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Abstract

Assessing similarity between features is a key step in tbgeognition and scene
categorization tasks. We argue that knowledge on the lligioin of distances
generated by similarity functions is crucial in decidingetliner features are sim-
ilar or not. Intuitively one would expect that similaritiéetween features could
arise from any distribution. In this paper, we will deriveethontrary, and re-
port the theoretical result thdt,-norms —a class of commonly applied distance
metrics— from one feature vector to other vectors are Wedstributed if the
feature values are correlated and non-identically disteith. Besides these as-
sumptions being realistic for images, we experimentaligwsithem to hold for
various popular feature extraction algorithms, for a dieerange of images. This
fundamental insight opens new directions in the assessofiéeature similarity,
with projected improvements in object and scene recognalgorithms.

1 Introduction

Measurement of similarity is a critical asset of state ofahtdén computer vision. In all three major

streams of current research - the recognition of known dbjdel], assigning an object to a class
[9, 24], or assigning a scene to a type [7, 25] - the problemaissposed into the equality of features
derived from similarity functions. Hence, besides the ésefifeature distinctiveness, comparing
two images heavily relies on such similarity functions. Vigue that knowledge on thdistribution

of distances generated by such similarity functions is ewere important, as it is that knowledge
which is crucial in deciding whether features are similanaot.

For example, Nowak and Jurie [21] establish whether one can donclusions on two never seen
objects based on the similarity distances from known obje&here they build and traverse a
randomized tree to establish region correspondence, arld atternatively use the distribution of
similarity distances to establish whether features comm fthe mode or the tail of the distribution.
Although this indeed only hints at an algorithm, it is likefat knowledge of the distance distribution
will considerably improve or speed-up such tasks.

As a second example, consider the clustering of featuresdbas their distances. Better clustering
algorithms significantly boost performance for object andne categorization [13]. Knowledge
on the distribution of distances aids in the constructiogadd clustering algorithms. Using this
knowledge allows for the exact distribution shape to be usetktermine cluster size and centroid,
where now the Gaussian is often groundlessly assumed. Weshailv that in general distance
distributions will strongly deviate from the Gaussian pblity distribution.

A third example is from object and scene recognition. Usuidiis is done by measuring invariant
feature sets [10, 14, 24] at a predefined raster of regionseininage or at selected key points in
the image [12, 14] as extensively evaluated [17]. Typically image contains a hundred regions
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or a thousand key points. Then, the most expensive compu#tstep is to compare these feature
sets to the feature sets of the reference objects, objestadaor scene types. Usually this is done
by going over all entries in the image to all entries in therefice set and select the best matching
pair. Knowledge of the distribution of similarity distarecand having established its parameters
enables a remarkable speed-up in the search for matchieignee points and hence for matching
images. When verifying that a given reference key-point giromeis statistically unlikely to occur

in this image, one can move on to search in the next imagehé&unbore, this knowledge can well
be applied in the construction of fast search trees, se§lé]y.

Hence, apart from obtaining theoretical insights in thesgehdistribution of similarities, the results
derived in this paper are directly applicable in object atehg recognition.

Intuitively one would expect that the set of all similaritglues to a key-point or region in an image
would assume any distribution. One would expect that theneoi preferred probability density
distribution at stake in measuring the similarities to p®ior regions in one image. In this paper, we
will derive the contrary. We will prove that under broad citihs the similarity values to a given
reference point or region adhere to a class of distributiomsvn as the Weibull distribution family.
The density function has only three parameters: mean, atdrdkviation and skewness. We will
verify experimentally that the conditions under which tlésult from mathematical statistics holds
are present in common sets of images. It appears the theedlicts the resulting density functions
accurately.

Our work on density distributions of similarity values coangs to the work by Pekalska and Duin
[23] assuming a Gaussian distribution for similaritiedslbased on an original combination of two
facts from statistical physics. An old fact regards theistias of extreme values [11], as generated
when considering the minima and maxima of many measuremditits major result of the field
of extreme value statistics is that the probability densityhis case can only be one out of three
different types, independent of the underlying data or @ssc The second fact is a new result, which
links these extreme value statistics to sums of correlaaeidbies [2, 3]. We exploit these two facts
in order to derive the distribution family of similarity meares.

This paper is structured as follows. In Section 2, we ovenliterature on similarity distances and
distance distributions. In Section 3, we discuss the thebmjistributions of similarity distances
from one to other feature vectors. In Section 4, we validaga¢sulting distribution experimentally
for image feature vectors. Finally, conclusions are give8ection 5.

2 Related work

2.1 Similarity distance measures

To measure the similarity between two feature vectors, nd@stgnce measures have been proposed
[15]. A common metric class of measures is thgnorm [1]. The distance from one reference
feature vectos to one other feature vectoican be formalized as:

n

d(s, t) = (D lsi — t:l")"/7, @

i=1

wheren and: are the dimensionality and indices of the vectors. Let timeloan variableD,, rep-
resent distanced(s, t) wheret is drawn from the random variablg representing feature vectors.
Independent of the reference feature veestdhe probability density function af,,-distances will
be denoted by (D, = d).

2.2 Distancedistributions

Ferenczet al. [8] have considered the Gamma distribution to model thalistances from image

regions to one reference regioftD; = d) = W d'~'e~%/B wherey is the shape parameter,

and g the scale parametef;(-) denotes the Gamma function. In [8], the distance functios wa
fitted efficiently from few examples of image regions. Altighuthe distribution fits were shown to
represent the region distances to some extent, the mettialdatheoretical motivation.



Based on the central limit theorem, Pekalska and Duin [28lim&d thatl,-distances between

feature vectors are normally distributefi(D, = d) = e=(@/8*)/2_ As the authors argue,

the use of the central limit theorem is theoretically justifif the feature values are independent,
identically distributed, and have limited variance. Altigh feature values generally have limited
variance, unfortunately, they cannot be assumed to be émikgmt and/or identically distributed as

we will show below. Hence, an alternative derivation of tieahce distribution function has to be

followed.

2.3 Contribution of this paper

Our contribution is the theoretical derivation of a paragnieed distribution forL,,-norm distances
between feature vectors. In the experiments, we estabhigither distances to image features adhere
to this distribution indeed. We consider SIFT-based fesst(it 7], computed from various interest
region types [18].

3 Statistics of distances between features

In this section, we derive the distribution function famdfy L,,-distances from a reference feature
vector to other feature vectors. We consider the notationsasl in the previous section, with

a feature vector drawn from the random variaffle For each vectot, we consider the value at
index 1, t;, resulting in a random variablg. The value of the reference vector at index;, can
be interpreted as a sample of the random varidbleThe computation of distances from one to
other vectors involves manipulations of the random vaedblresulting in a new random variable:
X; = |s;—T;|P. Furthermore, the computation of the distanBequires the summation of random

variables, and a reparameterizatidn:= (Efil X;)*/?. In order to derive the distribution db,
we start with the statistics of the summation of random i, before turning to the properties of
Xi.

3.1 Statisticsof sums

As a starting point to derive thk,-distance distribution function, we consider a lemma fraatis-
tics about the sum of random variables.

Lemma 1 For non-identical and correlated random variablés, the sumd_~ | X;, with finite N,
is distributed according to the generalized extreme valigé&ritution, i.e. the Gumbel, Frechet or
Weibull distribution.

For a proof, see [2, 3]. Note that the lemma is an extensiomefentral limit theorem to non-

identically distributed random variables. And, indeeds firoof follows the path of the central

limit theorem. Hence, the resulting distribution of sumdiféerent from a normal distribution, and

rather one of the Gumbel, Frechet or Weibull distributiomstéad. This lemma is important for
our purposes, as later the feature values will turn out todyeidentical and correlated indeed. To
confine the distribution function further, we also need thtofving lemma.

Lemma 2 If in the above lemma the random variab¥e are upper-bounded, i.eX; < max, the
sum of the variables is Weibull distributed (and not GumielFrechet):

Y =y) = %(%W‘le*%)” : )

with v the shape parameter anglthe scale parameter.

For a proof, see [11]. Figure 1 illustrates the Weibull digttion for various shape parameters
~. This lemma is equally important to our purpose, as laterfé¢héure values will turn out to be
upper-bounded indeed.

The combination of Lemmas 1 and 2 yields the distributionushs of non-identical, correlated and
upper-bounded random variables, summarized in the fallgwheorem.
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Figure 1: Examples of the Weibull distribution for variodspe parameters

Theorem 1 For non-identical, correlated and upper-bounded randomialaes X;, the random
variableY = Zf;l X, with finite NV, adheres to the Weibull distribution.

The proof follows trivially from combining the different fitings of statistics as laid down in Lem-
mas 1 and 2. Theorem 1 is the starting point to derive theildligion of L,-norms from one
reference vector to other feature vectors.

3.2 L,-distancesfrom oneto other feature vectors

Theorem 1 states thaf is Weibull-distributed, given thaf X; = [s; — T;[P};cpu,....r) are non-

identical, correlated and upper-bounded random variabMsstransformy” such that it represents
L,-distances, achieved by the transformatigr/?:

N
ylr — (Z |si — T’L_|p)1/P_ ©)
i=1
The consequence of the substitutidn= Y/ for the distribution ofY is a change of variables
z = y/? in Equation 2 [22]:9(Z = z) = % This transformation yields a different
distribution still of the Weibull type:

9(Z =2) =

zZ )P'Y

1 0 z 1 (555
(1/p—1) ﬂl/p(ﬂl/p)m e B ()

wherey’ = py is the new shape parameter asid= 3'/? is the new scale parameter, respectively.
Thus, alsdr''/? and hencd.,,-distances are Weibull-distributed under the assumed case

We argue that the random variabl&s = |s; — T;|” and X; (i # j) are indeed non-identical,
correlated and upper-bounded random variables when aimgida set of values extracted from
feature vectors at indicésandj:

e X, and.X; are upper-bounded. Features are usually an abstractiopartiaular type of
finite measurements, resulting in a finite feature. Hencegémeral feature vectors, the
values at index, Tj;, are finite. And, with finitep, it follows trivially that X; is finite.

e X, and.X; are correlated. The experimental verification of this agsiion is postponed to
Section 4.1.

e X, and.X; are non-identically distributed. The experimental vesifion of this assumption
is postponed to Section 4.1.

We have obtained the following result.

Corallary 1 For finite-length feature vectors with non-identical, aglated and upper-bounded val-
ues,L,, distances, for limitegh, from one reference feature vector to other feature veadrgere to
the Weibull distribution.



3.3 Extending the class of features

We extend the class of features for which the distances aieuiMdistributed. From now on, we
allow the possibility that the vectors are preprocessed®gA transformation. We denote the PCA
transformg(-) applied to a single feature vector g#s= g(s). For the random variabl€&;, we obtain
T!. We are still dealing with upper-bounded variablés= |s; — T/|P as PCA is a finite transform.
The experimental verification of the assumptlon that PGdformed feature valuds’ and T},

1 # j are non-identically distributed is postponed to Sectidn ©ur point here, is that we have
assumed originally correlating feature values, but afterdecorrelating PCA transform we are no
longer dealing with correlated feature valaeandT/ In Section 4.1, we will verify experimentally
whetherX] and X correlate. The following observation is hypothesized. R@hslates the data
to the orlgln before applying an affine transformation iatds data distributed along orthogonal
axes. The tuplesX;, X7) will be in the first quadrant due to the absolute value tramséion.
Obviously, varlancesr(X ) ando(X7) are limited and meang(X/) > 0 andu(X}) > 0. For
data constrained to the first quadrant and distributed abothgpgonal axes, a negatlve covariance is
expected to be observed. Under the assumed case, we hawedlitee following result.

Corollary 2 For finite-length feature vectors with non-identical, celeted and upper-bounded val-
ues, and for PCA-transformations theredf, distances, for limiteg, from one to other features
adhere to the Weibull distribution.

3.4 Heterogeneousfeature vector data

We extend the corollary to hold also for composite datasketsature vectors. Consider the com-
posite dataset modelled by random varial{i€s}, where each random varialilé represents non-
identical and correlated feature values. Hence, from CGamoR it follows that feature vectors from
each of theT; can be fitted by a Weibull functioi®¥(d). However, the distances to each of the
T; may have a different range and modus, as we will verify by grpentation in Section 4.1. For
heterogeneous distance d&fa }, we obtain a mixture of Weibull functions [6].

Corollary 3 (Distance distribution) For feature vectors that are drawn from a mixture of datasets
of which each results in non-identical and correlated featualues, finite-length feature vectors
with non-identical, correlated and upper-bounded valses] for PCA-transformations thered,,
distances, for limitegh, from one reference feature vector to other feature vecholisere to the
Weibull mixture distribution:f(D = d) = 3¢, p; - f7"7*(d), wheref; are the Weibull functions

andp; are their respective weights such that,_, p; = 1.

4 Experiments

In our experiments, we validate assumptions and Weibultigess-of-fit for the region-based SIFT,
GLOH, SPIN, and PCA-SIFT features on COREL data [5]. We idelthese features for two
reasons as: a) they are performing well for realistic computsion tasks and b) they provide
different mechanisms to describe an image region [17]. Hgéon features are computed from
regions detected by the Harris- and Hessian-affine regmagimally stable regions (MSER), and
intensity extrema-based regions (IBR) [18]. Also, we cdasiPCA-transformed versions for each
of the detector/feature combinations. For reason of iteresive use, the experimentation is based
on the Ly-distance. We consider distances from 1 randomly drawrreeée vector to 100 other
randomly drawn feature vectors, which we repeat 1,000 tiioregeneralization. In all experiments,
the features are taken from multiple images, except for ltbstiation in Section 4.1.2 to show
typical distributions of distances between features tdkamn single images.

4.1 Validation of the corollary assumptionsfor image features

4.1.1 Intrinsic feature assumptions

Corollary 2 rests on a few explicit assumptions. Here we vétify whether the assumptions occur
in practice.



Differences between feature values are correlated. We consider a set of feature vectdisand
the differences at indeito a reference vectar. X; = |s; — T};|”. We determine the significance
of Pearson’s correlation [4] between the difference valliesand X, i # j. We establish the
percentage of significantly correlating differences ataficence level 0f).05. We report for each
feature the average percentage of difference values thaiate significantly with difference values
at an other feature vector index.

As expected, the feature value differences correlate. FeF,99% of the difference values are
significantly correlated. For SPIN and GLOH, we obtas¥% and96%, respectively. Also PCA-
SIFT contains significantly correlating difference valués%. Although the feature’s name hints
at uncorrelated values, it does not achieve a decorrelafitime values in practice. For each of the
features, a low standard deviatien5% is found. This expresses the low variation of correlations
across the random samplings and across the various regies.ty

We repeat the experiment for PCA-transformed feature galdédthough the resulting values are
uncorrelated by construction, their differences are §icamtly correlated. For SIFT, SPIN, GLOH,
and PCA-SIFT, the percentages of significantly correlatiifigrence values are94%, 86%, 95%,
and75%, respectively.

Differences between feature values are non-identically distributed. We repeat the same proce-
dure as above, but instead of measuring the significanceradlation, we establish the percentage
of significantly differently distributed difference vaki&; by the Wilcoxon rank sum test [4] at a
confidence level 00.05. For SIFT, SPIN, GLOH, and PCA-SIFT, the percentages ofiiogmtly
differently distributed difference values aré9%, 98%, 92%, and87%. For the PCA-transformed
versions of SIFT, SPIN, GLOH, and PCA-SIFT, we firt2%, 40%, 64%, and51%, respectively.
Note that in all cases, correlation is sufficient to fulfiletassumptions of Corollary 2. We have
illustrated that feature value differences are signifigecdrrelated and significantly non-identically
distributed. We conclude that the assumptions of CoroRaajpout properties of feature vectors are
realistic in practice, and that Weibull functions are expddo fit distance distributions well.

4.1.2 Inter-feature assumptions

In Corollary 3, we have assumed that distances from one ter d#ature vectors are described
well by a mixture of Weibulls, if the features are taken froiffestent clusters in the data. Here,
we illustrate that clusters of feature vectors, and clgstérdistances, occur in practice. Figure
2a shows Harris-affine regions from a natural scene whicli@seribed by the SIFT feature. The
distances are described well by a single Weibull distrdouti The same hold for distances from
one to other regions computed from a man-made object, seee-&p. In Figure 2c¢, we illustrate
the distances of one to other regions computed from a cotepimsage containing two types of
regions. This results in two modalitites of feature vectaace of similarity distances. The distance
distribution is therefore bimodal, illustrating the geslecase of multimodality to be expected in
realistic, heterogeneous image data. We conclude thatsthargtions of Corollary 3 are realistic
in practice, and that the Weibull function, or a mixture, fitstance distributions well.

4.2 Validation of Weibull-shaped distance distributions

In this experiment, we validate the fitting of Weibull disuiions of distances from one reference
feature vector to other vectors. We consider the same ddbefage. Over 1,000 repetitions we
consider the goodness-of-fit d@f;-distances by the Weibull distribution. The parametershef t
Weibull distribution function are obtained by maximum likeod estimation. The established fit is
assessed by the Anderson-Darling test at a confidence lewetd).05 [20]. The Anderson-Darling
test has also proven to be suited to measure the goodndisefafixture distributions [19].

Table 1 indicates that for most of the feature types compfited various regions, more th&%

of the distance distributions is fit by a single Weibull fuoat As expected, distances between each
of the SPIN, SIFT, PCA-SIFT and GLOH features, are fitted vegll\Weibull distributions. The
exception here is the low number of fits for the SIFT and SPNuUres computed from Hessian-
affine regions. The distributions of distances betweerethes region/feature combinations tend to
have multiple modes. Likewise, there is a low percentaget®bfiL,-distance distributions of the



Figure 2: Distance distributions from one randomly selgdteage region to other regions, each
described by the SIFT feature. The distance distributiatescribed by a single Weibull function

for a natural scene (a) and a man-made object (b). For a céraposge, the distance distribution

is bimodal (c). Samples from each of the distributions amnshin the upper images.

Table 1: Accepted Weibull fits for COREL data [5].

Harris-affine Hessian-affine | MSER IBR

c=1 c<2 c=1 c<2 c=1 c<2 c=1 c<2
SIFT 95% 100% 60% 99% 98% 100% 92% 100%
SI FT (¢ =PCA) 95% 99% 60% 98% 98% 100% 92% 99%
PCA- SI FT 89% 100% 96% 100% 94% 100% 95% 100%
PCA- SI FT (g =PCA) 89% 100% | 96% 100% | 94% 100% | 95% 100%
SPI'N 71% 99% 12% 99% TT% 99% 45% 98%
SPI N (g =PCA) 71% 100% 12% 97% 7% 99% 45% 98%
GLOH 87% 100% 91% 100% 82% 99% 86% 100%
GLOH (g =PCA) 87% 100% 91% 99% 82% 99% 86% 100%

Percentages of.»-distance distributions fitted by a Weibull function= 1) and a mixture of two Weibull
functions ¢ < 2) are given.

SPIN feature computed from IBR regions. Again, multiple m®th the distributions are observed.
For these distributions, a mixture of two Weibull functiggrevides a good fit¥ 97%).

5 Conclusion

In this paper, we have derived that similarity distancesvbeh one and other image features in
databases are Weibull distributed. Indeed, for variousgygf features, i.e. the SPIN, SIFT, GLOH
and PCA-SIFT features, and for a large variety of images ftoenCOREL image collection, we
have demonstrated that the similarity distances from ooéhier features, computed frohy, norms,
are Weibull-distributed. These results are establishetidgxperiments presented in Table 1. Also,
between PCA-transformed feature vectors, the distanec®/aibull-distributed. The Malahanobis
distance is very similar to thés-norm computed in the PCA-transformed feature space. Hence
we expect Mahalanobis distances to be Weibull distribusedel. Furthermore, when the dataset
is a composition, a mixture of few (typically two) Weibullrfations suffices, as established by the
experiments presented in Table 1. The resulting Weibuitiligions are distinctively different from
the distributions suggested in literature, as they ardigebi or negatively skewed while the Gamma
[8] and normal [23] distributions are positively and noresled, respectively.

We have demonstrated that the Weibull distribution is tiedeared choice for estimating properties
of similarity distances. The assumptions under which tketis valid are realistic for images. We
experimentally have shown them to hold for various popidatudre extraction algorithms, and for a
diverse range of images. This fundamental insight opensdiraetions in the assessment of feature
similarity, with projected improvements and speed-upshject/scene recognition algorithms.
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