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 ABSTRACT 
A cost-effective method of military training is game-based 
training, for which custom geo-typical terrain models are 
often most suitable. However, for training instructors, 
scenario preparation is seriously slowed down by the 
complexity of current terrain modeling tools and methods. 
They would benefit from a quick and easy to use automated 
terrain modeler. The purpose of our declarative modeling 
framework is to offer an intuitive and fast way for instructors 
to model geo-typical terrain. 

We investigated how procedural methods can be 
developed and applied to quickly generate specific types of 
geo-typical terrain models. In this case study, we focused on 
generating terrain models that contain the typical natural 
and man-made features of southern Afghanistan. By 
analyzing these features and by developing and integrating 
procedural methods in our sketch-based terrain modeling 
framework, we found that one can quickly achieve 
convincing results. We present new and tailored methods 
that are fast and effective and that can generate a complete 
and consistent geo-typical Afghanistan-like terrain model. 
The results strengthen our belief that the framework is a firm 
step towards a declarative, automated terrain modeling 
process. Moreover, these procedural methods can be tailored 
to generate other types of geo-typical terrain. 

 INTRODUCTION 
Military training instructors increasingly often employ 
simulations and modified entertainment games to train 
personnel in a variety of skills and tactics. One of the 
difficulties instructors face when using this technology is 
creating customized scenario content, including platforms 
and entities, Computer Generated Forces scripting, and 3D 
terrain databases. Terrain plays a key role in military training 
scenarios, and the features of available terrain models 
constrain the types of different training scenarios an 
instructor can create.  

In contrast to, for instance, mission rehearsal scenarios, 
training scenarios frequently take place on geo-typical 
terrain. It would be very helpful for instructors if they were 
able to create their own geo-typical terrain databases. In that 
case they could conceive terrain databases that are tailored 
for certain training objectives, allowing them to develop 
well-constructed, effective and efficient training curricula. 
However, current manual terrain editors are both too 
complex and too time-consuming to be useful for instructors; 
automatic terrain generation methods show a lot of potential, 
but currently available tools still lack user control and 
intuitive editing capabilities. The underlying reason for this 
is that these tools often require an in-depth knowledge of the 
algorithms to predict the effect of a parameter value on the 
outcome. This results in a trial and error process for 
obtaining the desired result. 

As an overall consequence, instructors cannot create 
new terrain, nor can they easily make changes to existing 
terrain models. Therefore, they are forced to choose from a 
fixed set of pre-made terrain databases. Although these can 
cover many possible settings, they do significantly limit the 
number of potential training scenarios and decreases the 
variety in the training curriculum. 

In order to solve the above problems, we developed a 
novel modeling framework for creating geo-typical terrain. 
Our intent is not only to significantly speed up the terrain 
modeling process but, more importantly, to provide a way for 
people without special 3D modeling expertise, such as 
training instructors, to rapidly create terrain models that meet 
their requirements. We believe that for this purpose a 
declarative approach is best suited: it allows instructors to 
focus on declaring what they want, instead of focusing on 
how they should model it.  

Typically, instructors do have an idea of the layout of a 
terrain that fits their training scenario. Our framework allows 
them to express this idea using a sketch interface and creates 
the terrain model accordingly. In this way, the framework 
lets instructors focus on declaring the terrain they need, 
without bothering them with modeling tasks. The framework 
provides automated modeling by integrating a variety of 



 

 

procedural content generation methods and making them 
accessible and user-friendly. 

Most existing procedural terrain generation methods 
focus on Western Europe- or North America-like terrain, 
while for military training purposes a terrain that resembles 
actual and possible mission areas has more value. As, for The 
Netherlands, southern Afghanistan is currently an important 
mission area, this case study demonstrates the automated 
modeling of geo-typical southern Afghanistan terrain. It 
leverages our procedural terrain modeling framework to 
generate terrain that resembles and has the typical features of 
the southern Afghanistan terrain and culture. 

The remainder of this paper is organized as follows. 
First, we discuss the state of the art on procedural terrain 
modeling. Next, we give an overview of our new terrain 
modeling approach. After this follows the case study. We 
describe which typical Southern Afghanistan features we 
have reproduced and show our procedural methods for 
generating both the natural environments and urban areas. To 
show the results, a selection of images from the generated 
terrain models is presented. Lastly, we summarize our 
contributions and indicate areas for further research. 

 BACKGROUND 
Procedural modeling has been an active research topic for at 
least thirty years. A major topic within procedural modeling 
is the automatic generation of terrain models, which started 
with natural phenomena such as terrain elevation and growth 
of plants in the 1980 and 1990's and extended its focus to 
urban environments at the start of the new millennium. Here, 
we discuss some of the most influential work on procedural 
terrain generation. For a more in-depth survey on these 
procedural methods, see [18]. 

Automatic generation methods for geo-typical elevation 
maps are often based on fractal noise generators. Examples 
include Perlin noise [12, 13], which generates noise by 
sampling and interpolating points in a grid of random 
vectors. Rescaling and adding several levels of noise to each 
point in an elevation map results in natural, mountainous-like 
structures. Further transformations on elevation maps include 
simulations of physical phenomena, such as erosion. Thermal 
erosion diminishes sharp changes in elevation, by iteratively 
distributing material from higher to lower points, until the 
talus angle, i.e. maximum angle of stability for a material 
such as rock or sand, is reached. Erosion caused by rainfall 
(fluvial erosion) can be simulated using a similar, but more 
complicated, algorithm, taking into account rainfall, water 
evaporation and the amount and velocity of water (containing 
dissolved material) that flows out to lower points (see, for 
example, Musgrave’s PhD thesis [9]). 

Except for rivers, procedural water bodies, such as 
oceans and lakes and their connections, stream networks, 

deltas and waterfalls, have received little attention to date. 
Belhadj and Audibert [1] present a combined algorithm for 
elevation maps with mountain ranges and river networks. 
They generate a mountain range by placing Gaussian curves 
along a path. Next, they place river particles along the top of 
the mountain range and let them flow downwards according 
to simple physics, creating a river stream network in the 
valley.  

For vegetation, there are procedures for generating 3D 
tree and plant models and methods for automatic placement 
of vegetation on a terrain model. Prusinkiewicz and 
Lindenmayer  [15] discuss the use of the L-system, an often 
used grammar rewriting system, for procedural plant models. 
Starting from the root, these grammars grow a plant by 
adding increasingly smaller branches and ending with the 
leaves. 

Deussen et al. [4] describe an ecosystem simulation 
model to populate an area with vegetation. The input of this 
simulation model is the elevation map and a water map, 
several ecological properties of plant species, such as rate of 
growth, and, optionally, an initial distribution of plants. 
Based on this and taking into account rules for competition 
for soil, sunlight and water, a distribution of plants inside an 
area is iteratively determined. 

Procedural modeling of urban environments begins with 
generating a suitable network of roads and streets. One 
method for this, is using templates, as proposed by Sun et al. 
[19]. They reconstruct several patterns frequently found in 
real road networks, using a corresponding template for each 
pattern: a population-based template (implemented as the 
Voronoi diagram of population centers), a raster (e.g. a 
modern North American city) and radial (e.g. European city 
core) template, or a mixed template. Parish and Müller [11] 
use an extended L-system to let a road network grow. The L-
system roads try to connect population centers and form 
specific road patterns, such as the ones discussed above. 
Their L-system is extended with rules that prefer to connect 
new proposed roads to existing intersections and rules that 
check road validity, considering impassable terrain and slope 
constraints. Streets are inserted into the remaining areas as 
grids. 

Buildings are to be placed in the polygonal regions 
enclosed by streets. Subdivision of these regions results in 
lots, for which different subdivision methods exist, see e.g. 
[7]. The lot shape is used as the basis of the footprint of a 
building. By simply extruding the footprint to a random 
height, one can generate a city of skyscrapers and office 
buildings. To obtain more varied building shapes, Müller et 
al. [8] apply shape grammars. They start with a union of 
several volumetric shapes which defines the boundary of the 
building. This shape is then divided into floors and the 
resulting facades are subdivided into walls, windows, and 
doors, following the production rules of the grammar system. 



 

 

 TERRAIN MODELING APPROACH 
We propose a new approach for modeling geo-typical terrain. 
Our intent is not only to significantly speed up the terrain 
modeling process, but, more importantly, to provide a quick 
way for people without special modeling expertise to create 
terrain models that meet their requirements. We believe that 
for this goal a declarative approach is best suited. This 
declarative terrain modeling approach (focusing on “what do 
I want?”) is essentially different from the common 
constructive approach (focusing on “how do I model it?”). It 
is ideally suited for training simulations, in which often the 
scenario designers are end users, such as instructors, and not 
experienced 3D modelers. 

We have developed a modeling framework to support 
this declarative approach. In previous publications, we have 
identified key requirements for this framework and shown its 
potential for military training games [17, 16]. Instructors 
have an idea for a particular terrain that fits their training 
scenario. Our framework allows them to express this idea 
using a sketch interface; it then automatically creates the 
terrain model accordingly. The framework thus lets 
instructors focus on declaring the terrain they need, without 
bothering them with 3D modeling tasks or difficult tuning of 
parameters of generation algorithms.  

 Sketch-based Modeling 
The typical modeling workflow in our framework is as 
follows (see Fig. 1). Users compose a digital sketch of the 
rough layout of the terrain. The basic outline of a terrain is 
declared by specifying which ecotopes occur where. An 
ecotope describes both the type of terrain, e.g. a specific type 
of desert, hills or mountains, and the associated range of 
elevation. This part of the sketch is drawn on an ecotope 
raster, a regular grid of small cells, with each cell 
representing an area of e.g. one or two hundred meters 
square. Each ecotope has its unique color; therefore drawing 

the raster is quite similar to painting a small pixel bitmap. 
Next, users declare the location of important terrain features, 
such as forests, major roads, rivers and urban areas. These 
are drawn as vector elements, similar to the point, polyline 
and polygon area shapes in ESRI Shapefiles. If desired, for 
each polygonal sketch element, a small set of attributes can 
be set (e.g. city size, average river width, etc.). 

Once the users are satisfied with the rough terrain 
layout, the framework generates a high-resolution terrain 
map that complies with the specified features at large, but 
has, on a small scale, a high level of detail and variations in 
elevation, vegetation, etc. One can view the resulting terrain 
in 3D and modify the rough layout where desired. 
Afterwards, the terrain model can be automatically exported 
to data formats and models relevant to training simulators. 

 Terrain Generation Procedure 
The generated terrain map is structured in several logical 
layers, both natural layers and man-made; see Fig. 1. Using 
different terrain layers improves the adaptability of the 
terrain, because changes to one layer do not necessarily have 
to affect other layers. We distinguish five layers in the terrain 
map, stacked as follows: 
 
• Urban layer: cities, towns, housing, airports, factories; 
• Road layer: highways, local roads and streets, bridges; 
• Vegetation layer: forests, bushes, trees; 
• Water layer: rivers, lakes, oceans;  
• Earth layer: elevation data and soil information. 
 
Although the layers are kept separately in this editing phase, 
many layers have interdependencies. To generate a consistent 
terrain, the generation process of the layers is ordered in such 
a way that a layer can take into account features of other 
layers. For example, generating plants and trees for the 
Vegetation layer takes into account the proximity of rivers in 
the Water layer and the properties of soil and elevation in the 

Fig. 1: Overview of phases in the declarative terrain modeling workflow. 



 

 

Earth layer. The major roads generation method for the Road 
layer will have road sketch elements but also the previously 
generated Earth layer as input, to be able to determine where 
valid roads can be placed, e.g. not too steep ascending roads.  

Still, to obtain a fully consistent and valid terrain, an 
integration phase is necessary after the generation process. 
This includes local corrections (e.g. flattening terrain before 
placing a building), significant modifications (e.g. carving a 
road embankment through a mountain range), and more 
complex changes (e.g. introducing bridges to river crossing 
roads). The framework is responsible for integrating all 
features correctly in the base terrain, and detecting and 
resolving any inconsistencies. By maintaining the terrain 
consistency in this way, exporting the layered terrain model 
to, for instance, a 3D model is a straightforward automated 
process. 

Creating a detailed terrain map based on the rough 
layout of the terrain is a form of data amplification, i.e. 
automatically expanding a small dataset into a large one. 
Amongst the most used data amplification algorithms are 
procedural content generation methods, discussed earlier. We 
are using combinations of existing procedural methods, 
which have been tuned to work well together, to expand 
sketch elements to terrain layers.  

 Framework Implementation Details 
Our framework is implemented in C# / C++ .NET, with 3D 
visualization in OpenSceneGraph. To realize rapid terrain 
generation, a large part of our generation and merging 
process is performed in parallel on the GPU using NVidia’s 
CUDA [10], a C-like programming language for GPU 
computing. With CUDA, one can launch a large set of light-
weight threads on the GPU, performing the same 
computation task (a C program called a kernel) in parallel. It 
is similar to, but far more flexible than, shader-based GPU 
computing. 

Currently, the framework can export a 3D terrain model 

as a paged terrain database in OpenSceneGraph’s file format, 
and export the terrain as GIS raster and vector data, which 
can be used for further processing in e.g. TerraVista [14] or 
VBS2’s Visitor [2]. 

 SOUTHERN AFGHANISTAN FEATURES 
The reference material for our case study has been, for the 
most part, maps and photographs of the southern Afghanistan 
area. From this we took interesting terrain features to 
recreate. See Fig. 2 for some example photographs of 
features typical to this area. 

Afghanistan has a striking elevation profile. It is 
characterized by large mountain ridges, wide valleys and 
sharp changes in elevation.  

Another noticeable feature are rivers and their influence 
on the surrounding area, resulting in a green, very dense and 
varied vegetation zone, which sharply contrasts with 
surrounding dirt terrain. The water level of a river ranges 
from completely dry in some months, making the river 
passable, to high, claiming nearby land and increasing the 
importance of available bridges.  

Southern Afghanistan cities often have a structured 
center and more informal settlements, farms and farmland 
near the outskirts of the city. The road network is mostly 
structured and paved near the center and is less structured 
with dirt roads towards the sprawling outskirts. The typical 
style of farm housing is one-storey loam buildings, houses 
are almost always circumvented with a solid, defensive wall. 

 NATURAL ENVIRONMENT 
The following sections describe how we reproduce the 
typical features found in the natural environment of 
Afghanistan: mountain ridges, rivers and green zones. We 
also discuss seasonal influences on the natural environment.  

 Mountain Ridges 
The impressive and distinctive shapes of mountain ridges in 
Afghanistan were formed during centuries of erosion. To 
generate these features, an erosion simulation algorithm 
could probably be implemented that delivers satisfying 
results. However, the anticipated running time of such an 
iterative algorithm is too long for our type of application, in 
which an instructor would like to quickly evaluate the results 
of his sketch input. Therefore we have devised a more 
efficient shape imitation algorithm that delivers adequate 
results; see Fig. 3. 

The design of the shape imitation algorithm is as 
follows. Starting from a vector line sketch element, we 
generate a skeleton of the ridge. We convert the vector line 
into a spline using Catmull-Rom interpolation (see [3]). We 
sample a number of control points at this spline to obtain a 
set of skeleton segments. At each control point we elevate 

Fig. 2: Southern Afghanistan features: mountain ridges, wide 
rivers with green zone, farm (quala). 



 

 

the point to a controlled random height and place two 
perpendicular lines (of a length relative to the control point’s 
elevation). This results in a skeleton for the mountain ridge. 

These skeletons are the input to our earth layer 
generation algorithm, described in [16]. This algorithm uses 
noise-based perturbation (random offsets in the x-y direction) 
and noise scaling (affects the elevation profile) to generate 
the mountain ridge shape. It has been implemented using 
CUDA, which makes it fast enough for interactive terrain 
development. The algorithm results in mountain ridges that 
have a natural and convincing eroded look, see Fig. 3. 

 Rivers and the Green Zone 
A river flows from high altitude terrain, such as mountains, 
to the lower valleys. A steep local slope results in water 
flowing at high velocity, resulting in compact streams, while 
on relatively flat terrain, the river spreads out wider and 
meanders around. 

A river is procedurally generated in the following way. 
Starting from a simple line sketch element, the river 
generation algorithm plots a path through the terrain, 
following the steepest local slope downwards. By limiting 
the spread of the points considered in the path planning, we 
can ensure that the plotted path stays on track with the line 
sketch element. If the local elevation profile does not allow a 
descent, the river carves through the terrain. This is 
implemented by subtracting a 3D river spline, which follows 
the path and has a desired elevation profile, from the Earth 
layer. This way, our rivers are not limited to flat surfaces, but 
can run down hills and mountains. 

A main property of the river sketch element is the river 
width. The actual 3D river spline varies around this base 
width, depending on the local slope. To model the typical 
rivers in Afghanistan, with dry beds within the river, we 

generate a noise-based elevation profile within the river. This 
is performed during the merge of the river and the terrain, 
and is implemented in a CUDA kernel. See Fig. 4 for the 
resulting naturally looking river with dry beds and streams. 

We model the green zone by computing a river bank 
polygon on both sides of the river, based on the river’s 
course and local slope and width, and some random offset. 
Within this polygon, the river results into a green zone of 
vegetation. The underlying earth layer is modified 
accordingly from sands and stones to grassy terrain, and an 
iterative vegetation simulation is run to populate the banks 
with trees (see [16] for details on this algorithm, which was 
based on [4]).  

The water level of the river ranges from completely dry 
in some months, making the river passable, to high, claiming 
nearby land and increasing the importance of available 
bridges. We implemented the seasonal influence on both the 
water level of the river and the vegetation models in the 
green zone. By changing the season parameter, users can 
obtain a 3D model of the terrain in a different season. See 
Fig. 4 for 3D models of a river and vegetation zone during 
different seasons. 

Fig. 3: Mountain ridges: sketch element, generated skeleton of 
the ridge, screenshot of resulting ridge. 

 

Fig. 4: A river with green zones on both banks in the seasons 
spring, summer, autumn and winter, showing the variation in 
water level and vegetation. 



 

 

 URBAN AREA 
Next, we treat the typical man-made features: the structure of 
cities, the generation of a road network and integration of the 
roads with the terrain layers, and building models.  

 City Structure Model 
Procedural models of cities, towns and villages often lack a 
believable structure, offering little more than random 
buildings placed along random roads. In [6], we presented a 
method for generating a subdivision of a city into districts, 
according to existing urban land use models for North-
American and West-European cities. 

Unfortunately, for the small cities in southern 
Afghanistan, no such scientific model exists. Therefore, 
based on our work in [6], we derived a scaled-down model of 
these cities. It represents the city structure, consisting of four 
concentric zones (see Fig. 5):  
 
1. Center: multi-storey, solid stone buildings, shops, 

regular road patterns; 
2. Periphery: single or multi-storey buildings, sometimes 

circumvented by high walls, radial road patterns; 
3. Farmers housing: loam houses, circumvented by walls, 

several small sheds per lot, irregular roads; 
4. Farm lands: fields separated by informal roads. 
 
Each zone is subdivided in a number of districts. Based on 
the declared village size, i.e. the diameter attribute of the 
village sketch element, we determine the total number of 
districts to be placed. We allocate districts to the zones using 
a rule-based distribution template. Next, we place the center 
points of the districts in the concentric circles of the zones, at 
random positions but with somewhat evenly spacing within a 
zone (to avoid very small or very large resulting districts).  

From the center points, we need to obtain the district 
boundaries as a polygon. A Voronoi graph (see [21) is a 
natural choice here. To make the boundaries somewhat more 

natural, we generate far more district centers than needed, 
and merge Voronoi cells based on criteria related to the 
perimeter and the shape of the cell (e.g. no triangle shapes). 
To obtain a natural bound of the village, we place a ring of 
“ghost” districts at the village bounds, and remove all those 
districts after obtaining the Voronoi graph. Fig. 5 shows an 
example village district distribution. 

 Road Network 
The above district distribution results in a coarse layout of 
the urban environment. To refine this, we generate a road 
network graph. We discern three types of roads in our 
framework: 
  
1. Primary Roads: roads that provide connections between 

different cities or villages; 
2. Secondary Roads: major roads within urban 

environments; 
3. Tertiary Roads: streets that run between housing blocks. 
 
Primary roads are generated from line sketch elements. The 
sketched line points are input for a path finding algorithm 
(that was based on [7]) which plots a more detailed path 
through the generated Earth layer, while trying to preserve an 
even change in elevation along the route. When a primary 
road intersects a river, the road is split and a bridge is 
inserted, perpendicular to the river’s heading; see Fig. 6. 

The plotted points are converted to a 3D spline to 
obtain the exact shape of the road. The road’s footprint is 
merged into the terrain in a CUDA kernel. For the verge on 
both sides of the road a transition zone is established to avoid 
unrealistically sharp changes in elevation. Here the elevation 
is adjusted by interpolating between the elevation of the road 
spline and the current elevation of the terrain. This creates a 
naturally smooth transition between the road and the 
surrounding landscape. 

The purpose of secondary roads is to provide 
connections among urban districts. Secondary roads are 
generated by simply taking the boundary polygons of the 

  
 
Fig. 5: Southern Afghanistan city structure: concentric zone model, generated district distribution, road patterns and lots per city cell.



 

 

districts and converting them to road splines. At the 
intersections, the geometry of the road’s end is converted in 
order to fit with all connecting other roads. The road’s 
footprint is merged into the terrain in a CUDA kernel, but no 
transition zone is used, as these roads normally have less 
impact on the surrounding terrain. 

Tertiary roads connect housing blocks within a district. 
They are generated based on patterns (e.g. grid, radial, 
mixed), which follow from the type of zone in which the 
district lies. The algorithm iteratively tries to place new 
roads, starting in perpendicular directions from the largest 
secondary roads in a district. For each proposed road, 
validity constraints are checked: the road length should be 
within some range and a minimum is also defined for the 
angle between this road and a connecting road. If the new 
road does not adhere to these constraints, it is discarded. 
Next, the road endpoint is examined. If the endpoint is near 
an existing intersection, it is snapped to this intersection. If 
the new road itself intersects another road, an intersection is 
created, which becomes the road’s new end point. (After 
moving an end point all road validity checks have to be 
reevaluated.) A valid road is added to the network and, from 
its endpoint, in turn new roads are proposed in directions 
depending on the desired road pattern.  

This process results in realistically looking road 
networks that fit the 3D terrain as well as present village 
structures.  Fig. 5 shows the road network generated for an 
example Afghan village. 

 Buildings 
Once the road network of a village is constructed, a graph 
algorithm that finds all cycles in the road network graph can 
be applied to obtain all the areas enclosed by roads and 
streets. These areas, which we call city cells, are destined to 
be built upon. For this, we need to subdivide the available 
land in building lots.  

There are several approaches to determine a set of lots 
in a polygonal city cell. Often used is the subdivision 
approach (e.g. [11]). Lots are obtained by iteratively 
subdividing the cell into two, using a cutting line from the 
middle of and perpendicular to the largest edge in the 
polygon, until a certain minimum size of the polygons is 
reached. With some random offsets, a varied collection of 

building lots can be acquired. However, this method works 
best on convex, rectangular-like, polygons. For concave and 
irregular city cells, the results are often undesirable 
(unsuitable lot shapes) or the algorithm fails altogether. 

A solution for this could be to, as a preprocessing step, 
split any concave or irregular polygon into several convex 
and rectangular-like polygons. However, as we prefer to have 
a method that works for both convex and concave shapes, we 
have designed a different approach for lot determination: we 
create lots perpendicular to each street connected to the cell.  
Each edge of the cell is offset inwards by a configurable size 
(depending on the type of buildings to be placed in the cell). 
For most city cells with some edges situated close to each 
other, offsetting the edges results in errors in the polygon: 
overlapping or intersecting lines, invalid polygons, etc. A 
fixing algorithm removes all these errors and results in the 
inner polygon, containing the area of the city cell where no 
buildings will be placed. Next, based on the city cell and 

Fig. 6: Roads: Bridge generation and integration into road 
network. 

 

Fig. 8: View on the generated 3D model of the city in Fig. 5. 

Fig. 7: Generated building models for the city center, periphery 
and farm lands. The generation procedure can also generate 
differently shaped models, such as the minaret and the market 
stalls shown. 



 

 

inner polygon, lots are constructed by connecting the inner 
polygon edges at a regular interval with the related cell’s 
edges; see Fig 5.  

This method has the advantage that it handles any city 
cell shape, while still delivering mostly rectangular lots. A 
possible disadvantage could be that lots are uniformly shaped 
along a road. 

Once we have a set of lots, we can extract footprints of 
buildings to be built on these lots. Rectangular boxes are 
fitted within the lot and combined, resulting in a 2D footprint 
that can be extruded to a certain height. Depending on the 
building template, another storey is added with either the 
same shape (village center) or a smaller shape (periphery). 
The buildings resulting from these two templates vary in 
shape, size and appearance. For farm housing, the approach 
is slightly different. Besides the main farm, several smaller 
utility buildings are placed. To find the positions of these 
buildings on the lot, we use a solving system; see [20]. 

We now have a basic geometric representation of the 
buildings. Several rules are applied to give the houses more 
details: windows are placed along the walls, to reach the 
second floor a staircase is added, doors are placed, oriented 
towards the nearby road, and, if applicable, the lot is 
circumvented with a loam wall.  

Fig. 7 shows instances of the three building templates 

defined for the district types within an Afghan village. 
Further improvements could be interior layout generation, as 
described in [20], or urban clutter generation, as shown in 
[5]. Fig. 8 shows a section a generated city. 

 RESULTS 
All procedures that generate Southern Afghanistan terrain 
features have been integrated in our terrain modeling 
framework. Shown in Fig. 10 is the sketching interface on 
which one can draw ecotopes and terrain features. The 
example sketch involves two villages (red icons), connected 
by a major road (yellow line) that crosses a river (blue line). 
The terrain is enclosed by mountain ridges (gray lines). Fig. 
9 shows two panorama views of the generated terrain model, 
the first one looking from the south city towards the village 
in the north, the second one looking from the northern city to 
the east. Visible in both views is the green zone near the river 
and the enclosing ridges.  

The automated process from sketch to a paged 
OpenSceneGraph terrain database typically takes a couple of 
minutes in our current implementation. To illustrate the 
performance of the different steps, the table below shows the 
running time of the procedural generation processes per layer 
and the geometry creation for the (8 km. by 8 km.) terrain 
shown in Fig. 9 and Fig. 10. 

 
 

Process Layer Generation Geometry Creation 
Earth 14.39 s. 142.87 s. 
Water 0.05 s. 0.04 s. 
Vegetation 8.32 s. 4.80 s. 
Road 0.28 s. 2.80 s. 
Urban 43.65 s. 80.80 s. 
Merge Layers 5.72 s. - 

 
Fig. 10: Rough Terrain Layout: Sketching the terrain model 
shown in Fig. 9. 

 
Fig. 9: Case study results: a generated terrain model with two cities, connected via road over a river, surrounded by mountain ridges.



 

 

CONCLUSIONS 
Producing appropriate terrain models is crucial for the 
effectiveness of military training scenarios, but non-expert 
terrain modelers are seriously hindered by the difficulty in 
use of current tools and methods. We presented a declarative 
modeling framework that overcomes this problem by offering 
an intuitive and fast way for non-expert users to model geo-
typical terrain.  

The potential of this framework is illustrated in a case 
study on generating terrain that resembles the typical natural 
and man-made terrain elements found in southern 
Afghanistan. This case study includes defining procedural 
methods for generating mountain ridges, rivers and green 
zone and small cities with fitting building models, and 
integrating these into our sketch-based modeling framework. 
The study has resulted in convincing terrain models and has 
shown that, using our framework, it is possible to: 

 
• Quickly develop new, custom procedural methods for 

generating certain geo-typical features; 
• Rapidly generate complete and consistent geo-typical 

terrain models with these features. 
 

Future improvements include increasing the amount of 
variety and level of detail of our generated terrain features, 
especially in the urban environments, in which building 
interiors and urban clutter could very much enhance the 
immersion and believability. We will also continue to 
explore the use of terrain semantics, such as seasonal 
influences discussed here. A continuing challenge will be 
defining methods for maintaining consistency when 
integrating terrain layers.  

This case study illustrates that our framework is a firm 
step towards a declarative, automated terrain modeling 
process. 
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