other data sets. The evaluation showed that the performance of the CAD
system was only slightly over-estimated and that the system generalizes well. The
sensitivity of the CAD system is 63% at 4.9 FP/ds, which allowed the radiologist
to improve the number of detected PE with 22%. These results are good in relation
to the state-of-the-art results of others that were estimated on realistic test data.

Most of the false positives were caused by flow voids in the veins and motion
artifacts. Future research should focus on the recognition of these causes to reduce
the number of false positives or improve the sensitivity at an equal number of false
positives.
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Chapter 9

Discussion and Recommendations

9.1 Vessel-Diameter Quantification

In the first part of this thesis, we described techniques to perform fast and accurate
vessel quantification. When not taken into account correctly, anisotropy may cause
many differential operations (such as isophote curvature computation) to become
less accurate or even meaningless. In Chapter 2, we showed how to obtain isotropic
Gaussian derivatives from multi-dimensional images with anisotropic blurring and
anisotropic voxels. To obtain isotropic Gaussian derivatives, we used the semigroup
property and we applied extra blur in the high-resolution directions to obtain the
same amount of blur in every direction. However, a disadvantage of this approach is
that the worst resolution is applied in every direction, while for many applications
preserving the highest resolution may be very important. Interpolation in the low-
resolution direction or deconvolution of the isotropic data may improve the results,
but finding the best way is a non-trivial task and a point for further research.

Gaussian derivatives are often used in the field of medical imaging to compute
features in huge multi-dimensional data sets. Therefore, a fast implementation
is important. In Chapter 3, we showed that B-splines are more accurate than
truncated Gaussian derivatives for the implementation of Gaussian derivatives. Of
course, higher accuracy will not always lead to better results. However, we also
showed that the same accuracy can be obtained at lower computational cost with
B-splines. Another advantage of the B-spline of order n is that Cn−1 continuity is
guaranteed, whereas the truncated Gaussian is not even C0 continuous. We advise
to implement Gaussian blur with recursive filters and a pyramid structure, and to
implement differentiation and ‘interpolation’ on Gaussian blurred data via B-spline
approximation to obtain optimal accuracy and speed.

Quantification of the local vessel diameter is essential for the correct diagnosis
of vascular diseases. In Chapter 4, we showed that the tubular vessel surface can be
localized without bias with a derivative-based edge detector. The proposed method
uses the locally measured isophote curvature to correct for the dislocation of a
curved surface. In Chapter 5, we showed that the unbiased vessel-diameter can be
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estimated with very low computational cost based on the full-width at half maximum
(FWHM) criterion. This method uses a mapping from the dislocated surface to the
corrected surface in order to remove the bias. We also analyzed the signal-to-noise
ratio and showed that the method is robust against noise. However, a disadvantage
of this approach is that it assumes that the blood vessel consists of a cylindrical
structure. One could argue that the cylindrical assumption can safely be made for
vascular structures because the shape of large vessels is not affected and the shape of
small vessels is not measurable, but we know that extra processing is required near
bifurcations as the assumptions do not hold there. Finding a generally applicable
method for fast, unbiased and robust vessel quantification is an ongoing point of
research.

9.2 Embolus Detection

Our CAD-system for the automatic detection of pulmonary embolism consists of
three steps: candidate detection, feature computation and classification.

In Chapter 6, we showed that our system for the automatic detection of PE
candidates was able to find almost 90% of the emboli at 41 false detections per
data set. Of the four features that were used for candidate detection – which were
based on intensity, eigenvalues of the Hessian, bothat transform and vessel tracking
– the last two appeared to improve the detection results most. This shows that
contrast changes (bothat) and complete occlusions (vessel tracking) are important
in the detection step. Future research may include further analysis of the difference
between pulmonary embolism in major and peripheral vessels and it may focus on
the segmentation of whole emboli.

In Chapter 7, we proposed features that can be used for the classification of pul-
monary embolism. To classify the embolus, we did not only focus on characteristics
of the embolus, but also on features that describe the blood vessels. The features
are based on intensity, location, size, shape of lumen and shape of a vessel. Dur-
ing a separate analysis of the features, we showed that many features contained a
highly significant amount of information. Most significant were the features based on
‘isophote curvature’ and ‘distance-to-parenchyma’. Future research may include the
use of path- or tree-related features describing the change of radius or the occlusion
index.

In Chapter 8, we showed that the bagged tree classifier – with the features
‘distance-to-parenchyma’ and ‘stringness’ – optimizes the performance of the
system. Other features also contained valuable information but they were not able
to improve the end-result. The selection of these two features may be related to
a large amount of PE inside the small tubular vessels and a large amount of false
detections on the vessel wall (caused by the partial volume effect). The system
was trained on 38 contrast-enhanced CT data sets and evaluated on 19 other
data sets. Evaluation showed that our system performs well in comparison to
other CAD systems presented in literature that were evaluated on representative
data. The sensitivity of the CAD system is 63% at 4.9 false positives per data set,
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which allowed the radiologist to improve the number of detected PE with 22%.
Fortunately, only a small number of false positives was caused by tissue near the
mediastinum, or the partial-volume effect on bifurcations or the vessel boundary.
Apparently the vessel segmentation and classification were able to exclude these
candidates successfully. The three most important causes for false positives are:
flow voids in the veins, motion artifacts and noise due to sub-optimal contrast
enhancement. An artery-vein separation and the recognition of motion artifacts are
interesting fields for future research, which can reduce the number of false positives,
or improve the sensitivity at an equal number of false positives. However, these
types of false positives may be automatically removed (or become less important)
when newer CT scanners or improved scanning protocols are used.

The presence of different types of emboli and different types of false positives had a
major impact on the design of the CAD system. For example, in the detection step,
the path to unconnected vessels was needed to find the completely occluding emboli
(sudden stops), and the object size was used to remove many false detections due
to noise. Most of the features were also optimized for a specific type of embolus
or false detection. Feature computation focussed on emboli in small tubular vessels
(stringness) or in large vessels (isophote curvature), or on false detections near the
boundary (distance to background) or due to noise (size, bothat). In the classifica-
tion step, the tree classifier performed better than others, probably because of its
ability to cope with multiple types and non-Gaussian distributions. During feature
selection, stringness and distance to parenchyma appeared to be the most important
features, which indicate that a large amount of emboli was present in small tubular
vessels and many false detections could be found near the boundary of vessels. The
most important types of false positives of the CAD system were flow voids in veins,
motion artifacts and sub-optimal contrast-enhancement.

Despite these different types, only one classifier was used in our CAD system to
separate the emboli from false detections, but the objects or pixels from different
types could also have been handled separately in the detection, feature-computation
and classification step for several reasons. First of all, expert knowledge should be
used when it is available to obtain the optimal result. For example, candidates
are detected separately in major and peripheral vessels and it is known that some
features are meant for candidates in either small or large vessels. Therefore, one
should not mix these candidates as if it is one type, compute all features on every
candidate, and hope that the classifier will be able to distinguish the two types that
could have been separated from the beginning. A second reason is that an embolus
of one type is more similar to other emboli of the same type than those of other
types and thus more easily classifiable. Another reason is that a separate treatment
of the different types avoids overshadowing of less frequent types by more frequent
types. For example, in the detection step, we already noticed the large amount of
candidates in small vessels. So it is not a surprise that stringness, which focusses
on small vessels, was an important feature and that isophote curvature, which also
contains valuable information for large vessels, was not able to improve the overall
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result.
However, we have chosen not to handle the different types separately for the

following reasons. First of all, in literature many types could be found, but it was
unknown which ones would have been most relevant for our CAD system. In hind-
sight, the separation between detections in large and small vessels seems relevant,
and a separate treatment of false detections due to the partial-volume effect, flow
voids in veins, motion artifacts and sub-optimal contrast-enhancement may be im-
portant for the system. A second reason is that the use of expert information,
for example in a rule-based system, is less dynamic than a classifier, which can be
trained automatically. A slight change in the system might require the generation of
a new set of rules. A third reason is that separate treatment might require separate
annotation of candidates by type. It is tedious to annotate all candidates with a
different label, especially if the huge number of false detections must be labelled in
the CT data sets for several early version of the CAD system. Besides, the assign-
ment to a type may be uncertain and most of the candidates will belong to several
types. Another reason for not handling the types separately is that the informa-
tion of some types was already preserved in features (e.g., features for candidates
in peripheral vessel or unconnected vessels) so that a classifier can extract the most
relevant separations automatically. A final reason is that the number of PE was
limited. Subdivision by type would have reduced the number of PE in a subgroup,
which could easily have resulted in a system that does not generalize well.

Further research could focus on a separate treatment of a low number of types
that retrospectively appear to be most important for the optimization of the system,
such as candidates in small and large vessels, or candidates due to flow voids in veins.

With our 63% sensitivity CAD system, we were able to add 22% to the manually
detected PE of the radiologist. However, we do not know the relevance of the
additional emboli for two reasons.

The first reason is related to the size and location of the additional emboli. The
additional emboli in the evaluation data lack information about size and location.
Nevertheless, earlier results [135] already indicated that our CAD system is most
helpful for the detection of PE in the segmental and subsegmental (peripheral) pul-
monary arteries. These PE are easily missed by a human observer [164]. However,
the clinical relevance of peripheral PE is a matter of controversy [62, 132, 137, 164].
On one hand, otherwise healthy patients with subsegmental PE may not be at higher
risk. On the other hand, small emboli may indicate a risk for recurrent, more sig-
nificant emboli. Although the relevance of peripheral PE is still unclear, we believe
that a higher sensitivity will lead to a more accurate estimation of the severity of
obstruction and a better patient selection. A higher sensitivity also allows a better
analysis of the relevance of peripheral PE to stop the controversy. It is necessary
to further study the automatic computation of measures that reflect the severity of
embolization, such as the vascular obstruction index [117, 121, 164], and relate them
to the risk of complications and death of PE in cases with and without treatment.

The second reason for unclarity about the relevance of additional emboli is
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related to positive training and evaluation data. Our results were obtained on a
group of positive data sets, which contained (on average) five PE per data set.
However, for treatment, it is less relevant to find an extra embolus in a data set that
has already been classified as ‘positive’, than to find an embolus in a data set that
would otherwise have been classified as ‘negative’. Unfortunately, the estimated
added value of our CAD system cannot easily be extrapolated to data sets that
were initially classified as negative, because the sensitivity of the radiologist –
which influences the added value – might not be constant. It may be easier for a
human observer to find all emboli in data sets with a low amount of PE (zero or
one) than in sets with a higher amount (five or more). Thus, based on the results,
it is difficult to estimate the clinical relevance of our CAD system. Although the
system can find additional emboli and the performed evaluation is at the level of
state of the art literature, it should be extended to a larger evaluation on both posi-
tive and negative scans to see whether the CAD system will change patient outcome.

In this thesis, we showed that computer assistance can be helpful to improve the
accuracy of measurements and the sensitivity of object detection in an image. As
the amount of information increases it will become even more important to assist
a human observer to analyze the data. We expect that automatic detection and
quantification in multi-dimensional images will be an interesting topic of research
for many years to come in healthcare and other application areas.





Appendix A

FWHM Mapping

In this appendix, we show the look-up tables (LUTs) that allow an easy implemen-
tation of the proposed method. More information can be found in Chapter 5.

The first LUT corresponds to Figure 5.2a, which shows a mapping from r0/σ to
R/σ.

// for(i = 1.2; i < 4.5; i += 0.1)

float lut1[] = {0.39,0.887,1.173,1.39,1.571,

1.728,1.869,1.999,2.121,2.237,2.348,2.456,

2.56,2.663,2.764,2.863,2.962,3.06,3.157,

3.254,3.351,3.447,3.544,3.64,3.737,3.834,

3.93,4.027,4.124,4.221,4.318,4.416,4.513};

The second LUT corresponds to Figure 5.2b; which shows a mapping from σ/R to
Ithr.

// for(i = 0.0; i < 3.0; i += 0.1)

float lut2[] = {0.50,0.48,0.46,0.441,0.438,

0.459,0.497,0.544,0.592,0.637,0.679,0.716,

0.748,0.775,0.799,0.82,0.838,0.853,0.867,

0.879,0.889,0.898,0.907,0.914,0.92,0.926,

0.931,0.936,0.94,0.944};
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List of Features

Number Label Statistics Short description
1 HU µ Intensity in Hounsfield units
2 HU min
3 HU max
4 HU σ

5 - 8 Eigval µ,min,max,σ Classifier based on the Eigen
values of the Hessian

9 - 12 BotHat µ,min,max,σ BotHat transform
13 - 16 String µ,min,max,σ Stringness
17 - 21 IsoCurv size,µ,min,max,σ Isophote curvature
22 - 25 Dist2Par µ,min,max,σ Distance to parenchyma
26 - 30 Circ size,µ,min,max,σ Circularity

33 Size Size
34 PeriVess Small Peripheral vessels
35 UnconnVess Unconnected vessels
36 PathToUncon Path to unconnected vessels

where

Statistic Description
size percentage of voxels in an object that contains a nonzero value
µ average value in an object.
min 10th percentile.
max 90th percentile.
σ Standard deviation
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Vessel-Diameter Quantification and
Embolus Detection in CTA Images

(Summary)

Pulmonary embolism (PE) is the sudden obstruction of an artery in the lungs,
usually due to a blood clot. There are more than 50 cases of PE per 100,000
persons every year in the USA. Of these cases, 11% die in the first hour and in
total, the untreated mortality rate of PE is estimated to be 30%. Thus, PE is a
common disorder with a high morbidity and mortality for which an early and precise
diagnosis is highly desirable.

Contrast-enhanced multi-slice x-ray computed tomography (CT) has become the
preferred initial imaging test (and often the only test) to diagnose PE, because it is
a simple, minimally invasive, fast and high-resolution imaging technique that allows
the direct depiction of a clot inside the blood vessels. The CT image can also be
used to identify other potentially life-threatening causes in a patient with chest pain.

In contrast-enhanced CT (i.e., CT angiography, CTA) images, the blood vessels
appear to be very bright because the contrast material is dissolved in blood. The
embolus does not absorb contrast material, and therefore, it remains darker. PE can
be recognized in CTA images as a dark area in the pulmonary arteries. However,
manual detection of the dark spots that correspond to PE in CT images is often
described by radiologists as difficult and time consuming. Therefore, computer-aided
diagnosis (CAD) is desirable.

In this thesis, we propose a new CAD system for automatic detection of PE
in CTA images. The evaluation shows that the performance of our system is at
the level of state of the art literature. The data was selected to demonstrate a
variety of thrombus load, considerable breathing artifacts, sub-optimal contrast and
parenchymal diseases, and none of the emboli were excluded for evaluation. This
is important because the main problem of PE detection is the separation between
true PE and look-alikes, which is much harder when the patient is not healthy.

The CAD system that we propose consists of several steps. In the first step,
pulmonary vessels are segmented and PE candidates are detected inside the vessel
segmentation. The candidate detection step focusses on the inclusion of PE –



even when vessels are completely occluded – and the exclusion of false detections,
such as lymphoid tissue and parenchymal diseases. Subsequently, features are
computed on each of the candidates to enable classification of the candidates. The
feature-computation step does not only focus on the intensity, shape and size of
an embolus, but also on relative locations and the regular shape of the pulmonary
vascular tree. In the last step, classification is used to separate candidates that
represent real emboli from the other candidates. The system is optimized with
feature selection and classifier selection. Several classifiers have been tested and
the results show that the performance is optimized by using a bagged tree classifier
with the features distance-to-parenchyma and stringness. The system was trained
on 38 CT data sets. Evaluation on 19 other data sets showed that the system
generalizes well. The sensitivity of our system on the evaluation data is 63% at 4.9
false positives per data set, which allowed the radiologist to improve the number of
detected PE with 22%.

Another part of this thesis is about the accurate quantification of the vessel diameter
in CT images. Quantification of the local vessel diameter is essential for the correct
diagnosis of vascular diseases. For example, the relative decrease in diameter of
a stenosis is an important factor in determining the treatment therapy. However,
inherent to image acquisition is a blurring effect, which causes a bias in the diameter
estimation of most methods. In this thesis, we focus on fast and accurate (unbiased)
vessel-diameter quantification.

For the localization of the vessel wall, Gaussian derivatives are often used as dif-
ferential operators. We show how these Gaussian derivatives should be computed on
multi-dimensional data with anisotropic voxels and anisotropic blurring. The voxels
and blurring are usually anisotropic in the 3D CT images, which means that the
voxel size and the amount of blur is not equal in all three directions. Furthermore,
we show that the computational cost of interpolation and differentiation on Gaussian
blurred images can be reduced by using B-spline interpolation and approximation,
without losing accuracy. We introduce a derivative-based edge detector with un-
biased localization on curved surfaces in spite of the blur in CT images. Finally,
we propose a modification of the full-width at half-maximum (FWHM) criterion to
create an unbiased method for vessel-diameter quantification in CT images. This
criterion is not only cheaper but also more robust to noise than the commonly used
derivative-based edge detectors.



Samenvatting
(Summary in Dutch)

Een longembolie is een stolsel in een longslagader waardoor de bloedtoevoer wordt
geblokkeerd. In Nederland krijgen elk jaar ongeveer 7 van de 10.000 mensen een
longembolie [108]. Dat zijn meer dan tienduizend patiënten per jaar, waarvan 11%
overlijdt in het eerste uur. De longembolie is dan ook een ernstige aandoening die
veel voorkomt en vaak met sterfte gepaard gaat, waarvoor een snelle en nauwkeurige
diagnose gewenst is.

Om snel een diagnose te kunnen stellen wordt tegenwoordig gebruik gemaakt van
een CT-scan. Een CT-scan maakt gebruik van röntgenstraling. In röntgenbeelden
zijn botten wit, weefsel en bloed zijn grijstinten en lucht is zwart. Bij de variant
CTA die men bij vaatonderzoeken gebruikt wordt contrastvloeistof gespoten in het
bloed zodat de intensiteit van de bloedvaten in de CT-beelden hoger wordt en het
bloed wit wordt afgebeeld. Op de plaatsen waar een stolsel of prop aanwezig is,
wordt de contrastvloeistof echter niet opgenomen, dus daar blijft het donker.

Een CT-scanner produceert geen gewone tweedimensionale (2D) röntgenbeelden
maar een stapel van bijvoorbeeld 400 plakken van 512x512 beeldpunten (of pixels
als afkorting van picture elements) zodat een driedimensionaal (3D) volume kan
worden gevormd dat beide longen bevat. In een 3D volume spreken we van voxels
(volume pixels). In onze studie was de grootte van de voxels ongeveer 0.6 mm in
alle drie richtingen. Het is voor een radioloog lastig en tijdrovend om tussen deze
100 miljoen voxels de donkere gebieden te vinden die bij een longembolie horen.
Daarom is de hulp van een automatisch detectiesysteem gewenst. Het ontwerp van
een systeem voor automatische emboliedetectie is het belangrijkste doel van het
werk dat beschreven wordt in dit proefschrift.

Een ander doel in dit proefschrift is het nauwkeurig meten in CT-beelden van
de diameter van bloedvaten. De diameter is belangrijk voor een goede diagnose
van vaatziektes. Zo hangt bijvoorbeeld de behandeling van een stenose af van de
mate van vernauwing, het quotiënt van twee diameters. Inherent aan een CT-scan
is echter een zekere mate van onscherpte, met als gevolg dat veel methoden bij
het schatten van de diameter een systematische fout maken. In dit proefschrift



beschrijven wij een verbeterde (sneller en nauwkeuriger) meting van de diameter
van bloedvaten en dat zonder systematische fout.

Het proefschrift bestaat uit twee delen. Het eerste deel gaat over het nauwkeurig
kwantificeren van de diameter van bloedvaten in CT-beelden. Bij een 3D CT-beeld
hoeven de groottes van voxels en de mate van onscherpte in de drie richtingen niet
gelijk te zijn: er kan sprake zijn van anisotropie. In hoofdstuk 2 beschrijven wij
hoe Gaussische afgeleides moeten worden berekend op multidimensionale data met
anisotrope afmetingen van voxels en anisotrope onscherpte. Gaussische afgeleides
worden vaak gebruikt als differentiaal operatoren om de positie te bepalen van de
wand van een bloedvat. In hoofdstuk 3 laten we zien dat de kosten om Gaussische
afgeleides te berekenen door middel van interpolatie en/of differentiatie van Gaus-
sisch versmeerde beelden kunnen worden verlaagd met behulp van B-spline interpo-
latie en benadering, en dat zonder verlaging van de nauwkeurigheid. In hoofdstuk 4
introduceren wij een op Gaussische afgeleiden gebaseerde randdetector die ondanks
de onscherpte in CT-beelden zonder systematische afwijking werkt op gekromde
oppervlaktes. In hoofdstuk 5 laten we zien dat het full-width at half-maximum
(FWHM) criterium kan worden gebruikt om de bloedvatdiameter te bepalen zon-
der systematische afwijking. Dit criterium is niet alleen goedkoper te berekenen,
maar ook beter bestand tegen ruis dan de randdetectoren die gebaseerd zijn op een
afgeleide.

Het tweede deel van het proefschrift gaat over het systeem voor de automatische
detectie van longembolieën in CT beelden. Het systeem bestaat uit drie stappen die
in afzonderlijke hoofdstukken worden beschreven. In hoofdstuk 6 beschrijven we de
eerste stap waarin longen en bloedvaten worden gesegmenteerd om het zoekgebied te
verkleinen, en waarbij emboliekandidaten worden gedetecteerd in de gesegmenteerde
bloedvaten. In hoofdstuk 7 beschrijven wij hoe de karakteristieke kenmerken worden
berekend van de emboliekandidaten om classificatie van de kandidaten mogelijk
te maken. In hoofdstuk 8 beschrijven wij de laatste stap waarin classificatie een
scheiding maakt tussen de kandidaten die beschouwd worden als echte embolieën
en de overige kandidaten. Daarbij wordt uitgelegd hoe de optimale selectie van
kenmerken en de optimale classificator zijn gekozen. Ook de evaluatie van het
systeem voor emboliedetectie wordt gepresenteerd in hoofdstuk 8. Wij tonen daarbij
aan dat een bagged tree classifier met de kenmerken distance-to-parenchyma en
stringness voor onze opzet het meest geschikt zijn. Uit de evaluatie bleek dat ons
systeem goed presteert in vergelijking tot andere systemen in de literatuur die met
representatieve data zijn geëvalueerd. De sensitiviteit van ons systeem is 63% bij
4.9 verkeerde detecties per dataset, wat de radioloog in staat stelde om het aantal
gedetecteerde embolieën met 22% te verhogen.

Ten slotte kan de discussie worden gevonden in hoofdstuk 9, samen met de
aanbevelingen voor toekomstig onderzoek.
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