
Int J Comput Vis (2012) 96:103–124
DOI 10.1007/s11263-011-0451-1

Multi-view 3D Human Pose Estimation in Complex Environment

M. Hofmann · D.M. Gavrila

Received: 9 February 2010 / Accepted: 10 April 2011 / Published online: 1 May 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We introduce a framework for unconstrained 3D
human upper body pose estimation from multiple camera
views in complex environment. Its main novelty lies in
the integration of three components: single-frame pose re-
covery, temporal integration and model texture adaptation.
Single-frame pose recovery consists of a hypothesis genera-
tion stage, in which candidate 3D poses are generated, based
on probabilistic hierarchical shape matching in each camera
view. In the subsequent hypothesis verification stage, the
candidate 3D poses are re-projected into the other camera
views and ranked according to a multi-view likelihood mea-
sure. Temporal integration consists of computing K-best tra-
jectories combining a motion model and observations in a
Viterbi-style maximum-likelihood approach. Poses that lie
on the best trajectories are used to generate and adapt a
texture model, which in turn enriches the shape likelihood
measure used for pose recovery. The multiple trajectory hy-
potheses are used to generate pose predictions, augmenting
the 3D pose candidates generated at the next time step.

We demonstrate that our approach outperforms the state-
of-the-art in experiments with large and challenging real-
world data from an outdoor setting.
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1 Introduction

The recovery of 3D human pose is an important problem in
computer vision with many potential applications in human
computer interfaces, motion analysis (e.g. sports, medical)
and surveillance. 3D pose also provides informative, view-
invariant features for a subsequent activity recognition step.
Despite the considerable advances that have been made over
the past years (see next section), 3D human pose recovery
remains essentially unsolved for unconstrained movement
in dynamic and cluttered environment. The challenges in-
volve estimating articulated motion of bodies of which the
exact proportions are not known in advance, dealing with
the underconstrained nature of the problem due to loss of
depth information and/or (self) occlusion, and performing
foreground-background segmentation.

This paper presents a framework for the estimation of 3D
human upper body movement from multiple views, which
entails the combination of probabilistic single-frame1 pose
recovery, temporal integration and texture model adapta-
tion. Using input from three calibrated cameras, we are able
to handle arbitrary movement—i.e. not limited to walking
and running—in cluttered scenes with non-stationary back-
grounds (see Fig. 3). By integrating single-frame pose re-
covery within a tracking and prediction mechanism, there
is no need to rely on specific initial poses to jump-start the
pose estimation. The framework thus also entails automatic
re-initialization after a period of failure.

Efficiency is an important design consideration. Single-
frame pose recovery is implemented by a multi-stage cas-
cade architecture, where candidate poses are increasingly

1“Single-frame” in this paper denotes multi-view image data collected
at a particular time instant.
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pruned by the successive processing stages. Early process-
ing stages are characterized by lighter computational costs
per candidate pose, and a higher degree of inherent paral-
lelism. For example, the pose hypothesis stage is performed
by each camera independently. The computational burden is
shifted as much as possible to an off-line stage, by matching
a set of pre-rendered 2D pose (shape) exemplars, compactly
organized in a pre-computed tree structure. Later processing
stages are characterized by higher computational costs per
remaining candidate pose and a stronger interaction across
camera views. Take for example, the use of inverse kinemat-
ics for local pose optimization.

The current system also has some limitations. Like pre-
vious 3D pose recovery systems, it currently cannot han-
dle a sizable amount of external occlusion. It furthermore
assumes the existence of a 3D human model that roughly
fits the person in the scene (we are able to use the same
generic model for different male adults in the experiments).
Lastly, the system expects subjects to be roughly in a stand-
ing position for pose initialization, for computational cost
reasons.

2 Previous work

There is meanwhile an extensive literature on 3D human
pose estimation. We refer to a selection of papers here which
we consider most relevant to this paper. For a more exhaus-
tive listing, see surveys by Forsyth et al. (2005), Gavrila
(1999), Moeslund et al. (2006), Sigal and Black (2010).

One line of research has focused on 3D model-based
tracking; i.e. given a reasonably accurate 3D human model
and an initial 3D pose, predict the pose at the next time step
using a particular dynamical and observation model (Balan
and Black 2006; Brubaker et al. 2010; Deutscher and Reid
2005; Drummond and Cipolla 2001; Fossati et al. 2009;
Gavrila and Davis 1996; Hasler et al. 2009; Kakadiaris and
Metaxas 2000; Lee and Elgammal 2010; Li et al. 2010;
Ong et al. 2006; Peursum et al. 2010; Roberts et al. 2006;
Rosenhahn and Brox 2007; Stenger et al. 2006; Vondrak
et al. 2008; Xu and Li 2007). Multi-hypothesis approaches
based on particle filtering (Brubaker et al. 2010; Deutscher
and Reid 2005; Ong et al. 2006; Peursum et al. 2010;
Xu and Li 2007) or non-parametric belief propagation (Si-
gal et al. 2004) are used for increased robustness. However,
the high dimensionality of the pose parameter space necessi-
tates researchers to employ strong motion priors (i.e. known
action classes such as walking, running) and/or various se-
quential sampling techniques. In practice, tracking soon
goes astray if no recovery mechanism is added.

Another line of research has dealt with 3D pose initial-
ization. Work in this category can be distinguished by the
number of cameras used. Multi-camera systems for 3D pose

initialization were so far applied in controlled indoor en-
vironments. The near-perfect foreground segmentation re-
sulting from the stationary background, together with the
many cameras used (> 5), allows to recover pose by Shape-
from-Silhouette techniques (Cheung et al. 2005a, 2005b;
Corazza et al. 2010; Kehl and Gool 2006; Mikic et al. 2003;
Starck and Hilton 2003; Sundaresan and Chellappa 2009).
A new line of research goes beyond the recovery of pose pa-
rameters to the estimation of the non-rigid surface of the 3D
human model (Balan et al. 2007; Gall et al. 2009).

Single camera systems for 3D pose initialization can be
sub-divided whether they use generative or learning-based
approaches. Learning-based approaches construct a map-
ping between 3D pose and 2D image observables using
machine learning techniques (Agarwal and Triggs 2006;
Bo and Sminchisescu 2010; Bissacco et al. 2007; Kanaujia
et al. 2007; Rogez et al. 2008; Shakhnarovich et al. 2003).
These approaches are conceptually appealing and fast, but
questions still remain regarding their scalability to arbi-
trary poses. Certainly, a large number of examples would be
needed in that case to allow for successful regression, given
the ill conditioning and high dimensionality of the problem
(most experimental results involve restricted movements,
i.e. walking). Furthermore, learning-based approaches tend
to rely on good foreground segmentation.

On the other hand, pose initialization using 3D genera-
tive models (Kohli et al. 2008; Lee and Cohen 2006) in-
volves finding the best match between model projections
and image, and retrieving the associated 3D pose. 3D gen-
erative models typically involve compositions of volumet-
ric primitives like ellipsoids or cones (Forsyth et al. 2005;
Gavrila 1999; Moeslund et al. 2006). Alternatives involve
linear subspace models, derived from a training set of 3D
human body scans (SCAPE, Balan et al. 2007) and mesh
models (e.g. Hasler et al. 2009).

Pose initialization using 2D generative models involves
2D pose recovery (Andriluka et al. 2009; Ferrari et al. 2009;
Mori and Malik 2006; Ramanan et al. 2007) followed by a
3D inference step (Lee and Nevatia 2009) with respect to the
joint locations. In order to reduce the combinatorial com-
plexity associated with pose recovery, previous generative
approaches apply part-based techniques (Sigal et al. 2004;
Bergtholdt et al. 2010). As far as these involve search space
decomposition (i.e. searching first for the torso, then arms
and legs) (Mori and Malik 2006; Navaratnam et al. 2005;
Ramanan et al. 2007), they are error prone; estimation mis-
takes made early on based on partial model knowledge can-
not be corrected later on. In practice, this means that in-
stances with an appreciable amount of torso movement and
rotation are difficult to handle. It proves difficult to com-
bine an efficient inferencing mechanism on body parts with
the enforcement of multi-part constraints (e.g. dynamics, ap-
pearance); Sigal and Black (2010) suggest that part-based
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Fig. 1 Framework overview. See Sect. 3.1

approaches are probably best to provide an efficient proposal
function for estimation with a more centralized representa-
tion of the body (e.g. a kinematic tree).

Methods for pose initialization can serve to initialize the
above-mentioned trackers. An increasingly popular alterna-
tive is their use in “tracking-as-recognition” approaches, es-
pecially when no strong motion priors are available. Here,
pose estimates obtained independently at each time instant
are integrated to consistent trajectories, taking into account
a more generic motion model. This is typically achieved
by Markov chain optimization (Fossati et al. 2007; Lee and
Nevatia 2009; Lv and Nevatia 2007; Navaratnam et al. 2005;
Peursum et al. 2007).

Given the extensive amount of work done on human 3D
pose estimation, it has been difficult to assess how the var-
ious approaches stack against each other. In an upcoming
special issue of this journal, Sigal et al. (2010) make an im-
portant contribution in this regard, by providing the “Hu-
manEva” data set. It contains a sizeable amount of multi-
video and synchronized motion capture data of humans
performing a set of predefined actions in a controlled in-
door environment. Together with the provided motion cap-
ture ground truth and baseline algorithm, it allows other re-
searchers to benchmark their 3D pose estimation systems on
a common data set (Bergtholdt et al. 2010; Bo and Sminchis-
escu 2010; Brubaker et al. 2010; Corazza et al. 2010; Gall
et al. 2010; Peursum et al. 2010; Lee and Elgammal 2010;
Li et al. 2010).

3 3D Human Pose Estimation

3.1 Overview and Contribution

Figure 1 presents an overview of the proposed framework.
Image pre-processing determines a rough region of interest

in the 3D scene and in the various camera views, based on
foreground segmentation and volume carving (Sect. 3.3).

In the hypothesis generation stage (Sect. 3.4), candi-
date 3D poses are obtained by matching a pre-computed
library of 2D pose exemplars containing silhouette data in
the individual camera views. For efficiency, matching is per-
formed hierarchically using a tree structure; the latter was
constructed on top of the exemplar library off-line. A pose
selection step follows, that maps matched 2D pose exem-
plars to 3D poses and estimates the corresponding posteriors
(Sect. 3.5).

In the subsequent hypothesis verification stage (Sect. 3.6),
the candidate 3D poses are projected to all camera views
and ranked according to a multi-view likelihood measure.
This involves three sub-stages. In the first sub-stage, the
projections of candidate 3D poses into the camera views
are approximated with the above-mentioned library of 2D
pose exemplars, assuming orthographic projection. Because
these 2D poses exemplars are already computed, the projec-
tion involves a simple table look-up operation. The multi-
view likelihood measure involves shape only and can thus
be computed very fast. The second sub-stage uses perspec-
tive projection and graphical rendering; this enables the use
of both shape and texture in the likelihood measure (apart
from the first frames, when a texture model is not available).
In the last sub-stage, a gradient-based procedure optimizes
the pose parameters in continuous parameter space.

Temporal integration consists of computing Ktraj best
trajectories in batch mode using a Viterbi-style maximum
likelihood approach (Sect. 3.7). Poses that lie on the best
trajectories are used to generate and adapt a texture model
(Sect. 3.8), which provides the above-mentioned texture
component in the multi-view matching likelihood of hypoth-
esis verification. The multiple trajectory hypotheses are also
used to generate pose predictions, augmenting the 3D pose
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candidates generated by single-frame pose recovery at the
next time step.

Pose estimation involves a multi-stage recovery process,
where an increased computational effort is spent in the later
stages, as the 3D pose space is successively pruned. We ad-
dress the issue of the potentially unfavorable combinatorics
of our exemplar-based pose representation by reducing the
number of solutions at each process stage by ranking, non-
maxima suppression and truncation. First, obtained solu-
tions are ranked according to their likelihood/posterior val-
ues. A non-maxima suppression procedure (implemented as
a single pass over the solutions) removes solutions which
have lower likelihood/posterior values than similar solu-
tions, given a criterion for similarity (e.g. distance in image
or pose space); it is applied to ensure diversity in the solu-
tions produced. The remaining list of solutions is truncated
by size, maintaining the most likely/probable solutions.

The contributions of this paper are two-fold. The main
contribution is a framework for estimating unconstrained 3D
human movement in complex environment using a moderate
number of cameras. It consists of single-frame pose recov-
ery, temporal integration and texture-based model adapta-
tion components, as described above. The way multiple pose
trajectories are used goes beyond previous “tracking-as-re-
cognition” approaches (see Sect. 2), where the computation
of a (single) best pose trajectory is solely a post-processing
step, decoupled from the estimation process. Model adap-
tation in our approach, furthermore, does not require a
pre-defined key pose (i.e. feet apart) (Fossati et al. 2007;
Ramanan et al. 2007) or a scripted initialization movement
(Kakadiaris and Metaxas 2000). To reduce the chance of a
wrong model update, we update only for those poses which
lie on the most likely pose trajectory, i.e. we perform batch-
mode temporal integration before model adaptation, rather
than model adaptation at each time instant independently
(Balan and Black 2006). We do not use strong motion priors
(e.g. Lee and Elgammal 2010; Sigal et al. 2004).

The second contribution concerns the way multi-camera
pose recovery is performed. The error-prone foreground seg-
mentation resulting from operating in dynamic outdoor en-
vironments together with the lower number of cameras used
prevents solving matters by Shape-from-Silhouette tech-
niques outright (see Sect. 2). Inverse kinematics techniques
(Kakadiaris and Metaxas 2000; Knossow et al. 2008), on
the other hand, require close initial estimates. We also do
not wish to rely on feature correspondences across cameras
(i.e. wide-baseline stereo), as this will be difficult to achieve
robustly. Instead, we propose to perform 3D pose detection
for each camera independently and fuse information at the
pose parameter level by means of the efficient multi-stage
recovery process described above. Fusing the information
at the pose level improves the scalability with respect to
the number of cameras (e.g. allowing optimized per-camera

matching, improved algorithm parallelism). We introduce a
probabilistic pose selection criterion which implicitly per-
forms viewpoint selection by evaluating and ranking by a
pose posterior term. An advantage of our exemplar-based
approach is that it describes the articulations of the upper-
body as a whole. This ensures that upon matching, all avail-
able model knowledge is used at the same time, avoiding
some of the drawbacks of the part-based decomposition ap-
proaches discussed in Sect. 2. Our framework offers two
ways to go beyond the parameter discretization induced by
the exemplar-based approach: by means of local pose opti-
mization and pose prediction, both performed in continuous
parameter space. This paper extends our earlier work Hof-
mann and Gavrila (2009a, 2009b).

In the following sections, main system parameters are de-
noted by variables. For an overview of the actual values used
in the experiments, see Appendix A.

3.2 3D Human Shape Model

Our 3D upper body model uses tapered super-quadrics as
body part primitives (Gavrila and Davis 1996); this yields
a good trade-off between desired accuracy and model com-
plexity (i.e. number of parameters). Each superquadric has
parameters for length (a1, a2, a3), squareness (e1, e2) and
tapering (tx , ty ). The generating function for a vertex on the
superquadric surface is

ζ(u, v) =
⎛
⎜⎝

a1 cose1 u cose2 v(tx sine1 u + 1)

a2 cose1 u sine2 v(tx sine1 u + 1)

a3 sine1 u

⎞
⎟⎠ (1)

where the angle parameters u, v are in the ranges −π
2 ≤ u ≤

π
2 , −π ≤ v ≤ π .

We use a model with generic parameters (averaged from
limb lengths estimates of our actors) and do not tune for
slight differences in body height or limb length among the
actors in our data sequences (which are in the order of
<10 cm w.r.t. height). Articulation at each joint is repre-
sented using transformations of homogeneous coordinates

x′ = Hx, H = H(R(φ, θ,ψ),T ) (2)

where R is a 3 × 3 rotation matrix determined by the Euler
angles φ, θ , ψ , and T a constant 3 × 1 translation vector.
Transformations of limbs not at the model root are repre-
sented by a kinematic chain H = H1H2 · · ·Hk along the re-
spective joints. Given the body parts torso, neck, head, up-
per arm, lower arm and hand, we represent a 3D upper body
pose as a 13-dimensional vector of joint angles

π = (φt , θt ,ψt , φh,ψh, φl
s, θ

l
s ,ψ

l
s, θ

l
e, φr

s , θ
r
s ,ψr

s , θr
e )

(3)
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Fig. 2 Visualization of the shape model, including a description of the
joint angles in (3)

augmented by a three dimensional vector x denoting the po-
sition of the root of the articulated structure, which is, in our
case, the torso center (depending on context, we use in this
paper the term “pose” to denote either π or (π ,x)). Figure 2
provides a visualization of the model as well as the joint an-
gles defined in (3).

3.3 Image Pre-processing

See Fig. 1. The aim of the pre-processing stage is to ob-
tain a rough region of interest, both in terms of the individ-
ual 2D camera views and in terms of the 3D space. Due to
the considered dynamic environment, segmenting the fore-
ground by background modeling (Zivkovic 2004) in the sep-
arate camera views is error-prone; moving objects or people
in the background might create spurious foreground blobs
and therefore false regions of interest. See Fig. 3, top two
rows.

Figure 3 also illustrates that the human silhouettes are not
necessarily segmented in a quality suitable for solving pose
recovery by Shape-from-Silhouette techniques outright (see
Sect. 2). In order to take some advantage of the additional in-
formation provided by multiple camera views, nevertheless,
we fuse the computed foreground masks by means of vol-
ume carving (Laurentini 1994). After the necessary morpho-
logical operations (dilation), connected voxel components
of a minimum height and size give an estimate of the num-
ber of people and their rough 3D location in the scene. More
specifically, given binary volume information, we compute
the accumulated projection image along the ground plane
normal direction and require a certain minimum “mass” in
the resulting image to form a 3D blob that is recognized as
an object. 3D blobs that are too small or that lie too far away
from the ground plane are deleted; we also remove parts of
the legs in our volume reconstruction by removing voxels
less than htorso = 70 cm above ground; body pose initial-
ization is thus restricted to roughly standing position (a con-
dition which can be relaxed, when allowing for a larger

search space for the torso parameters at the next processing
stage). Projecting the reconstructed voxels onto the camera
images produces an improved foreground mask. See Fig. 3,
third row, where various shadows, the train passing by, and
the other 3D person blob, currently not under consideration,
have been eliminated.

The voxel information in combination with our camera
calibration yields information about the image scales and
regions of interest to be used in the forthcoming hypothe-
sis generation step (Sect. 3.4). The input images, together
with the corresponding foreground edge- and a distance-
transformed-image, are stored at the relevant scales for fur-
ther processing (the 2D pose exemplars that the images are
matched with are generated at a fixed scale).

3.4 Pose Hypotheses Generation

See Fig. 1. We generate pose hypotheses by processing the
camera views individually. We follow an exemplar-based
approach and match each camera view image with a pre-
generated 2D pose exemplar library with known 3D articu-
lation. The challenge in creating an exemplar library is to es-
tablish a reasonable trade-off between representation speci-
ficity (i.e. the number of 2D pose exemplars, the dissimilar-
ity between neighboring 2D pose exemplars) and efficiency
(both in terms of storage and matching speed).

3.4.1 2D Pose Exemplar Generation

To obtain a discretized 3D pose space representation, we
first define a set of upper body poses by specifying lower and
upper bounds for each joint angle separately and discretize
each angle. The Cartesian product of these angles contains
anatomically impossible poses; these are filtered by collision
detection using the 3D shape model (Sect. 3.2) and through
rule-based heuristics. See Appendix A for details.

The outcome, the set Π of “allowable” 3D poses, is used
to generate a 2D pose exemplar library S by means of pro-
jection of the 3D shape model. In our case, the 2D pose ex-
emplars contain silhouette information only. The main rea-
son not to incorporate internal edges was that these are hard
to detect in typical scenery (i.e. contrast between arm and
torso for similar colored clothing) and we preferred in the
early processing stages to concentrate on the robust fea-
tures. This had also the beneficial effect to reduce the num-
ber of necessary exemplars. A further reduction in the latter
is achieved by the use of orthographic projection in comput-
ing S.

The above-mentioned discretization of joint angle is cho-
sen fine enough that the 3D pose space is adequately cov-
ered; in other words, the similarity in appearance of any
projected 3D pose and the closest corresponding 2D pose
exemplar should lie within a user-supplied matching toler-
ance. Doing so, the generated 2D pose exemplar library S
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Fig. 3 Image pre-processing in dynamic environment: (top row) in-
put image (second row) foreground mask based on background mod-
eling in the individual camera views. Note the artifacts introduced by

shadow, and people and a train moving in the background (third row)
improved foreground mask after volume carving, (re)projection and
object selection, (bottom row) foreground edge image

(roughly of size 15 × 106) might contain a number of simi-
lar exemplars; this redundancy will be reduced in next sub-
section, where only a subset of S will be actually used for
matching.

3.4.2 2D Pose Exemplar Tree Construction

2D pose exemplars are hierarchically organized in a tree
structure, for efficient matching. See Fig. 4. The exem-

plars at the various levels of the tree, Sl , l = 1, . . . ,L,
can be grouped based on their appearance (e.g. chamfer
distance) (Gavrila 2007) or based on a decomposition of
the underlying 3D joint angles (Stenger et al. 2006). The
appearance-based grouping is attractive because of the com-
pactness of the resulting representation; similar 3D pose
projections (e.g. front and back views) can be grouped to-
gether even if they are distant in joint angle space. How-
ever, the appearance-based grouping approach of Gavrila
(2007) is not directly applicable to our case since it has
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Fig. 4 Schematized structure of the 4-level 2D pose exemplar tree and
its construction. First, N∗ exemplars (i.e. the set SL∗ ) are generated
for subsequent appearance-based grouping of the levels l = 1 . . .L∗
(top triangle). Second, each pose exemplar in S is assigned to an ex-

emplar in SL∗ based on distance in appearance space. Third, N∗ sub-
trees are constructed by appearance-based grouping to build the levels
L∗ + 1 . . .L + 1 (lower triangles); the last level, representing the al-
lowable pose space S, is discarded. See Sect. 3.4.2

quadratic complexity in terms of the number of exemplars
(recall that we are dealing with about 15 × 106 exemplars,
see Sect. 3.4.1).

We therefore use a hybrid approach for tree construction,
combining appearance-based grouping and discretization of
underlying joint angles. See Fig. 4. The basic idea is to split
the tree construction process in two steps: first, the creation
of the top L∗ levels, and then the creation of the sub-trees
that are attached to the nodes at level L∗.

First, we establish the maximum number of exemplars
N∗ that is still practically manageable for an appearance-
based grouping approach with quadratic complexity as in
Gavrila (2007), given the processing environment at hand.
We generate these N∗ (in our case, N∗ ≈ 20000) exemplars
with a coarser discretization of the allowable joint angles.
Assuming a roughly constant branch ratio B throughout the
tree, N∗ specifies a tree level L∗ (in our case, L∗ = 3). For
the root l = 1 up to level L∗, we will construct the tree
by appearance-based grouping using the chamfer distance
(Gavrila 2007).

As a second step, each of the 2D pose exemplars S asso-
ciated with the allowable poses are assigned to one of the N∗
prototypes of SL∗ , based on smallest distance in appearance
space.

Finally, we construct the N∗ sub-trees one-by-one, as
before, based on appearance-based grouping, similar to
Gavrila (2007). For each sub-tree, the assigned exemplars
of the previous step are used in its construction. The last
level L + 1 of the tree is discarded, to reduce redundancy in
2D pose exemplar representation (e.g. poses with different
arm positions occluded by torso). The final tree has level L

and each new leaf level node {s|s ∈ SL} contains a pointer to
the 3D poses Πs that corresponded to the discarded children
nodes.

3.4.3 Hierarchical Bayesian 2D Pose Exemplar Matching

With the hierarchical 2D pose exemplar representation now
in place (Fig. 4), we implement online 3D pose hypothe-
sis generation by a tree traversal process, following Gavrila
(2007). Tree traversal starts at the root. Processing a node in-
volves matching the corresponding (prototype) 2D pose ex-
emplar with the image at some interest locations. For the lo-
cations where the distance measure between 2D pose exem-
plar and image is below a user supplied threshold τ , the child
nodes are added to the list of nodes to be processed. For loca-
tions where the distance measure is above-threshold, search
does not propagate to the subtree.

The above coarse-to-fine approach is combined with a
coarse-to-fine approach over the transformation parameters
(i.e., image translation). Image locations on a grid γl , where
matching is successful for a particular non-leaf node, give
rise to a new set of interest locations for the child nodes
on a finer grid γl+1 in the vicinity of the original locations.
At the root, the interest locations lie on a uniform grid over
the image. The combined coarse-to-fine approach in pose
and transformation space leads to massive efficiency gains
(i.e. several order of magnitude) compared to the brute-force
of matching the leaf level 2D pose exemplars (SL) one-by-
one at each image location. By following a path in the tree
toward the leaf node, both exemplar suitability and exem-
plar localization increase. Final detections are the successful
matches at the leaf level of the tree.

Gavrila (2007) sets matching thresholds τ based on the
posterior for the existence of a correct match at a current
node sl at level l, after a set of observations along the path
from the root to that node. A match is defined correct, if
that particular node (i.e. the associated 2D pose exemplar
and associated image location) lies on the path from the root



110 Int J Comput Vis (2012) 96:103–124

to the best matching leaf level node (the “optimal” path).
For notational simplicity, we do not include in the remain-
der the subscripts regarding to image location or an index
denoting a particular node at level l. Let s+

l and s−
l denote

the event outcome that the corresponding 2D pose exem-
plar sl matches correctly and incorrectly, respectively (i.e.
p(s+

l ) + p(s−
l ) = 1). The observation obtained at the l-th

level of the tree, is denoted by Ol ; in our case, this is the
uni-directional chamfer distance. Define O1:l = {Oi}li=1 to
be the observations from the top level up to level l, along a
particular path in the tree.

Under the Markov assumption along the path from the
root to the current node (with xl denoting either s+

l or s−
l )

p(Ol |O1:l−1xl) = p(Ol |O1−1xl) (4)

and considering three possible transitions from a parent
node at level l − 1 to a current node at level l

1. s+
l s+

l−1: both parent and current node lie on optimal path,
2. s−

l s+
l−1: parent lies on optimal path but current node does

not, and
3. s−

l s−
l−1: parent does not lie on optimal path (and conse-

quently, neither does current node),

Gavrila (2007) derives the following recursive form of
the posterior

p(s+
l |O1:l ) = 1

1 + αl

(5)

with (l > 1)

αl = p(s+
l−1|O1:l−1) p(Ol |Ol−1s

−
l s+

l−1) p(s−
l |s+

l−1)

p(s+
l−1|O1:l−1) p(Ol |Ol−1s

+
l s+

l−1) p(s+
l |s+

l−1)

+ p(s−
l−1|O1:l−1) p(Ol |Ol−1s

−
l s−

l−1)

p(s+
l−1|O1:l−1) p(Ol |Ol−1s

+
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l |s+
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α1 = p(s−
1 )

p(s+
1 )

p(O1|s−
1 )

p(O1|s+
1 )

Equation (5) describes how the probability that a par-
ticular node provides a correct match during tree search
(p(s+

l |O1:l )) is based on the probability that the match is
correct at the parent node (p(s+

l−1|O1:l−1)), the observa-
tions made at the current and parent node (Ol and Ol−1)
and likelihood functions for the three possible transitions
from the parent to the current node (p(Ol |Ol−1xlxl−1)).
The likelihood functions are derived from histogramming
observations at the nodes of the template tree on a train-
ing set, where the correct solution is known. For exam-
ple, p(Ol |Ol−1s

+
l s+

l−1) is derived by collecting dissimilar-
ity measurements along the path from the top to the best
matching 2D pose exemplar at the leaf level. For details, see
Gavrila (2007).

We use (5) to discontinue search below those tree nodes
where the match is below a certain level-specific threshold
τl . The outcome of the pose hypothesis generation stage is a
list of leaf-level 2D pose exemplars sL ∈ SL with associated
image locations and posterior probabilities p(s+

L |O). Non-
maximum suppression of the results removes lower-ranked
matches of the same 2D pose exemplar nodes in an image
neighborhood of uPosHyp pixels in x/y direction. About
KPosHyp ≈ 300,000 pose solutions pass this stage on av-
erage in our experiments (derived from approximately 3000
leaf level 2D pose exemplars) and serve as input to the sub-
sequent pose selection stage.

3.5 3D Candidate Pose Selection

See Fig. 1. Given a particular 2D pose exemplar sL ∈ SL

that is hypothesized by the previous processing stage, we
now derive the posterior for a 3D pose π that it represents
(i.e. recall last paragraph of Sect. 3.4.2). To emphasize the
link between the 2D pose exemplar sL and underlying pose
π , we now denote in this section the former by sπ , changing
the subscript. The posterior is given by (see Appendix B for
details)

p(π |O) = p(O|s+
π )

p(O|s+
π ) |Πs | + p(O|s−

π ) |Π \ Πs |
(6)

where |Πs | is the number of 3D poses associated with the 2D
pose exemplar s, and |Π | the number of all poses. Regarding
observables O , we shift from the uni-directional chamfer
distance used for hierarchical 2D pose exemplar matching
to the more accurate and expensive bi-directional chamfer
distance, for all shape matching in the remaining process
stages (thus p(O|s+

π ) and p(O|s−
π ) cannot be re-used from

previous subsection).
In order to experimentally determine p(O|s+

π ) and
p(O|s−

π ), we make a number of simplifying assumptions,
mainly to handle the scarcity of available training data. We
first assume that p(O|s+

π ) does not depend on the exact
pose exemplar s+; the contributions of all s+ in the train-
ing set are aggregated for the purpose of estimating the un-
derlying probability density function (PDF). We do how-
ever differentiate between p(O|s−

π ) at different s−
π in or-

der to account for different degrees of saliency of the 2D
pose exemplars (e.g. “arms outstreched“ more discrimina-
tive than “arms along body”). We aggregate the contribu-
tions of all s− corresponding to a particular first-level an-
cestor in the tree, and thus maintain |S1| separate distribu-
tions.

The various distributions obtained by histogramming are
subsequently fitted. p(O|s+

π ) is fitted by a log-normal dis-
tribution and p(O|s−

π ) by both log-normal and normal dis-
tributions. For the latter case, we choose the distribution
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Fig. 5 Example distribution O|s+
π (aggregated for first-level exemplars) and example distributions O|s−

π with associated first-level exemplars.
For the latter, the expected value of O|s−

π for the more salient exemplar (left) is noticeably larger than that for the less salient exemplar (right)

class with the lowest mean squared error with respect to
the learned histograms. The histograms associated with less
salient templates exhibit a right-tailed shape and are well-
fitted by log-normal distributions, while histograms asso-
ciated with more salient templates are more symmetric or
rather slightly left-tailed and are better fitted by normal dis-
tributions. Figure 5 shows the estimated distribution for the
target class, as well as two of the estimated distributions for
the non-target class, for a less salient and a more salient ex-
emplar respectively.

Pose selection is implemented by extracting the poses
of all matched exemplars for each camera (Sect. 3.4),
evaluating the pose posterior probability (6) and ranking
the aggregated list. Non-maximum suppression of the re-
sults removes lower ranked poses, where the similarity
with a higher ranked pose is below a threshold uPosSel .
The pose similarity measure we use is the mean distance

between corresponding 3D locations of the human body
model

dx(π1,π2) = 1

|B|
∑
i∈B

de(v
i
1,v

i
2) (7)

where B is a set of locations on the human body model,
|B| the number of locations, vi is the 3D position of the re-
spective location in a fixed Euclidean coordinate system, and
de(.) is the Euclidean distance. For the set of locations, we
choose torso and head center as well as shoulder, elbow and
wrist joint location for each arm. After non-maxima sup-
pression, the KPosSel best remaining solutions pass to the
next processing stage.

Observe that pose selection by (6) has the desirable
property that camera viewpoint selection is implicitly per-
formed; “bad” viewpoints, which capture ambiguous poses
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(e.g. hands self-occluded by torso), result in 2D pose exem-
plars with comparatively large |Πs | and thus in decreased
3D pose posteriors.

3.6 Multi-camera Hypothesis Verification and
Optimization

See Fig. 1. After the previous pose selection stage, which
ranks pose hypotheses π generated from 2D matches from
individual cameras, we continue by verifying these over
multiple cameras and placing them in a 3D world coordi-
nate system (i.e. adding x). This is implemented by the three
steps described in the following subsections.

3.6.1 Pose Verification Using 2D Shape Exemplars

In this first—still entirely shape-based—step, we map a 3D
pose generated by one camera to the corresponding 2D pose
exemplars of the other cameras and match these onto their
respective images. Due to the used orthographic projection,
the mapping from a pose as observed in camera ci to the
corresponding pose in camera cj is achieved by modifying
the torso rotation angle ψtorso relative to the projected angle
between cameras ci and cj on the ground plane. The map-
ping from a 3D pose to a 2D pose exemplar is then easily
retrieved from a look-up table after re-discretizing the angle
to one of the values present in the poses of our library S.

For each pose π , we also need to obtain a 3D position x

in the world coordinate system from the 2D location of the
match on the image plane. We therefore backproject this lo-
cation and sample 3D points at various depths, which then
we project in the other camera images and match the cor-
responding exemplars at the locations where there is fore-
ground support. The multi-view pose probability for a pose
π is modeled as

p(π |O) =
C∏

c=1

p(π |Oc) (8)

where O is the set of observations from the three cameras
and p(π |Oc) is the posterior term from (6). For each pose
π , the 2D location with the highest probability per cam-
era is kept; triangulation of point pairs and averaging then
yields a 3D position x in the world coordinate system. In
case of an inconsistent triangulation being generated, i.e. if
the distance between triangulated point pairs exceeds a cer-
tain threshold, the respective pose hypothesis is discarded.

To account for the error made by the orthographic pro-
jection assumption, we add a correction angle ψcorr

t to the
torso rotation angle ψt , when converting the pose repre-
sentation from orthographic to perspective projection, see
Fig. 6. We obtain a ranked list of candidate 3D poses {π ,x}
and, as in Sect. 3.5, perform non-maximum suppression

Fig. 6 Correction angle ψcorr
t to the torso rotation angle ψt

when transferring poses from orthographic to perspective projection
(Sect. 3.6.1)

based on threshold uPosV erEx for pose similarity (7). The
best KPosV erEx remaining candidate poses pass to the next
processing stage.

3.6.2 Pose Verification by Rendering (Shape, Texture)

In this processing stage, the candidate 3D poses are ren-
dered on-line, assuming perspective projection, and ranked
according to a multi-view likelihood based on both shape
and texture cues

pST (O|π ,x) = pS(O|π ,x) × pT (O|π ,x) (9)

where pS(.) is the product p(O|π ,x) = ∏C
c=1 p(Oc|π ,x)

of chamfer distance-based likelihoods per camera, and pT (.)

is a respective texture likelihood term (for a description of
the distance measure, see (20)). While no texture model is
available during the first frames, the multi-view matching
likelihood is based on the shape component only; the texture
likelihood is taken constant in this case.

Equation (9) represents a computationally expensive step
in the evaluation cascade due to on-line graphical render-
ing across multiple camera views and the additional evalua-
tion of the texture likelihood, but provides an accurate like-
lihood evaluation; poses are not approximated by a subset of
shapes anymore, and the assumption of perspective projec-
tion is more realistic. As before, we perform non-maximum
suppression based on threshold uPosV erRdr for pose simi-
larity (7). The best KPosV erRdr remaining candidate poses
pass to the next processing stage.

3.6.3 Local Pose Optimization

We overcome the limitation of our discrete, exemplar-
based representation by performing a local optimization
of the pose parameters in continuous space using the gra-
dient ∇p(O|π ,x). For efficiency reasons, optimization
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is only performed on a subset of the best-ranked results
(KPosV erRdrOpt ) of the preceding processing stage. Render-
ing makes it difficult to compute gradients, due to the con-
tour discretization to pixel level, which makes ∇p(O|π ,x)

non-differentiable with respect to its parameters. In previous
work (Hofmann and Gavrila 2009b), we computed a local
gradient approximation using central differences. This has
the disadvantage of making gradient computation costly and
requiring the suitable setting of the difference delta constant
(i.e. such that the discretized contour output changes yet the
finite difference result is sufficiently accurate). In this pa-
per, we perform a local shape-based optimization using the
analytical gradient of a close approximation of the model
contour, i.e. of densely sampled vertices on the contour.

Linear sampling of the two angle parameters in (1) results
in a set of very unevenly spaced vertices, due to the varying
local curvature of the object. However, we can obtain a reg-
ular sampling of vertices on a superquadric surface by using
a first-order differential model (Pilu and Fisher 1995). Two
neighboring vertices are defined to be part of the contour,
if a sign change occurs in the dot product between surface
normal and a ray through vertex and camera center. We ex-
clude vertices that are occluded by other body parts in our
model by making use of the inside-outside function of a su-
perquadric.

Let C denote the set of camera views, and V c
rim a set of

model vertices on the projected contour in view c. Further-
more, let dch(Sc,p) be a differentiable function that com-
putes the real-valued chamfer distance between an image
projection p = (px,py) of a point on the model surface and
the closest edge point of the silhouette in the scene image Sc ,
and P c be the camera projection matrix of camera view c.
The average chamfer distance between model vertices and
image silhouette contours is then computed as

DC = 1

|C|
∑
c∈C

1

|V c
rim|

∑
v∈V c

rim

dch
(
Sc,P

cHvζ v
)

(10)

Hvζ v (see Sect. 3.2) denotes the 3D world coordinate po-
sition of vertex v after transformation along the articulated
chain. In our implementation, we compute dch(Sc,p) as the
bilinear interpolation of the distance transform image Tc of
Sc (we use interpolation instead of accessing Tc(px,py) di-
rectly in order to keep the operation differentiable).

dch(Sc,p) = (1 − fx)(1 − fy)Tc(ix, iy)

+ fx(1 − fy)Tc(ix + 1, iy)

+ (1 − fx)fyTc(ix, iy + 1)

+ fxfyTc(ix + 1, iy + 1); (11)

where (ix, iy) are the integer parts and (fx, fy) are the frac-
tional parts of p. The gradient of (10) with respect to the

pose parameters is computed as follows:

∂DC

∂{π ,x} = 1

|C|
∑
c∈C

1

|V c
rim|

∑
v∈V c

rim

JdJP JHvζ v (12)

Here, Jd is the 1 × 2 Jacobian of the bilinear chamfer dis-
tance lookup function dch(Sc,p) while JP ≡ JP (P ) is the
2 × 3 Jacobian of the projection operation, i.e. the multipli-
cation with the camera matrix. JHv is the Jacobian contain-
ing the partial derivatives of the entries of the cumulative
transformation matrix Hv with respect to the pose parame-
ters.

Because we sum over a number of sampled vertices
in (10) and (12), both functions are not smooth over the
whole parameter space, despite being differentiable at each
point. Although second-order optimization methods such
as Levenberg-Marquardt or quasi-Newton methods give the
promise of fast convergence, they cannot cope with noisy
gradients sufficiently well, leading to convergence failure.
We instead optimize the value of (10) using a first-order
Gradient Descent method with local step-size adaptation, as
outlined in Bray et al. (2007). The Gradient Descent update
equation for a parameter vector qi of a function E(qi ) from
iteration i to iteration i + 1 is

qi+1 = qi − ai ⊗ gi , gi = ∂E(qi )

∂qi

(13)

where ⊗ denotes a component-wise product and at is a step-
size vector of local learning rates which is updated by a
meta-level descent on the step-sizes.

ai = ai−1 ⊗ exp(μggi ⊗ vi ) (14)

vi+1 = λgvi + ai ⊗ (
gi − λgvi

)
(15)

For efficiency reasons, we opt to update the gradient trace
vi as an exponential average of past gradients, as opposed
to evaluating a multiplication of the Hessian with a vector
(Bray et al. 2007) (the additional cost would be compara-
ble to an additional gradient evaluation). The optimization
process terminates after a maximum number of iterations is
reached (in our case, 80) or if ‖gi‖ < ε. For each optimized
hypothesis, the shape-texture likelihood of (9) is computed
and the set of all hypotheses is re-ranked accordingly.

3.7 Temporal Integration and Prediction

See Fig. 1. After executing the single-frame pose recov-
ery stages outlined in Sects. 3.4 through 3.6.3, we obtain
a number of pose hypotheses ranked by their multi-view
observation likelihood (see (9)). The following step dis-
ambiguates these multiple hypotheses over time and de-
termines pose trajectories that both match the observations
well and exhibit coherent motion. We formulate this as the
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following optimization task: given a sequence of observa-
tions O0, . . . ,OT up to time step T , find the pose sequence
(π0,x0), . . . , (πT ,xT ) ∈ Π0 ×X0, . . . ,ΠT ×XT that max-
imizes

p(π0:T ,x0:T |O0:T )

∝
T∏

t=1

p(π t ,xt |π t−1,xt−1)

T∏
t=0

p(O t |π t ,xt ). (16)

p(π t ,xt |π t−1,xt−1) denotes the pose transition likelihood
as a first-order Markov chain, while p(O t |π t ,xt ) is the ob-
servation likelihood of (9). For the transition model, we eval-
uate the distances of a set of 3D locations on the model
between a pose hypothesis and its predecessor in the pre-
vious frame. More specifically, let dk be the magnitude of
displacement of body part k, from t − 1 to t ; we then com-
pute the transition likelihood as follows:

p(π t ,xt |π t−1,xt−1)

= p(dtorso) × p(dl.shoulder) × p(dl.elbow|dl.shoulder)

×p(dl.wrist|dl.elbow) × p(dr.shoulder)

×p(dr.elbow|dr.shoulder) × p(dr.wrist|dr.elbow) (17)

For improved accuracy, we condition the displacement of
the elbow on that of the adjoining shoulder. Note that the
above decomposition only relates to the computation of
the transition probability, in order to cope with the limited
amount of training data (see Sect. 4); all pose parameters are
estimated jointly in the current exemplar-based approach.

The type of problem formulated in (16) is solved by ap-
plication of the Viterbi algorithm (Rabiner 1989) on the in-
put data, classically used in a post-processing step for state
disambiguation. In our case, we compute (16) “on-line” for
each frame in a sliding window over the last T frames. Fur-
thermore, we use a parallel List Viterbi Algorithm (LVA)
(Seshadri and Sundberg 1994) implementation to compute
not only the optimal, but the Ktraj best trajectories through
the Viterbi trellis at each time step. For our experiments,
we chose Ktraj = 500; we found that this is large enough
a number to ensure sufficient trajectory diversity and small
enough to keep all trajectories in system memory.

We generate 1
2KPosV erRdr pose predictions at every time

step that augment the detections of the next time step (i.e. to
obtain half as many predictions as detections), as indicated
in Fig. 1; these are generated using whole trajectory infor-
mation. To generate predictions at time step t , the desired
number of trajectories is sampled with replacement from the
set of best trajectories with a probability proportional to the
trajectory likelihood determined by the LVA algorithm.

For each trajectory sample, all 3D joint locations are in-
dependently filtered over the current length of the trajectory
using a Kalman filter and a constant acceleration dynamical

model. Given the current state, we perform the prediction
update of the Kalman filter for each joint location; a new
joint location is sampled from the predicted states and their
estimated covariances, correspondingly. We obtain a pose
prediction (π̃k

t+1, x̃k
t+1) from the set predicted 3D joint lo-

cations by inverse kinematics and constrained nonlinear op-
timization (Marquardt 1963), with the last trajectory pose as
an initialization.

Note that state estimation is no longer constrained to the
discrete space, due to the local pose estimation of Sect. 3.6.3
and the above-mentioned prediction mechanism.

Given the high dimensionality of the state space and the
weak motion model (arbitrary human movement), we opted
for the above sliding window batch-mode framework rather
than a recursive framework, because of increased estimation
stability. A temporary breakdown in detection can be better
bridged by the selected approach. Furthermore, the approach
allows an automatic (re-)initialization of system, after a pro-
longed failure of detection, in cases where recursive filtering
frameworks such as particle filtering would completely lose
track.

3.8 Model Adaptation Using Texture Information

See Fig. 1. An additional component in our system is ded-
icated to augmenting our shape model with texture infor-
mation in order to increase the discriminative power of hy-
pothesis verification (see Sect. 3.6.2). Generally, the qual-
ity of the learned texture model is sensitive to the estimated
pose of the shape model, and matching with a wrong tex-
ture model can be damaging for pose estimation. In order to
avoid incorrect texture model updates as much as possible,
we decided not to perform these based on pose estimates at
a single time instant, but rather based on the more reliable
trajectory information computed in the previous section. We
currently maintain a texture model learned from the optimal
trajectory at each time step and start acquiring the model af-
ter a constant, user-defined number of frames (15 frames in
our experiments). To acquire the input as exactly as possi-
ble, we perform local pose optimization prior to acquisition
in case this had not been done before, i.e. if the pose on the
best trajectory at the current time step was not among the
KPosV erRdrOpt best poses as described in Sect. 3.6.3.

We obtain a texture map for each major body part (torso,
head, upper arm, lower arm) by sampling the visible area of
our model primitives (see Sect. 3.2) for each camera view
and storing the color values in a 2D texture image. During
acquisition we ensure that we do not sample in areas of self-
occlusion through other body parts by performing collision
detection on the ray from camera center to the points on
the respective superquadric. The texture images from each
camera are then combined by choosing for each pixel the
sampled value for which the angle between the superquadric
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Fig. 7 Two examples of shape model enriched with texture informa-
tion, rendered from various viewpoints. Parts of the body that are oc-
cluded in all cameras stay untextured and are shown in white. Depicted
color space is non-normalized RGB

normal vector and the ray from the camera center is small-
est. Figure 7 shows an example of a reprojected texture map
acquired from the depicted pose. Because images from dif-
ferent cameras are effectively stitched together during the
acquisition of a texture map, there will be differences in lu-
minance due to camera properties and scene illumination.
We reduce the variation induced by global indirect illumina-
tion by working in a normalized RGB color space r = R/L,
g = G/L, b = B/L, where L := 1

|K|
∑

k∈K(Rk + Gk + Bk)

is the average luminance over the scene pixels K . This nor-
malization can account mainly for differences in color cali-
bration of the cameras or global illumination.

Each color pixel of a texture map is represented by a mul-
tivariate isotropic normal distribution whose parameters are
updated by causal filter equations

μ̃t = (1 − α)μ̃t−1 + αXt (18)

σ̃ 2
t = (1 − α)σ̃ 2

t−1 + α(Xt − μ̃t )
T (Xt − μ̃t ) (19)

where Xt is the measurement from the acquired texture map
at time t and α is a learning rate factor. Figure 8 shows an
example of the texture model adaptation over time. The fil-
tering of the texture map allows incorrect estimates to be
smoothed out. Although the resulting texture map is quite
blurred, it is nevertheless beneficial for pose recovery, as we
will see in the experiments.

In the hypothesis verification stage (see Sect. 3.6), the
texture map of a pose hypothesis is compared to that of the
model by computing the average pixel-wise Mahalanobis
distance:

dtexture = 1

Rb

Rb∑
i=1

√
(X − μ)T �(x − μ) (20)

where Rb is the resolution of the texture map associated with
body part b.

Fig. 8 Progression of texture model adaptation over time (frames
15, 20, 50, 250) on an example sequence; shown is the pixel-wise
mean of the model components. The pose used for the first acquisi-
tion (frame 15) is depicted below; in this case, each pixel of the model
is initialized with a user-defined variance

4 Experiments

Our experimental data consists of recordings from three syn-
chronized color CCD cameras looking over a train station
platform. In 12 sequences (about 10 s on average, captured
at 20 Hz), various actors perform unscripted movements,
such as walking, gesticulation and waving. The setting is
challenging; the movements performed contain a sizable
amount of torso turning, the background is cluttered and
non-stationary (people are walking in the background, trains
are passing by), furthermore, there are appreciable lighting
changes. The realism of the dataset in the context of surveil-
lance was the key motivation for using it as our primary
dataset for evaluation. The evaluation methodology we use
is similar to Sigal et al. (2010), both in terms of the 3D pose
error metric (7) and the baseline algorithm (Deutscher and
Reid 2005). Our data is made public to facilitate benchmark-
ing.2

Cameras were calibrated using (Bouguet 2003); this en-
abled the recovery of the ground plane. Ground truth pose
was manually labeled for all frames of the data set. Consid-
ering the quality of calibration and labeling, we estimate the
ground truth accuracy to be within 4 cm. We used a single
generic human model to capture the three male adults in the
scene (one male wore two different outfits). To obtain an in-
dication of the shape variations involved, we handfitted per-
sonalized human-outfit models and found the average vertex
distance between the used generic and the tuned reference
models to be 3.2 cm, 2.6 cm, 2.9 cm and 3.7 cm, respec-
tively, in a canonical pose (i.e. arms stretched laterally, at
90◦ elevation).

All distributions described in Sects. 3.4.3, 3.5 and 3.6
were learned by a leave-one-out approach for each test se-
quence. The generic motion model (Sect. 3.7) was derived
from the aggregated CMU MoCap data3; after some conver-

2The data set is made available for non-commercial research purposes.
Please follow the links from http://isla.science.uva.nl/ or contact the
second author.
3http://mocap.cs.cmu.edu/.

http://isla.science.uva.nl/
http://mocap.cs.cmu.edu/
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Fig. 9 (a) Number of correct pose hypotheses with respect to the number of top 2D pose exemplars. (b) Ratio of the number of correct pose
hypotheses between both trees. Both (a) and (b) obtained by averaging over all frames and cameras

sions to the degrees of freedom of our shape model and our
frame rate, the latter yielded 756,844 frames for training.

4.1 Evaluation of 2D Pose Exemplar Tree Representation

We first evaluate the quality of the constructed 2D pose ex-
emplar tree, which was created using the hybrid clustering
approach discussed in Sect. 3.4.2. For this, we compare it
to a tree clustered in joint angle parameter space by means
of a hierarchical k-means algorithm, as proposed for exam-
ple in Stenger et al. (2006) in the context of hand tracking.
The trees contain the same exemplars at the leaf level SL

and have the same number of exemplars |Sl | at each level l.
The quality of the tree structures is assessed by performing
the single-view pose hypothesis generation stage (Sect. 3.4)
with the same tree-level specific thresholds τl , and by evalu-
ating the 3D pose hypotheses associated with the top ranked
2D pose exemplars. In the following comparisons, we regard
a 3D pose hypothesis as “correct” if the average pose error
to the ground truth (7) is less than 10 cm.

Figure 9(a) shows the number of correct pose hypotheses
in relation to the number of top ranked 2D pose exemplars
for both tree structures. The benefit of our hybrid tree clus-
tering algorithm is clear: we obtain about one order of mag-
nitude more correct poses compared to the tree clustered in
joint angle parameter space. To elaborate on this compari-
son, Fig. 9(b) shows the ratio of the number of correct poses
between both trees (i.e. nr. of correct poses in proposed tree
divided by nr. of correct poses in angle-clustered tree); it sat-
urates at a value of about 12. We additionally plot the same
ratio normalized by the number of extracted poses associ-
ated with the top ranked 2D pose exemplars in either tree.

The proposed tree structuring still generates about 9.5 times
more correct hypotheses.

The considerably worse performance of tree construction
by clustering joint angles can be explained by the fact that
equal distance in joint angle space does not imply equal ap-
pearance similarity. Small changes of some angles, in partic-
ular of the torso twist angle ψtorso, will have a large effect
on the projected silhouette given the arms that are extended
and visible. On the other hand, there will be no effect on the
projected silhouette if the extended arms are self-occluded
by the torso. Appearance-based clustering results in a repre-
sentation that covers pose parameters space non-uniformly
to account for these effects.

4.2 Evaluation of Pose Hypothesis Verification

We proceed with a quantitative analysis of the pose hypoth-
esis verification component of our system (see Sect. 3.6).
Figure 10 shows the average pose error of the most correct
solution among the K best-ranked solutions, averaged over
the frames of the data set (the most correct solution mini-
mizes the pose error, i.e. similarity to ground truth by (7)).
We see the benefit of our cascaded pose recovery approach
(Sects. 3.6.1–3.6.3) in the successive decrease of the average
pose error. Figure 10 also shows that, if we are able to select
the correct solution among the 10 (50) best ranked solution,
we have the potential to reduce pose error to 8 (7) cm. Of
course in practice, we do not know which solution is most
correct, and pose errors produced by the overall system tend
to be larger, see next subsection.

We now evaluate the performance of the local pose op-
timization stage (see Sect. 3.6.3) separately. To this end,
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we created 2200 test input poses from 10 different images
of our data set by random perturbations πGT + N(0,�) of
the ground truth pose πGT, with varying covariances �. See
Fig. 11, we observe a clear benefit of pose optimization in
reducing the mean pose error.

4.3 Evaluation of Overall System

Figure 12 depicts examples of estimated poses after run-
ning the whole system using shape and texture cues, taken

Fig. 10 Mean pose error of the best solution among the K best-ranked,
averaged over the frames of the data set, after processing stages of
Sects. 3.6.1–3.6.3

from the best trajectory. A quantitative evaluation in terms
of the deviation between estimated and ground truth 3D
pose over the entire dataset is given in Table 1. As can be
seen, by adding pose hypothesis predictions (Sect. 3.7) and
texture-based model adaptation (Sect. 3.8) to the pose re-
covery framework, we achieve a reduction of the mean pose
error over our dataset from 10.7 cm to 9.5 cm, on average.
Table 2 shows the average pose error at particular joint loca-
tions. It can be observed that the pose error increases from
the root of the articulated structure (torso) to the extremities
(elbows).

We also compared the different instantiations of our sys-
tem with the hierarchical Partitioned Annealed Particle Fil-
ter (PAPF) (Deutscher and Reid 2005), a state-of-the-art
technique for tracking high-DOF (unconstrained) articu-
lated movement. Unlike Shape-from-Silhouette approaches,
it does not require perfect silhouette segmentation. In order
to focus on the essential differences, we implemented the
PAPF using the same foreground segmentation (Sect. 3.3),
shape-based likelihood computation (9) and motion model
data (CMU MoCap) for initializing the diffusion covariance.
After some tuning, we selected a parameterization with 4
layers for our 13 DOF model (cf. 10 layers for a 30 DOF
model in Deutscher and Reid 2005) and 200 particles per
layer, as in Deutscher and Reid (2005). The PAPF was ini-
tialized with the ground truth in the first frame of each se-
quence, while our system does not rely on manual initializa-
tion.

In our experiments, we observed a good performance
of the PAPF on many sequences. However, for more diffi-

Fig. 11 (a) Plot of the mean pose error in cm (7) before and after gradient-based local pose optimization (Sect. 3.6.3). (b) Example of local pose
optimization, before (top row, avg. error 8.7 cm) and after (bottom row, avg. error 5.9 cm)
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Fig. 12 Examples of recovered poses in the three camera views for multiple persons (best trajectory, shape and texture cues). Shown are image
cut-outs

Table 1 Average mean pose error ((7), in cm) and standard deviation
over 12 test sequences (S: shape, T: texture)

Avg. mean Std. dev.

pose error

Our system (S & T, det. & pred.) 9.5 4.1

Our system (S, det. & pred.) 10.3 4.8

Our system (S, detections only) 10.7 5.4

PAPF (Deutscher and Reid 2005) 14.4 7.5

cult sequences (appreciable background clutter, ambiguous
poses, fast torso turning), we observed that the PAPF parti-
cles diverted away from the correct solution after a while,
with little chance for recovery. Unlike the particle filtering
approach, our system is inherently able to re-initialize after
temporary likelihood ambiguities, due to the single-frame
pose detection component that yields candidate poses inde-
pendently generated at every time step. On average, our pro-
posed approach outperformed PAPF considerably (avg. pose
error down to 9.5 cm vs. 14.4 cm), even though the latter had
been initialized with the ground truth pose.

Figure 13 provides a closer look at the timeline of a
challenging tracking sequence with two 360◦ torso turns in
short succession (frames 70–150 and 180–340). The figure
shows the pose error (7) over time for the best trajectory us-
ing the system configurations listed in Table 1, as well as
a comparison with the trajectory obtained by the PAPF ap-
proach. The greyish background captures the distribution of
the pose error over the poses obtained (i.e. by detection, or
by prediction from a previous time step); lighter shades indi-
cate higher densities. For example, one observes in Fig. 13
a whitish band for the first 150 frames for pose error in-
terval 35–45 cm; this corresponds to a cluster of solutions

Fig. 13 Pose error (in cm) for best trajectory for three system con-
figurations (with and without prediction generation; S: shape, T: tex-
ture) and for the PAPF. The background shows histograms of the pose
distance of the single-frame detections per time step (lighter shades
indicate higher densities)

for which the torso twist is misaligned by 180◦. In this se-
quence, the Viterbi-based approaches are able to track the
two 360◦ torso turns, whereas the PAPF estimates the torso
orientation almost unchanged. It is noteworthy that no other
parameterization of the PAPF algorithm we tried was able
to improve on this; for example, scaling up the diffusion
covariance to generate more diverse particles leads to loss
of track even earlier due to drift. We take this as an exam-
ple of the increased robustness of the proposed trajectory-
based estimation which combines multi-hypothesis detec-
tion and prediction. Without the additional prediction gen-
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Table 2 Average pose error
(summands of (7), in cm) and
standard deviation over 12 test
sequences using our proposed
system, for each measured
location

Torso ctr. Head ctr. R. shoulder R. elbow R. hand L. shoulder L. elbow L. hand

Avg. pose error 5.53 6.35 7.00 11.73 15.18 6.91 10.79 12.32

Std. dev 2.50 2.96 3.59 8.33 11.09 3.47 6.58 8.49

Fig. 14 Visualization of variously ranked Viterbi trajectories within
the Ktraj best trajectories computed, at time step t = 189 (one camera
view only). Left arm: green, right arm: blue. From left to right: poses
at various time steps. From top to bottom: poses at various ranks

eration mechanism (Sect. 3.7), our system can only use the
detections provided by our single-frame pose recovery. Us-
ing this setting, we can see a temporary starvation of cor-
rect detections around frame 175 (and, to a lesser degree,
at frames 350 and 400) due to ambiguous likelihood mea-
surement in the hypothesis generation stage; using the two
system configurations that include predictions, these frames
are correctly “bridged”.

Figure 14 shows Viterbi trajectories at different ranks
(K = 1, 40, 90, 110) within the Ktraj best trajectories com-
puted. Shown is time step t = 189 of the same sequence,
during a torso turn where there is considerable ambiguity
regarding the torso orientation (see also Fig. 13). Our mul-
tiple trajectory representation captures the pose diversity as-
sociated with this ambiguity and more. Note that the “best”
Viterbi trajectory at this time step represents an incorrect
motion with the upper body turned around 180◦. The tra-
jectory with the smallest pose error appears at rank 110
(observe the color coding of the arms). The ambiguity is

Fig. 15 Subjects S1 and S2 from the HumanEva-I data set (3 camera
views shown each)

eventually removed after processing the observations of fur-
ther time steps.

We also performed experiments with our system on the
HumanEva-I data set (Sigal et al. 2010), which involves an
indoor setting and one subject per scenario. The two sub-
jects S1 and S2 of this data set (see Fig. 15) differ appre-
ciably in appearance, and while we could use our generic
male adult shape model for male subject S2, we had to man-
ually adjust the model to a smaller figure for female subject
S1 in order to produce usable tracking results (average ver-
tex distance of S1 and S2 to our generic male adult shape
model was 9.5 cm and 4.2 cm, respectively, in canonical
pose with hands stretched out). We kept the appearance-
based grouping of the tree hierarchy exemplars as described
in Sect. 3.4.2 and just re-rendered the exemplars using the
adapted shape model (as opposed to a complete new clus-
tering). We kept the various probability models that were
learned from our own data set and did not re-estimate them
for the HumanEva-I data.

Table 3 contains quantitative results from these experi-
ments. As can be seen, the errors achieved are slightly lower
than those obtained on our own data set. We attribute this
to the controlled indoor conditions and to the closer camera
positioning to the subjects. Tracking errors of 8.1 cm and
11.2 cm were reported in Peursum et al. (2010) for the re-
spective walking sequences of S1 and S2 using Annealed
Particle Filtering (Deutscher and Reid 2005). Further liter-
ature listing errors on either HumanEva-I and II data sets
include Brubaker et al. (2010), Corazza et al. (2010), where
errors of approx. 6 cm and 8 cm are reported. Gall et al.
(2010) and Lee and Elgammal (2010) report significantly
lower errors around 3–4 cm; however in the latter paper, a
strong motion model for walking is enforced.
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Table 3 Quantitative results of evaluation on HumanEva-I data

Subject Sequence Mean pose error [cm]

S1 Gestures-1 6.3

S1 ThrowCatch-1 5.8

S1 Walking-1 4.7

S2 Gestures-1 6.5

S2 ThrowCatch-1 8.9

S2 Walking-1 7.4

5 Discussion

The experiments demonstrated a new quality to 3D pose es-
timation for arbitrary (single) human movement in a noisy
and uncontrolled environment. The remaining failure mode
of the system concerns prolonged “ambiguous” poses with
the hands close to the torso; the silhouette-based approach
stands little chance in recovering exact hand position, fur-
thermore, most clothing does not contain appreciable tex-
ture differences between torso and arms. Further work could
add the segmentation-of and matching-with the weak inter-
nal edges to the later process stages.

We implemented the system in unoptimized C++ code;
it currently requires about 30–40 s per frame (i.e. total over
three cameras at a timestamp) to recover 3D pose on a 3 GHz
Intel PC. This is not fast in absolute terms, but it seems
to compare favorably with previously reported process-
ing speeds in literature concerning 3D pose recovery with
generative models against non-stationary background (e.g.
Balan and Black 2006; Gall et al. 2010; Kohli et al. 2008;
Lee and Cohen 2006; Lee and Nevatia 2009), yet direct com-
parisons are difficult due to the differing types of movement
considered (for example, unconstrained upper body move-
ment vs. whole-body walking). Computing time approxi-
mately breaks down onto the separate processing stages as
given in Table 4. The main processing bottlenecks are the
2D pose exemplar matching (Sect. 3.4.3), the pose verifi-
cation by graphical rendering (Sect. 3.6.2) and local pose
optimization (Sect. 3.6.3) stages. These stages could be par-
allelized, allowing for a near-linear reduction of process-
ing time with available CPU/GPU cores. However, we did
not exploit parallelism in our implementation, neither at the
camera-, nor at the pose solution- or vertex-level. The only
exception to this was local pose estimation, where the pose
solutions were distributed over the available four processor
cores.

Another way to improve system efficiency is by param-
eter setting. We did not spend major time on parameter
tuning and selected conservative truncation thresholds (e.g.
τ1, . . . , τL, KPosSel , KPosV erEx , KPosV erRdr ) for the vari-
ous processing stages. Gavrila and Munder (2007) describe

Table 4 Approximate breakdown of computation time onto the sepa-
rate system stages (see Sect. 5)

Stage Section Time spent

Preprocessing 3.3 2%

2D exemplar matching 3.4.3 22%

Pose selection 3.5 2%

Exemplar-based verification 3.6.1 13%

Rendering-based verification 3.6.2 25%

Local pose optimization 3.6.3 32%

Temporal integr. & model adapt. 3.7, 3.8 4%

an automatic procedure to optimize parameters in a multi-
stage cascade architecture, based on successive ROC op-
timization. All in all, significant optimization potential re-
mains.

Future work involves the recovery of whole-body pose
and that of multiple, potentially occluding, people. An ex-
tension of the chosen exemplar-based approach to whole-
body recovery (or to multiple body models for capturing a
larger variety of people) is straightforward. It will however,
at least for the near future, require coarser joint angle dis-
cretizations, in order to keep the additional memory require-
ments in check. Its effect on pose recovery accuracy remains
to be investigated. We do expect a future adaptation of a
generic 3D human shape model (see work by Balan et al.
2007; Gall et al. 2009) to the particular person in the scene
to result in more accurate likelihood estimation, alleviating
some of the above-mentioned pose discretization effect.

Multi-person pose recovery could be achieved by execut-
ing the system multiple times on all recognized 3D blobs in
the image pre-processing stage (see Sect. 3.3). The system
could be built on top of a more sophisticated (multi-) 3D
blob tracking approach, e.g. Fleuret et al. (2008), Liem and
Gavrila (2009), to better handle track consistency in case of
multiple persons being in close vicinity, i.e. avoidance of ID
changes.

6 Conclusion

We presented a framework for unconstrained 3D human up-
per body pose estimation from multiple camera views in a
complex environment. The main novelty lies in the integra-
tion of three components: single-frame pose recovery, tem-
poral integration and model texture adaptation. The second
contribution concerns the way single-frame pose recovery is
performed: hypotheses are generated in each camera inde-
pendently based on probabilistic hierarchical shape match-
ing, and information is fused at the pose parameter level in
an efficient, multi-stage process.
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We demonstrated an improvement versus the state-of-
the-art in a dozen of challenging real-world sequences de-
picting different actors performing unscripted movements.
Further work will be necessary to deal with multiple people
under occlusion.
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Appendix A: Main Systems Parameters and Their
Settings

A.1 Overall

• |C| = 3. Number of cameras

A.2 Image Pre-processing (Sect. 3.3)

• htorso = 70 cm

A.3 Pose Exemplar Representation (Sects. 3.4.1 and 3.4.2)

• Table 5 lists upper- and lower- bounds, and step sizes for
the pose space discretization (Sect. 3.4.1)

• Non-colliding 3D poses are considered “allowable”
(Sect. 3.4.1) if they fulfill following inequalities

θs ≤ 1.5 θe + 310◦ (21)

θs ≤ −0.5ψs + 110◦ ifψs > 40◦

φs ≥ 3 ψs − 160◦

where (φs, θs,ψs) are the Euler angles (in degrees) of the
shoulder joint and (θe) is the elbow joint angle, see Fig. 2.
The above bounds were determined experimentally

Table 5 Pose space discretization

Angle Upper bound Lower bound Nr steps

φt 75 90 3

θt 80 100 3

ψt −180 157.5 16

φh −30 0 2

ψh −30 30 3

φl
s , φ

r
s −45 144 8

θ l
s , θ

r
s 15 148 8

ψl
s,ψ

r
s −80 100 9

θ l
e, θ

r
e 0 140 6

• N∗ ≈ 20000 Maximum number of 2D pose exemplars
that can still be practically handled with a partitional clus-
tering algorithm of quadratic complexity, on a particular
hardware (Sect. 3.4.2)

• B = 10 Branching ratio of tree of 2D pose exemplars
(non-leaf level)

• L∗ = 3 Level of tree that is constructed with a partitional
clustering algorithm of quadratic complexity. Value is de-
termined by N∗ and B

• |Sl | Number of 2D pose exemplars at tree level l. |S1| ≈
200, |S2| ≈ 2000, |S3| ≈ 20000, and |S4| ≈ 150000
(Sect. 3.4.2)

A.4 Single Frame Pose Recovery (Sects. 3.4.3–3.6.3)

• γl Image grid size (in pixel) for interest locations for
matching at tree level l. γ1 = 6 px, γ2 = 3 px, γ3 = 1 px,
γ4 = 1 px (Sect. 3.4.3).

• τl Threshold on posterior for nodes at tree level l. τ1 =
0.01, τ2 = 0.016, τ3 = 0.02, τ4 = 0.024 (Sect. 3.4.3).

• ux Area of non-maximum suppression at process stage x,
before truncation. In particular,
uPosHyp = 2 pixels (Sect. 3.4.3),
uPosSel = 1.25 cm (Sect. 3.5),
uPosV erEx = 1.75 cm (Sect. 3.6.1)
uPosV erRdr = 0 cm (no non-maximum suppression)
(Sect. 3.6.2)

• Kx : Number of hypotheses that are generated by process
stage x, after truncation. In particular,
KPosHyp ≈ 300000 value is determined by τ1 · · · τ4

(Sect. 3.4.3),
KPosSel = 30000 (Sect. 3.5),
KPosV erEx = 2000 (Sect. 3.6.1),
KPosV erRdr = 800 (Sect. 3.6.2), and
KPosV erRdrOpt = 50 (Sect. 3.6.3)

A.5 Temporal Integration (Sect. 3.7)

• T = 50 Number of image frames of time interval for
which the best trajectories are computed

• Ktraj = 500 Number of best trajectories obtained by List-
Viterbi algorithm

A.6 Texture-Based Model Adaptation (Sect. 3.8)

• α = 0.1 Learning rate pixel-based texture adaptation
• Rb Texture model resolution (in pixels) for different

body parts. Rtorso = 32 px × 32 px, Rhead = Ru.arm =
Rl.arm = 16 px × 16 px, Rneck = Rhand = 8 px × 8 px
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Appendix B: Derivation of Pose Selection Posterior
Probability

Let Π be the set of “allowable” 3D poses and S the asso-
ciated 2D pose exemplar library (see Sect. 3.4.1). Let sπ be
the 2D pose exemplar associated with the pose π and Πs the
set of poses associated with the 2D pose exemplar s, at the
leaf level of the tree.

We expand the pose posterior p(π |O) over all 2D pose
exemplars S and consider correct and incorrect matches (s+
and s−, respectively)

p(π |O) =
∑
s∈S

p(π , s+|O) =
∑
s∈S

p(π |s+)p(s+|O)

=
∑
s∈S

p(π |s+)
p(O|s+)p(s+)

p(O)

=
∑
s∈S

p(π |s+)
p(O|s+)p(s+)

p(O|s+)p(s+) + p(O|s−)p(s−)

(22)

where p(s+) + p(s−) = 1.
Each pose is associated with exactly one 2D pose exem-

plar at the leaf level of the tree, and one 2D pose exemplar
s is associated with a number of poses Πs . Therefore we
model:

p(s+|π) =
{

1 if π ∈ Πs

0 otherwise
(23)

and analogous

p(s−|π) =
{

1 if π ∈ Π \ Πs

0 otherwise
(24)

It follows that

p(π |s+) = p(s+|π)p(π)

p(s+)
= p(s+|π)p(π)∑

π ′∈Π

p(s+|π ′)p(π ′)

=
{

p(π)∑
π ′∈Πs

p(π ′) if π ∈ Πs

0 otherwise
(25)

Note that in (22), the sum is only non-zero for s = sπ ,
the shape exemplar associated with pose π . By expanding
p(s+) and p(s−) over all poses Π , it also follows that

p(s+) =
∑

π ′∈Π

p(s+|π ′)p(π ′) =
∑

π ′∈Πs

p(π ′) (26)

p(s−) =
∑

π ′∈Π

p(s−|π ′)p(π ′) =
∑

π ′∈{Π\Πs }
p(π ′) (27)

Therefore, by substituting p(π |s+), p(s+) and p(s−), the
posterior can be written as

p(π |O) = p(O|s+
π )p(π)

p(O|s+
π )(

∑
π ′∈Πs

p(π ′)) + p(O|s−)(
∑

π ′∈{Π\Πs } p(π ′))
(28)

Assuming a uniform pose prior, i.e. p(π) ≡ 1
|Π | , the term

for the posterior simplifies to

p(π |O) = p(O|s+
π )

p(O|s+
π )|Πs | + p(O|s−

π )|Π \ Πs |
(29)
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