
IMAGE 2009 Conference

Presented at the IMAGE 2009 Conference
St-Louis, Missouri, July 2009.

 AA CCAASSEE SSTTUUDDYY OONN PPRROOCCEEDDUURRAALL MMOODDEELLIINNGG OOFF
GGEEOO--TTYYPPIICCAALL SSOOUUTTHHEERRNN AAFFGGHHAANNIISSTTAANN TTEERRRRAAIINN

Ruben Smelik, Klaas Jan de Kraker
TNO Defence, Security and Safety

The Hague, The Netherlands

Tim Tutenel, Rafael Bidarra
Delft University of Technology

Delft, The Netherlands

 ABSTRACT
A cost-effective method of military training is game-based
training, for which custom geo-typical terrain models are
often most suitable. However, for training instructors,
scenario preparation is seriously slowed down by the
complexity of current terrain modeling tools and methods.
They would benefit from a quick and easy to use automated
terrain modeler. The purpose of our declarative modeling
framework is to offer an intuitive and fast way for instructors
to model geo-typical terrain.

We investigated how procedural methods can be
developed and applied to quickly generate specific types of
geo-typical terrain models. In this case study, we focused on
generating terrain models that contain the typical natural
and man-made features of southern Afghanistan. By
analyzing these features and by developing and integrating
procedural methods in our sketch-based terrain modeling
framework, we found that one can quickly achieve
convincing results. We present new and tailored methods
that are fast and effective and that can generate a complete
and consistent geo-typical Afghanistan-like terrain model.
The results strengthen our belief that the framework is a firm
step towards a declarative, automated terrain modeling
process. Moreover, these procedural methods can be tailored
to generate other types of geo-typical terrain.

 INTRODUCTION
Military training instructors increasingly often employ
simulations and modified entertainment games to train
personnel in a variety of skills and tactics. One of the
difficulties instructors face when using this technology is
creating customized scenario content, including platforms
and entities, Computer Generated Forces scripting, and 3D
terrain databases. Terrain plays a key role in military training
scenarios, and the features of available terrain models
constrain the types of different training scenarios an
instructor can create.

In contrast to, for instance, mission rehearsal scenarios,
training scenarios frequently take place on geo-typical
terrain. It would be very helpful for instructors if they were
able to create their own geo-typical terrain databases. In that
case they could conceive terrain databases that are tailored
for certain training objectives, allowing them to develop
well-constructed, effective and efficient training curricula.
However, current manual terrain editors are both too
complex and too time-consuming to be useful for instructors;
automatic terrain generation methods show a lot of potential,
but currently available tools still lack user control and
intuitive editing capabilities. The underlying reason for this
is that these tools often require an in-depth knowledge of the
algorithms to predict the effect of a parameter value on the
outcome. This results in a trial and error process for
obtaining the desired result.

As an overall consequence, instructors cannot create
new terrain, nor can they easily make changes to existing
terrain models. Therefore, they are forced to choose from a
fixed set of pre-made terrain databases. Although these can
cover many possible settings, they do significantly limit the
number of potential training scenarios and decreases the
variety in the training curriculum.

In order to solve the above problems, we developed a
novel modeling framework for creating geo-typical terrain.
Our intent is not only to significantly speed up the terrain
modeling process but, more importantly, to provide a way for
people without special 3D modeling expertise, such as
training instructors, to rapidly create terrain models that meet
their requirements. We believe that for this purpose a
declarative approach is best suited: it allows instructors to
focus on declaring what they want, instead of focusing on
how they should model it.

Typically, instructors do have an idea of the layout of a
terrain that fits their training scenario. Our framework allows
them to express this idea using a sketch interface and creates
the terrain model accordingly. In this way, the framework
lets instructors focus on declaring the terrain they need,
without bothering them with modeling tasks. The framework
provides automated modeling by integrating a variety of

procedural content generation methods and making them
accessible and user-friendly.

Most existing procedural terrain generation methods
focus on Western Europe- or North America-like terrain,
while for military training purposes a terrain that resembles
actual and possible mission areas has more value. As, for The
Netherlands, southern Afghanistan is currently an important
mission area, this case study demonstrates the automated
modeling of geo-typical southern Afghanistan terrain. It
leverages our procedural terrain modeling framework to
generate terrain that resembles and has the typical features of
the southern Afghanistan terrain and culture.

The remainder of this paper is organized as follows.
First, we discuss the state of the art on procedural terrain
modeling. Next, we give an overview of our new terrain
modeling approach. After this follows the case study. We
describe which typical Southern Afghanistan features we
have reproduced and show our procedural methods for
generating both the natural environments and urban areas. To
show the results, a selection of images from the generated
terrain models is presented. Lastly, we summarize our
contributions and indicate areas for further research.

 BACKGROUND
Procedural modeling has been an active research topic for at
least thirty years. A major topic within procedural modeling
is the automatic generation of terrain models, which started
with natural phenomena such as terrain elevation and growth
of plants in the 1980 and 1990's and extended its focus to
urban environments at the start of the new millennium. Here,
we discuss some of the most influential work on procedural
terrain generation. For a more in-depth survey on these
procedural methods, see [18].

Automatic generation methods for geo-typical elevation
maps are often based on fractal noise generators. Examples
include Perlin noise [12, 13], which generates noise by
sampling and interpolating points in a grid of random
vectors. Rescaling and adding several levels of noise to each
point in an elevation map results in natural, mountainous-like
structures. Further transformations on elevation maps include
simulations of physical phenomena, such as erosion. Thermal
erosion diminishes sharp changes in elevation, by iteratively
distributing material from higher to lower points, until the
talus angle, i.e. maximum angle of stability for a material
such as rock or sand, is reached. Erosion caused by rainfall
(fluvial erosion) can be simulated using a similar, but more
complicated, algorithm, taking into account rainfall, water
evaporation and the amount and velocity of water (containing
dissolved material) that flows out to lower points (see, for
example, Musgrave’s PhD thesis [9]).

Except for rivers, procedural water bodies, such as
oceans and lakes and their connections, stream networks,

deltas and waterfalls, have received little attention to date.
Belhadj and Audibert [1] present a combined algorithm for
elevation maps with mountain ranges and river networks.
They generate a mountain range by placing Gaussian curves
along a path. Next, they place river particles along the top of
the mountain range and let them flow downwards according
to simple physics, creating a river stream network in the
valley.

For vegetation, there are procedures for generating 3D
tree and plant models and methods for automatic placement
of vegetation on a terrain model. Prusinkiewicz and
Lindenmayer [15] discuss the use of the L-system, an often
used grammar rewriting system, for procedural plant models.
Starting from the root, these grammars grow a plant by
adding increasingly smaller branches and ending with the
leaves.

Deussen et al. [4] describe an ecosystem simulation
model to populate an area with vegetation. The input of this
simulation model is the elevation map and a water map,
several ecological properties of plant species, such as rate of
growth, and, optionally, an initial distribution of plants.
Based on this and taking into account rules for competition
for soil, sunlight and water, a distribution of plants inside an
area is iteratively determined.

Procedural modeling of urban environments begins with
generating a suitable network of roads and streets. One
method for this, is using templates, as proposed by Sun et al.
[19]. They reconstruct several patterns frequently found in
real road networks, using a corresponding template for each
pattern: a population-based template (implemented as the
Voronoi diagram of population centers), a raster (e.g. a
modern North American city) and radial (e.g. European city
core) template, or a mixed template. Parish and Müller [11]
use an extended L-system to let a road network grow. The L-
system roads try to connect population centers and form
specific road patterns, such as the ones discussed above.
Their L-system is extended with rules that prefer to connect
new proposed roads to existing intersections and rules that
check road validity, considering impassable terrain and slope
constraints. Streets are inserted into the remaining areas as
grids.

Buildings are to be placed in the polygonal regions
enclosed by streets. Subdivision of these regions results in
lots, for which different subdivision methods exist, see e.g.
[7]. The lot shape is used as the basis of the footprint of a
building. By simply extruding the footprint to a random
height, one can generate a city of skyscrapers and office
buildings. To obtain more varied building shapes, Müller et
al. [8] apply shape grammars. They start with a union of
several volumetric shapes which defines the boundary of the
building. This shape is then divided into floors and the
resulting facades are subdivided into walls, windows, and
doors, following the production rules of the grammar system.

 TERRAIN MODELING APPROACH
We propose a new approach for modeling geo-typical terrain.
Our intent is not only to significantly speed up the terrain
modeling process, but, more importantly, to provide a quick
way for people without special modeling expertise to create
terrain models that meet their requirements. We believe that
for this goal a declarative approach is best suited. This
declarative terrain modeling approach (focusing on “what do
I want?”) is essentially different from the common
constructive approach (focusing on “how do I model it?”). It
is ideally suited for training simulations, in which often the
scenario designers are end users, such as instructors, and not
experienced 3D modelers.

We have developed a modeling framework to support
this declarative approach. In previous publications, we have
identified key requirements for this framework and shown its
potential for military training games [17, 16]. Instructors
have an idea for a particular terrain that fits their training
scenario. Our framework allows them to express this idea
using a sketch interface; it then automatically creates the
terrain model accordingly. The framework thus lets
instructors focus on declaring the terrain they need, without
bothering them with 3D modeling tasks or difficult tuning of
parameters of generation algorithms.

 Sketch-based Modeling
The typical modeling workflow in our framework is as
follows (see Fig. 1). Users compose a digital sketch of the
rough layout of the terrain. The basic outline of a terrain is
declared by specifying which ecotopes occur where. An
ecotope describes both the type of terrain, e.g. a specific type
of desert, hills or mountains, and the associated range of
elevation. This part of the sketch is drawn on an ecotope
raster, a regular grid of small cells, with each cell
representing an area of e.g. one or two hundred meters
square. Each ecotope has its unique color; therefore drawing

the raster is quite similar to painting a small pixel bitmap.
Next, users declare the location of important terrain features,
such as forests, major roads, rivers and urban areas. These
are drawn as vector elements, similar to the point, polyline
and polygon area shapes in ESRI Shapefiles. If desired, for
each polygonal sketch element, a small set of attributes can
be set (e.g. city size, average river width, etc.).

Once the users are satisfied with the rough terrain
layout, the framework generates a high-resolution terrain
map that complies with the specified features at large, but
has, on a small scale, a high level of detail and variations in
elevation, vegetation, etc. One can view the resulting terrain
in 3D and modify the rough layout where desired.
Afterwards, the terrain model can be automatically exported
to data formats and models relevant to training simulators.

 Terrain Generation Procedure
The generated terrain map is structured in several logical
layers, both natural layers and man-made; see Fig. 1. Using
different terrain layers improves the adaptability of the
terrain, because changes to one layer do not necessarily have
to affect other layers. We distinguish five layers in the terrain
map, stacked as follows:

• Urban layer: cities, towns, housing, airports, factories;
• Road layer: highways, local roads and streets, bridges;
• Vegetation layer: forests, bushes, trees;
• Water layer: rivers, lakes, oceans;
• Earth layer: elevation data and soil information.

Although the layers are kept separately in this editing phase,
many layers have interdependencies. To generate a consistent
terrain, the generation process of the layers is ordered in such
a way that a layer can take into account features of other
layers. For example, generating plants and trees for the
Vegetation layer takes into account the proximity of rivers in
the Water layer and the properties of soil and elevation in the

Fig. 1: Overview of phases in the declarative terrain modeling workflow.

Earth layer. The major roads generation method for the Road
layer will have road sketch elements but also the previously
generated Earth layer as input, to be able to determine where
valid roads can be placed, e.g. not too steep ascending roads.

Still, to obtain a fully consistent and valid terrain, an
integration phase is necessary after the generation process.
This includes local corrections (e.g. flattening terrain before
placing a building), significant modifications (e.g. carving a
road embankment through a mountain range), and more
complex changes (e.g. introducing bridges to river crossing
roads). The framework is responsible for integrating all
features correctly in the base terrain, and detecting and
resolving any inconsistencies. By maintaining the terrain
consistency in this way, exporting the layered terrain model
to, for instance, a 3D model is a straightforward automated
process.

Creating a detailed terrain map based on the rough
layout of the terrain is a form of data amplification, i.e.
automatically expanding a small dataset into a large one.
Amongst the most used data amplification algorithms are
procedural content generation methods, discussed earlier. We
are using combinations of existing procedural methods,
which have been tuned to work well together, to expand
sketch elements to terrain layers.

 Framework Implementation Details
Our framework is implemented in C# / C++ .NET, with 3D
visualization in OpenSceneGraph. To realize rapid terrain
generation, a large part of our generation and merging
process is performed in parallel on the GPU using NVidia’s
CUDA [10], a C-like programming language for GPU
computing. With CUDA, one can launch a large set of light-
weight threads on the GPU, performing the same
computation task (a C program called a kernel) in parallel. It
is similar to, but far more flexible than, shader-based GPU
computing.

Currently, the framework can export a 3D terrain model

as a paged terrain database in OpenSceneGraph’s file format,
and export the terrain as GIS raster and vector data, which
can be used for further processing in e.g. TerraVista [14] or
VBS2’s Visitor [2].

 SOUTHERN AFGHANISTAN FEATURES
The reference material for our case study has been, for the
most part, maps and photographs of the southern Afghanistan
area. From this we took interesting terrain features to
recreate. See Fig. 2 for some example photographs of
features typical to this area.

Afghanistan has a striking elevation profile. It is
characterized by large mountain ridges, wide valleys and
sharp changes in elevation.

Another noticeable feature are rivers and their influence
on the surrounding area, resulting in a green, very dense and
varied vegetation zone, which sharply contrasts with
surrounding dirt terrain. The water level of a river ranges
from completely dry in some months, making the river
passable, to high, claiming nearby land and increasing the
importance of available bridges.

Southern Afghanistan cities often have a structured
center and more informal settlements, farms and farmland
near the outskirts of the city. The road network is mostly
structured and paved near the center and is less structured
with dirt roads towards the sprawling outskirts. The typical
style of farm housing is one-storey loam buildings, houses
are almost always circumvented with a solid, defensive wall.

 NATURAL ENVIRONMENT
The following sections describe how we reproduce the
typical features found in the natural environment of
Afghanistan: mountain ridges, rivers and green zones. We
also discuss seasonal influences on the natural environment.

 Mountain Ridges
The impressive and distinctive shapes of mountain ridges in
Afghanistan were formed during centuries of erosion. To
generate these features, an erosion simulation algorithm
could probably be implemented that delivers satisfying
results. However, the anticipated running time of such an
iterative algorithm is too long for our type of application, in
which an instructor would like to quickly evaluate the results
of his sketch input. Therefore we have devised a more
efficient shape imitation algorithm that delivers adequate
results; see Fig. 3.

The design of the shape imitation algorithm is as
follows. Starting from a vector line sketch element, we
generate a skeleton of the ridge. We convert the vector line
into a spline using Catmull-Rom interpolation (see [3]). We
sample a number of control points at this spline to obtain a
set of skeleton segments. At each control point we elevate

Fig. 2: Southern Afghanistan features: mountain ridges, wide
rivers with green zone, farm (quala).

the point to a controlled random height and place two
perpendicular lines (of a length relative to the control point’s
elevation). This results in a skeleton for the mountain ridge.

These skeletons are the input to our earth layer
generation algorithm, described in [16]. This algorithm uses
noise-based perturbation (random offsets in the x-y direction)
and noise scaling (affects the elevation profile) to generate
the mountain ridge shape. It has been implemented using
CUDA, which makes it fast enough for interactive terrain
development. The algorithm results in mountain ridges that
have a natural and convincing eroded look, see Fig. 3.

 Rivers and the Green Zone
A river flows from high altitude terrain, such as mountains,
to the lower valleys. A steep local slope results in water
flowing at high velocity, resulting in compact streams, while
on relatively flat terrain, the river spreads out wider and
meanders around.

A river is procedurally generated in the following way.
Starting from a simple line sketch element, the river
generation algorithm plots a path through the terrain,
following the steepest local slope downwards. By limiting
the spread of the points considered in the path planning, we
can ensure that the plotted path stays on track with the line
sketch element. If the local elevation profile does not allow a
descent, the river carves through the terrain. This is
implemented by subtracting a 3D river spline, which follows
the path and has a desired elevation profile, from the Earth
layer. This way, our rivers are not limited to flat surfaces, but
can run down hills and mountains.

A main property of the river sketch element is the river
width. The actual 3D river spline varies around this base
width, depending on the local slope. To model the typical
rivers in Afghanistan, with dry beds within the river, we

generate a noise-based elevation profile within the river. This
is performed during the merge of the river and the terrain,
and is implemented in a CUDA kernel. See Fig. 4 for the
resulting naturally looking river with dry beds and streams.

We model the green zone by computing a river bank
polygon on both sides of the river, based on the river’s
course and local slope and width, and some random offset.
Within this polygon, the river results into a green zone of
vegetation. The underlying earth layer is modified
accordingly from sands and stones to grassy terrain, and an
iterative vegetation simulation is run to populate the banks
with trees (see [16] for details on this algorithm, which was
based on [4]).

The water level of the river ranges from completely dry
in some months, making the river passable, to high, claiming
nearby land and increasing the importance of available
bridges. We implemented the seasonal influence on both the
water level of the river and the vegetation models in the
green zone. By changing the season parameter, users can
obtain a 3D model of the terrain in a different season. See
Fig. 4 for 3D models of a river and vegetation zone during
different seasons.

Fig. 3: Mountain ridges: sketch element, generated skeleton of
the ridge, screenshot of resulting ridge.

Fig. 4: A river with green zones on both banks in the seasons
spring, summer, autumn and winter, showing the variation in
water level and vegetation.

 URBAN AREA
Next, we treat the typical man-made features: the structure of
cities, the generation of a road network and integration of the
roads with the terrain layers, and building models.

 City Structure Model
Procedural models of cities, towns and villages often lack a
believable structure, offering little more than random
buildings placed along random roads. In [6], we presented a
method for generating a subdivision of a city into districts,
according to existing urban land use models for North-
American and West-European cities.

Unfortunately, for the small cities in southern
Afghanistan, no such scientific model exists. Therefore,
based on our work in [6], we derived a scaled-down model of
these cities. It represents the city structure, consisting of four
concentric zones (see Fig. 5):

1. Center: multi-storey, solid stone buildings, shops,

regular road patterns;
2. Periphery: single or multi-storey buildings, sometimes

circumvented by high walls, radial road patterns;
3. Farmers housing: loam houses, circumvented by walls,

several small sheds per lot, irregular roads;
4. Farm lands: fields separated by informal roads.

Each zone is subdivided in a number of districts. Based on
the declared village size, i.e. the diameter attribute of the
village sketch element, we determine the total number of
districts to be placed. We allocate districts to the zones using
a rule-based distribution template. Next, we place the center
points of the districts in the concentric circles of the zones, at
random positions but with somewhat evenly spacing within a
zone (to avoid very small or very large resulting districts).

From the center points, we need to obtain the district
boundaries as a polygon. A Voronoi graph (see [21) is a
natural choice here. To make the boundaries somewhat more

natural, we generate far more district centers than needed,
and merge Voronoi cells based on criteria related to the
perimeter and the shape of the cell (e.g. no triangle shapes).
To obtain a natural bound of the village, we place a ring of
“ghost” districts at the village bounds, and remove all those
districts after obtaining the Voronoi graph. Fig. 5 shows an
example village district distribution.

 Road Network
The above district distribution results in a coarse layout of
the urban environment. To refine this, we generate a road
network graph. We discern three types of roads in our
framework:

1. Primary Roads: roads that provide connections between

different cities or villages;
2. Secondary Roads: major roads within urban

environments;
3. Tertiary Roads: streets that run between housing blocks.

Primary roads are generated from line sketch elements. The
sketched line points are input for a path finding algorithm
(that was based on [7]) which plots a more detailed path
through the generated Earth layer, while trying to preserve an
even change in elevation along the route. When a primary
road intersects a river, the road is split and a bridge is
inserted, perpendicular to the river’s heading; see Fig. 6.

The plotted points are converted to a 3D spline to
obtain the exact shape of the road. The road’s footprint is
merged into the terrain in a CUDA kernel. For the verge on
both sides of the road a transition zone is established to avoid
unrealistically sharp changes in elevation. Here the elevation
is adjusted by interpolating between the elevation of the road
spline and the current elevation of the terrain. This creates a
naturally smooth transition between the road and the
surrounding landscape.

The purpose of secondary roads is to provide
connections among urban districts. Secondary roads are
generated by simply taking the boundary polygons of the

Fig. 5: Southern Afghanistan city structure: concentric zone model, generated district distribution, road patterns and lots per city cell.

districts and converting them to road splines. At the
intersections, the geometry of the road’s end is converted in
order to fit with all connecting other roads. The road’s
footprint is merged into the terrain in a CUDA kernel, but no
transition zone is used, as these roads normally have less
impact on the surrounding terrain.

Tertiary roads connect housing blocks within a district.
They are generated based on patterns (e.g. grid, radial,
mixed), which follow from the type of zone in which the
district lies. The algorithm iteratively tries to place new
roads, starting in perpendicular directions from the largest
secondary roads in a district. For each proposed road,
validity constraints are checked: the road length should be
within some range and a minimum is also defined for the
angle between this road and a connecting road. If the new
road does not adhere to these constraints, it is discarded.
Next, the road endpoint is examined. If the endpoint is near
an existing intersection, it is snapped to this intersection. If
the new road itself intersects another road, an intersection is
created, which becomes the road’s new end point. (After
moving an end point all road validity checks have to be
reevaluated.) A valid road is added to the network and, from
its endpoint, in turn new roads are proposed in directions
depending on the desired road pattern.

This process results in realistically looking road
networks that fit the 3D terrain as well as present village
structures. Fig. 5 shows the road network generated for an
example Afghan village.

 Buildings
Once the road network of a village is constructed, a graph
algorithm that finds all cycles in the road network graph can
be applied to obtain all the areas enclosed by roads and
streets. These areas, which we call city cells, are destined to
be built upon. For this, we need to subdivide the available
land in building lots.

There are several approaches to determine a set of lots
in a polygonal city cell. Often used is the subdivision
approach (e.g. [11]). Lots are obtained by iteratively
subdividing the cell into two, using a cutting line from the
middle of and perpendicular to the largest edge in the
polygon, until a certain minimum size of the polygons is
reached. With some random offsets, a varied collection of

building lots can be acquired. However, this method works
best on convex, rectangular-like, polygons. For concave and
irregular city cells, the results are often undesirable
(unsuitable lot shapes) or the algorithm fails altogether.

A solution for this could be to, as a preprocessing step,
split any concave or irregular polygon into several convex
and rectangular-like polygons. However, as we prefer to have
a method that works for both convex and concave shapes, we
have designed a different approach for lot determination: we
create lots perpendicular to each street connected to the cell.
Each edge of the cell is offset inwards by a configurable size
(depending on the type of buildings to be placed in the cell).
For most city cells with some edges situated close to each
other, offsetting the edges results in errors in the polygon:
overlapping or intersecting lines, invalid polygons, etc. A
fixing algorithm removes all these errors and results in the
inner polygon, containing the area of the city cell where no
buildings will be placed. Next, based on the city cell and

Fig. 6: Roads: Bridge generation and integration into road
network.

Fig. 8: View on the generated 3D model of the city in Fig. 5.

Fig. 7: Generated building models for the city center, periphery
and farm lands. The generation procedure can also generate
differently shaped models, such as the minaret and the market
stalls shown.

inner polygon, lots are constructed by connecting the inner
polygon edges at a regular interval with the related cell’s
edges; see Fig 5.

This method has the advantage that it handles any city
cell shape, while still delivering mostly rectangular lots. A
possible disadvantage could be that lots are uniformly shaped
along a road.

Once we have a set of lots, we can extract footprints of
buildings to be built on these lots. Rectangular boxes are
fitted within the lot and combined, resulting in a 2D footprint
that can be extruded to a certain height. Depending on the
building template, another storey is added with either the
same shape (village center) or a smaller shape (periphery).
The buildings resulting from these two templates vary in
shape, size and appearance. For farm housing, the approach
is slightly different. Besides the main farm, several smaller
utility buildings are placed. To find the positions of these
buildings on the lot, we use a solving system; see [20].

We now have a basic geometric representation of the
buildings. Several rules are applied to give the houses more
details: windows are placed along the walls, to reach the
second floor a staircase is added, doors are placed, oriented
towards the nearby road, and, if applicable, the lot is
circumvented with a loam wall.

Fig. 7 shows instances of the three building templates

defined for the district types within an Afghan village.
Further improvements could be interior layout generation, as
described in [20], or urban clutter generation, as shown in
[5]. Fig. 8 shows a section a generated city.

 RESULTS
All procedures that generate Southern Afghanistan terrain
features have been integrated in our terrain modeling
framework. Shown in Fig. 10 is the sketching interface on
which one can draw ecotopes and terrain features. The
example sketch involves two villages (red icons), connected
by a major road (yellow line) that crosses a river (blue line).
The terrain is enclosed by mountain ridges (gray lines). Fig.
9 shows two panorama views of the generated terrain model,
the first one looking from the south city towards the village
in the north, the second one looking from the northern city to
the east. Visible in both views is the green zone near the river
and the enclosing ridges.

The automated process from sketch to a paged
OpenSceneGraph terrain database typically takes a couple of
minutes in our current implementation. To illustrate the
performance of the different steps, the table below shows the
running time of the procedural generation processes per layer
and the geometry creation for the (8 km. by 8 km.) terrain
shown in Fig. 9 and Fig. 10.

Process Layer Generation Geometry Creation
Earth 14.39 s. 142.87 s.
Water 0.05 s. 0.04 s.
Vegetation 8.32 s. 4.80 s.
Road 0.28 s. 2.80 s.
Urban 43.65 s. 80.80 s.
Merge Layers 5.72 s. -

Fig. 10: Rough Terrain Layout: Sketching the terrain model
shown in Fig. 9.

Fig. 9: Case study results: a generated terrain model with two cities, connected via road over a river, surrounded by mountain ridges.

CONCLUSIONS
Producing appropriate terrain models is crucial for the
effectiveness of military training scenarios, but non-expert
terrain modelers are seriously hindered by the difficulty in
use of current tools and methods. We presented a declarative
modeling framework that overcomes this problem by offering
an intuitive and fast way for non-expert users to model geo-
typical terrain.

The potential of this framework is illustrated in a case
study on generating terrain that resembles the typical natural
and man-made terrain elements found in southern
Afghanistan. This case study includes defining procedural
methods for generating mountain ridges, rivers and green
zone and small cities with fitting building models, and
integrating these into our sketch-based modeling framework.
The study has resulted in convincing terrain models and has
shown that, using our framework, it is possible to:

• Quickly develop new, custom procedural methods for

generating certain geo-typical features;
• Rapidly generate complete and consistent geo-typical

terrain models with these features.

Future improvements include increasing the amount of
variety and level of detail of our generated terrain features,
especially in the urban environments, in which building
interiors and urban clutter could very much enhance the
immersion and believability. We will also continue to
explore the use of terrain semantics, such as seasonal
influences discussed here. A continuing challenge will be
defining methods for maintaining consistency when
integrating terrain layers.

This case study illustrates that our framework is a firm
step towards a declarative, automated terrain modeling
process.

 ACKNOWLEDGMENTS
This research has been supported by the GATE project,
funded by the Netherlands Organization for Scientific
Research (NWO) and the Netherlands ICT Research and
Innovation Authority (ICT Regie).

 AUTHOR BIOGRAPHIES
Ruben Smelik is a researcher at the Modelling, Simulation
and Gaming department of TNO Defence, Security and
Safety in The Netherlands. He is a PhD candidate, on a
project entitled “Automatic Creation of Virtual Worlds” in
close cooperation with Delft University of Technology. This
project aims at developing new tools and techniques for
creating geo-typical virtual worlds for serious games and

simulations. It focuses on the specification and maintenance
of virtual world semantics, procedural modeling of virtual
worlds and runtime adaptive environments. The project is
part of the Dutch research program “Game Research for
Training and Entertainment (GATE)”. Ruben holds a
master’s degree in Computer Science from the University of
Twente. His research interests include computer graphics,
natural environment modeling and military simulations.

Klaas Jan de Kraker is a member of the scientific staff at
TNO Defence, Security and Safety. He holds a Ph.D. in
Computer Science from Delft University of Technology. He
has a background in Computer-Aided Design and
Manufacturing, collaboration applications, software
engineering (methodologies), meta-modeling and data
modeling. Currently he is leading various simulation projects
in the areas of simulation based performance assessment,
collective mission simulation, multifunctional simulation and
serious gaming.

Tim Tutenel is a PhD researcher in the Game Technology
group of the Computer Science department of Delft
University of Technology. In his PhD project, “Semantics in
Game Worlds”, he develops generic methods for specifying
and maintaining semantics in both the design phase of game
worlds and in game play. In particular, he is researching how
semantics can improve procedural generation techniques.
The project is part of the Dutch research program “Game
Research for Training and Entertainment (GATE)”. Tim got
his master’s degree in Computer Science at the Hasselt
University in Belgium. His research interests include game
world semantics, emergent game play and procedural content
generation.

Rafael Bidarra is associate professor Game Technology at
the Computer Graphics and CAD/CAM Group of Delft
University of Technology, The Netherlands. He graduated in
electronics engineering at the University of Coimbra,
Portugal and received his PhD in computer science from
Delft University of Technology. His current research
interests include: procedural and semantic modeling
techniques for the specification and generation of virtual
worlds and game play, serious gaming, semantics of
navigation, and interpretation mechanisms for in-game data.

 REFERENCES
[1] Belhadj, F. and Audibert, P. (2005). Modeling

Landscapes with Ridges and Rivers: Bottom Up
Approach. In GRAPHITE '05: Proceedings of the 3rd
International Conference on Computer Graphics and
Interactive Techniques in Australasia and South East
Asia, pages 447 - 450, New York, NY, USA. ACM.

[2] Bohemia Interactive Australia (2009). Virtual
Battlespace 2. Available from http://www.vbs2.com

[3] Catmull, E., and Rom, R. (1974). A class of
local interpolating splines. In Computer Aided
Geometric Design, pages 317–326, New York, NY,
USA. Academic Press.

 [4] Deussen, O., Hanrahan, P., Lintermann, B.,
Mĕch, R., Pharr, M., and Prusinkiewicz, P. (1998).
Realistic Modeling and Rendering of Plant Ecosystems.
In SIGGRAPH '98: Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive
Techniques, pages 275 - 286, New York, NY, USA.
ACM.

[5] Giuliani, J. L., LaDieu, J., and McKeown, D.
M. (2008). Parametric Generation of Street Level
Details for Urban Visualization. In Proceedings of the
IMAGE 2008 Conference, pages 104 - 116, St. Louis,
Missouri, USA. IMAGE Society.

[6] Groenewegen, S. A., Smelik, R. M., de Kraker,
K. J., and Bidarra, R. (2009). Procedural City Layout
Generation Based On Urban Land Use Models. In
Short Paper Proceedings of Eurographics 2009,
Munich, Germany. Eurographics Association.

[7] Kelly, G. and McCabe, H. (2007). Citygen: An
Interactive System for Procedural City Generation. In
Proceedings of GDTW 2007: The Fifth Annual
International Conference in Computer Game Design
and Technology, pages 8 -16, Liverpool, UK.

[8] Müller, P., Wonka, P., Haegler, S., Ulmer, A.,
and Gool, L. V. (2006). Procedural Modeling of
Buildings. In SIGGRAPH '06: Proceedings of the 33rd
Annual Conference on Computer Graphics and
Interactive Techniques, pages 614 - 623, New York,
NY, USA. ACM.

[9] Musgrave, F. K. (1993). Methods for Realistic
Landscape Imaging. PhD thesis, Yale University, New
Haven, CT, USA.

[10] NVIDIA Corporation (2008). NVIDIA CUDA
Compute Unifed Device Architecture Programming
Guide 2.0.

[11] Parish, Y. I. H. and Müller, P. (2001).
Procedural Modeling of Cities. In SIGGRAPH '01:
Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, pages
301 -308, New York, NY, USA. ACM.

[12] Perlin, K. (1985). An Image Synthesizer. In
SIGGRAPH '85: Proceedings of the 12st Annual
Conference on Computer Graphics and Interactive
Techniques, volume 19, pages 287 – 296, New York,
NY, USA. ACM.

[13] Perlin, K. (2002). Improving Noise. In
SIGGRAPH '02: Proceedings of the 29th Annual
Conference on Computer Graphics and Interactive

Techniques, pages 681- 682, New York, NY, USA.
ACM.

[14] Presagis (2009). TerraVista. Available from
http://www.presagis.com/products/content_creation/det
ails/terra_vista

 [15] Prusinkiewicz, P. and Lindenmayer, A. (1990).
The Algorithmic Beauty of Plants. Springer-Verlag,
New York, NY, USA.

[16] Smelik, R., de Kraker, K. J., Tutenel, T., and
Bidarra, R. (2009). Declarative Terrain Modeling for
Military Training Games. Submitted for publication.

[17] Smelik, R., Tutenel, T., de Kraker, K. J., and
Bidarra, R. (2008). A Proposal for a Procedural Terrain
Modelling Framework. In Poster Proceedings of the
14th Eurographics Symposium on Virtual Environments
EGVE08, Eindhoven, The Netherlands.

[18] Smelik, R. M., de Kraker, K. J., Tutenel, T.,
Bidarra, R., and Groenewegen, S. A. (2009). A Survey
of Procedural Methods for Terrain Modelling. In
Proceedings of the CASA Workshop on 3D Advanced
Media In Gaming And Simulation (3AMIGAS),
Amsterdam, The Netherlands.

[19] Sun, J., Yu, X., Baciu, G., and Green, M.
(2002). Template-based Generation of Road Networks
for Virtual City Modeling. In VRST '02: Proceedings of
the ACM Symposium on Virtual Reality Software and
Technology, pages 33 - 40, New York, NY, USA.
ACM.

[20] Tutenel, T., Bidarra, R., Smelik, R. M., and de
Kraker, K. J. (2009). Rule-based Layout Solving and its
Application to Procedural Interior Generation. In
Proceedings of the CASA Workshop on 3D Advanced
Media In Gaming And Simulation (3AMIGAS),
Amsterdam, The Netherlands.

[21] G.F. Voronoi (1908). Nouvelles applications
des paramètres continus à la théorie de formes
quadratiques. In Journal für die reine und angewandte
Mathematik.134: 198–287.

