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ABSTRACT: Developing behavior specifications that are re-usable across different simulation applications is a 
challenging task. Not only is the actual behavior often not fully understood, but devising a suitable architecture in 
which the behavior can be incorporated and executed is also very difficult. It is well known that developing and 
maintaining useful behavior specifications is very costly in time and resources. Therefore the re-use of behavior 
specifications is an attractive option. 
This paper proposes a conceptual architecture for enabling the re-use of behavior specifications. It leverages existing 
gaming technology, which is used to compose re-usable behavior specifications. We have validated this approach by 
implementing behavior specifications for tactical doctrine in different simulations and present our lessons learned. 
 
1. Introduction 
Simulations are heavily used in training, both on the 
basic level such as learning drills for firemen and 
soldiers, as well as on higher levels, e.g. for staff 
training. Besides for training, simulations are seeing 
more and more use for analyses, procurement, mission 
preparation and decision-making purposes.  
An important driver for using simulations is the 
reduction of human effort. A simulation can reduce the 
need for live role players in training, which reduces 
cost and can provide flexibility and repeatability. The 
arrival of commercial serious games has boosted the 
use of Artificial Intelligence (AI) for modeling the 
behavior of Computer Generated Forces (CGFs) in 
simulations. In a typical military training application, 
CGFs can play the role of opposing forces, flank 
forces, civilians etc. Simulators are increasingly using 
AI technology for realizing behaviors. For some 
applications such as decision support in the battle field 
or real-time disaster management forecasting, 
simulating behavior is a must because there simply are 
no human operators available for role-playing and 
simulations for analysis and planning must run at far 
higher speeds than humans could provide input. 
 
1.1 The application of AI in simulations and games 
The Modeling & Simulation department of the Dutch 
TNO research institute investigates the use of 
simulation in the military and safety & security 
domain. We have observed that in The Netherlands as 
well as abroad, the use of AI technology for behavior 
modeling is increasing. This occurs for analysis, 

doctrine development and training applications. For 
example, the new Tactical Indoor Simulation 
(TACTIS) trainer of the Royal Netherlands Army 
(RNLA), relies on AI to simulate opposing forces or 
the own forces flanking behavior. So-called Combat 
Instruction Sets (CIS), which represent tactical 
doctrine, have been put on paper and captured in code. 
Examples of serious games that are in use by the 
RNLA, the British Army and the Australian Army are 
VBS2 (Bohemia Interactive, 2008) and Steel Beasts 
(eSim Games, 2008). TNO uses its in-house developed 
analysis tool Pollux for doctrine development. Each of 
these environments implements CISs in some way to 
represent the behavior of CGFs. Two observations that 
we made are: 1) many current tools provide limited 
possibilities for adjusting/extending behavior 
specifications, and 2) re-use of such behavior 
specifications rarely occurs. 
 
We expect that the current trend towards more and 
more evolved use of AI technology in simulations will 
continue in the coming years. However, by not sharing 
behavior specifications between tools, a dangerous trap 
lingers.  
 
1.2 A Far Cry from reuse and standardization 
The authors feel that there is a low level of awareness 
that the increased use of AI also rapidly creates new 
challenges and potential bottlenecks. Current practice 
is that every simulation platform seems to have its own 
dedicated specification and implementation of entity 
behavior. Every project team seems to develop and 
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implement its own behavior models. There is typically 
no reuse of models or code. This easily leads to high 
costs and potential inconsistent behaviors between 
simulators. This situation reminds us of the early days 
of simulation, where every platform made its own 3D 
models, built its own terrains and created its own 
scenario files. Exchange of models, terrains or 
platforms between simulations was not possible. Today 
there are a number of standards, such as COLLADA 
(Arnaud and Barnes, 2006), OpenFlight (OpenFlight, 
2008) and MSDL (MSDL, 2008) that are used more 
and more to exchange this type of data between 
simulations. For example, in the case of terrain data, 
solutions exist to automatically generate terrain 
datasets for simulators based on a single common geo-
referenced source, as depicted in Figure 1, thereby 
drastically reducing the effort needed (Kuijper et.al., 
2007) and leading to highly correlated terrains. 
 

 
Figure 1: Generating terrain data from a common 
source. 
 
For behavior specifications however, no standardized 
formats exist and reusing specifications or generating 
behavior specifications for different simulators from a 
common description seems a far cry from today’s 
practice.  
 
1.3 Levels of reuse 
This leads to the central question addressed in this 
paper: “can we make progress in reusing behavior 
specifications”? In order to answer this question, we 
will first define different levels of reusability, as 
illustrated in Figure 2. 
 
Level 0: the behavior implementations are totally 
embedded in the simulation engine (i.e. hardcoded) and 
cannot be changed. 
Level 1: as level 0, but the simulation environment 
provides an editor in which some parameters of the 
behaviors can be altered, e.g. the amount of damage a 
unit will accept before fleeing. 
Level 2: as level 1, but the behavior specifications are 
defined using a scripting language and can be edited to 
change the entity behavior. The scripting language is 

specific for the simulation engine. And the used AI 
paradigm, e.g. a Finite State Machine (FSM) or the 
Belief-Desire-Intention (BDI) model, is fixed. 
Level 3: as level 2, but the behavior specifications are 
defined using an engine-independent language, e.g. 
Lua or Python. These behavior specifications have the 
potential to be shared with other simulators with the 
same AI paradigm. 
Level 4: as level 3, but in this case not only the 
behavior specification are externalized but also the 
underlying AI paradigm. These behavior specifications 
are only domain dependent and therefore they can be 
reused relatively easy with simulators in the same 
domain. 
Externalizing the AI paradigm means that the tactical, 
higher-level reasoning is performed by a specialized 
software component. This component uses (tactical) 
behavior specifications and performs decision making. 
It delegates lower-level actions, e.g. move, to the 
simulation engine. A similar architecture, in which 
Goal-Oriented Action Planning (GOAP) AI was 
interfaced with Unreal Tournament 2004, was 
developed by Pittman (2008). 
 

 
Figure 2: Reusability levels. 
 
This paper describes our investigation into the practical 
possibilities regarding these reuse levels. Our research 
is based on experiments that involved the 
implementation of CISs in a number of different 
simulation environments, and we present our 
conclusions regarding the re-use level which seems 
most practical for our current purposes. 
 
The remainder of this paper is organized as follows. 
Section 2 describes our architecture and approach for 
finding a solution to the “behavior reuse problem”.  
Next, Section 3 describes our implementation 
experiments and results. Section 4 presents our 
conclusions and way forward. 
 
2. Behavior modeling approach 
This section describes the main parts of our behavior 
modeling approach, which comprise a global vision 
and architecture as well as derived implementation-
oriented goals and requirements. 



2.1 Vision and architecture 
Our aim is to develop a mechanism for behavior 
specifications for CGFs that are well-structured, 
composable, re-usable and repeatable. To achieve such 
behavior specifications for tactical doctrine we believe 
it is required to de-couple the behavior specification 
from the behavior execution engine. Given the four 
different levels of such de-coupling as described in the 
previous section, we ultimately aim at achieving level 
4. This achieves great re-usability by explicitly 
modeling many behavior-related aspects including the 
AI paradigm itself. However, given the capabilities of 
current state-of-the-art simulation environments, our 
current work is an example of level 3 which is 
characterized by leveraging so-called engine-
independent scripting.  We de-couple behavior 
specifications from the execution engine, or in other 
words, we take the behavior specifications out of the 
execution environment and develop and maintain them 
externally. The behavior specification scripts are 
engine-independent, which means that they are not 
defined in a simulator-specific language. Instead, they 
are defined in a general purpose language, which 
enables that the behavior specifications may be re-used 
across different simulation environments. Figure 3 
depicts a global architecture that embodies our more 
practical vision. 

 
Figure 3: Behavior specification architecture. 

The behavior specifications are in this case defined 
externally, i.e. outside the simulation engine. They 
interface to the simulation engine through a Behavior 
API, and they are executed by the AI engine (which 
normally interacts with other components of the 
simulation engine). 
The Behavior API provides the basic functionality that 
is needed for controlling the entity that is modeled. For 
example, for an entity Soldier, the Behavior API may 
include the function move(a, b) to instruct the Soldier 
to move from a to b, and find_cover(..) to instruct the 
Soldier to find cover (based on certain parameters). 
The behavior specifications define the intended entity 
behavior using 

o the basic functionality of the Behavior API, 
o the programming constructs of the used 

scripting language. 
Typical mechanisms of a scripting language include an 
event mechanism, which allows the entity to respond to 

events that occur, and other programming patterns that 
provide control of the entity. 
Together the Behavior API and the scripting language 
provide the components that allow the composition of 
behavior specifications. 
 
The use of scripting languages is a concept that is 
currently well-known and commonly applied in the 
game developer’s community. For example, the 
scripting language Lua (Lua, 2008) is a programming 
language, designed as a scripting language that is used 
in various open source and commercial games. Lua is a 
lightweight, imperative language with extensible 
semantics. In particular the feature of extensible 
semantics makes it highly suitable for such 
applications. 

We anticipate that our approach has the following main 
advantages and disadvantages. 

Advantages 
o Separating the behavior specifications from 

the simulation engine enables that behavior 
specifications can be adapted quickly, e.g. 
without time consuming compilation of 
source code of the simulator. 

o Scripts could potentially be re-used between 
simulations. 

o Combining a Behavior API and scripting 
language allows the definition of behavior 
specifications that are well-structured, 
composable, re-usable and repeatable. 

o Scripting languages, like Lua, are compact 
and powerful, which implies that they are 
relatively easy to understand and to use. This 
could include Behavior Subject Matter 
Experts without any specific computer 
software background. 

Disadvantages 
o Using scripting languages can cause 

computational overhead. For example, in 
order to reason about its options an entity 
requires information about its environment, or 
more precisely, it needs to perform 
observations. Such observations (e.g. 
obtaining all visible friendly, neutral or hostile 
entities) need to be requested through the 
Behavior API regularly, which causes 
computational overhead. 

o Scripting languages are not conducive to best 
practices in software engineering and code 
structuring, and they are generally harder to 
debug. 

 
2.2 Goals and Requirements 
To deliver on our vision, we have worked out the main 
goals and requirements of the components in the 
architecture depicted in Figure 3. 



The simulation engine (or the AI engine within it) must 
implement the functions of the Behavior API 
adequately. In our CIS case for example, the 
simulation engine must implement the move function 
for an entity Soldier such that the Soldier moves 
realistically from a to b. Notice that what is considered 
‘realistic’ or not, is likely to differ from application to 
application. A realistic implementation of a move 
function implies that environmental conditions, such as 
terrain and threat, possibly influence the execution of 
the move function. Also the implementation must 
include a backtracking mechanism in case destination b 
cannot be reached. 
 
In practice, instead of developing a new simulation 
engine, an engine is usually selected from a number of 
existing simulation engines. It is critical to select a 
simulation engine that meets the relevant behavior 
requirements. The Behavior API must support the 
problem at hand. On the one side, it must provide 
sufficient control over an entity. On the other side, 
however, it should not provide too low-level 
functionality or parameters. In our case, where we are 
studying CISs, a move function is very common, 
whereas functions for path planning and steering 
behavior are considered to be too detailed. Hence the 
Behavior API should provide sufficient entity control 
without exposing functions that are too detailed. Note 
that when APIs are not exactly as needed, a 
middleware layer could provide extra functionality or 
conversions in order to make the API fit. 
 
As mentioned before, the envisioned architecture 
allows that the Behavior API functions can be used in 
different specifications to compose structured behavior 
specifications that are re-usable. Additionally, it should 
be possible that these behavior specifications are in 
turn re-usable in other simulators. This can for example 
be achieved by using the Lua programming language. 
This approach allows for defining a hierarchy of 
behavior specifications that demonstrate coherent 
behavior. 
 
3. Implementation Experiments 
In order to support the conceptual approach presented 
in Section 2, proof-of-concept implementations of a 
scenario composed of a selection of CISs were made, 
both on commercial and in-house developed simulation 
engines. For this purpose we used the commercially 
available CryENGINE2 and Virtual Battle Space 2 
(VBS2), and the in-house developed TNO Enhanced 
Virtual Environment (EVE). The objective of our three 
implementations is to find out how well modern 
simulation engines are able to deal with behavior 
defined at the level of a CIS. By comparing the results 
of the implementations we are able to render a 
judgment on how reusable the behavior specifications 
are across different engines.  

3.1 Scenario Setup 
The execution of CIS behavior poses constraints and 
requirements on the API of the simulation engine. 
What these constraints and requirements are follows 
directly from the abstraction level at which a CIS is 
defined: A CIS is a formal specification of a combat 
doctrine written in natural language. There are three 
mayor aspects that characterize a CIS: 1) A CIS 
describes the behavior of a group of entities, not a 
single entity, 2) a CIS is able to activate other CISs if 
required to achieve its goal, and 3) a CIS can be 
interrupted by so called situational interrupts, usually 
as a result of events that occur in the environment.  
 
As described earlier in Section 2.2 the Behavior API of 
the simulation engine should support the problem at 
hand. Hence, the Behavior API should enable the 
requirements of the behavior defined at the level of a 
CIS, being: 1) performing actions, 2) obtaining 
information from the environment, and 3) notifying 
when events occur in which the CIS is interested. The 
implemented scenario should cover at least all of these 
requirements. 
 
The scenario that we used is composed of two CISs: 
An infantry squad of four members, divided over two 
teams, performs the CIS Move bounding overwatch 
while advancing to a certain position.  While doing so, 
they are subject to a mortar attack, and therefore 
execute the CIS React to indirect fire. When the 
indirect fire has stopped, the squad re-evaluates or 
continues the bounding overwatch movement.  
 

 
Figure 4: The Move bounding overwatch maneuver. 
The bounding element advances to a concealed 
position while the overwatch element provides 
cover from a concealed position. Taken from FM3-
21.11: The SBCT Infantry Rifle Company (2003). 
 
The CIS Move bounding overwatch describes how an 
infantry squad traverses open terrain when hostile 
contact is expected and speed is not essential, see also 
Figure 4. Move bounding overwatch is characterized 



by the bounding movement of one team (bounding 
element), while the other team provides cover from a 
concealed position (overwatch element). This CIS 
requires both performing actions that are coordinated 
between the teams and using information from the 
environment, e.g. to find a concealed position to give 
cover from. 
 
The CIS React to indirect fire is an example of a CIS 
executed as a reaction to a situational interrupt, in this 
case when subject to artillery or mortar attack: all 
squad elements immediately take cover within a certain 
maximum radius. When the indirect fire has stopped 
the squad will switch back, if applicable, to doing what 
it was doing before the indirect fire attack. 
 
Although the two CISs Move bounding overwatch and 
React to indirect fire do not cover all possible 
interaction between the behavior specification and the 
simulation engine, all requirements of the Behavior 
API for the execution of CISs are apparent. 
 
3.2 Virtual Battlespace 2 (VBS2) 
The first simulation engine in which we implemented 
the scenario is Virtual Battlespace 2 (VBS2). VBS2 
(Bohemia Interactive, 2008) is a commercial serious 
game based on the first person shooter Armed Assault. 
VBS2 is, as stated earlier, already being used by the 
RNLA for training purposes. 
 
VBS2 provides the ability to design scenarios using a 
visual scenario editor in combination with its own 
scripting language. Since VBS2 is aimed at the military 
domain the collection of functions that the scripting 
language provides can be considered very complete: it 
contains functionality not commonly found in games, 
e.g. for hierarchical group coordination. 
 
To implement the scenario we used VBS2’s engine-
specific script language and the built-in Finite State 
Machine (FSM) functionality. The FSM is a commonly 
accepted AI paradigm that defines behavior in relation 
to the mental state (Tozour, 2004), or similarly to a 
context (Gonzalez, 2008), of an entity. We were able to 
control an infantry squad and have it execute an FSM 
that implements the bounding overwatch movement. 
We also created an FSM that finds cover for each unit.  
 
Although we succeeded in implementing the scenario 
there were several difficulties. First, simulating the 
indirect-fire attack in the scenario is cumbersome: 
Since VBS2 does not support the creation of user-
defined events we had to develop a mechanism that 
allows us to notify the FSM that an event had occurred. 
This issue applies to all events that are not covered by 
the limited set of built-in events. Second, VBS2 
provides no control over the FSM itself after it is 

started: One cannot determine whether the FSM is still 
running, or in which state it currently is. As a result, 
for example, automatically switching back to the 
previous behavior after the indirect fire has stopped 
becomes practically impossible. Summarizing, VBS2 
provides an API that is quite complete. However, the 
FSM functionality does not provide sufficient control 
for behavior modeling.  
 
3.3 CryENGINE2 (Crysis) 
The CryENGINE2 (Crytek GmbH, 2008) is an 
example of a modern simulation engine. The AAA 
game Crysis was built on this engine. The 
CryENGINE2 is supplied with a level editor, in which, 
besides levels, CGF behavior can be graphically 
designed using flow graphs. In addition to flow graphs, 
CGF behavior can also be implemented using Lua 
script files. We used Lua for our prototype. 
 
The structural breakdown of a behavior for an entity in 
the CryENGINE2 is depicted in Figure 5: On the 
highest level the behavior is called a Character, which 
in its turn is composed of one or more Behaviors 
(analogous to the state of a FSM). At any given time 
only a single behavior of a character is active and 
receives events, which can be built-in or user defined. 
As a result of an event the character can switch its 
behavior, or activate any of the built-in or custom 
designed goalpipes. A goalpipe is a (recursive) 
collection of atomic actions, like move or fire. 
 

 
Figure 5: The structural breakdown of behavior in 
CryENGINE2. (1) Events trigger a change of 
behavior, (2) as a result of an event a goalpipe is 
activated, (3) another event is triggered, (4) besides 
atomic actions a goalpipe can also contain other 
goalpipes. 

The scenario was implemented using the characters 
and behavior approach described above. We created a 
character where every CIS was defined as a behavior. 
Coordinated by user-defined events an infantry squad 
uses a bounding overwatch drill to advance to a certain 
position. Other events (built-in) were used to simulate 
indirect fire, which triggered the characters to switch 
behavior and activate a goalpipe in order to find cover.  



In order to switch back to the previous behavior when 
the indirect fired has stopped, the CryENGINE2 
provides a specific language element. 
The chosen approach proves successful. The 
combination of characters, behaviors, goalpipes, and 
flexible events works well. A drawback is that a 
behavior implementation in CryENGINE2 is for a 
single entity, instead of for an entire group: This de-
centralized approach requires (user-defined) events for 
group coordination. Given a CIS, a centralized 
approach would be preferred. 
 
3.4 TNO Simulation Framework EVE 
The third and last simulation engine in which the 
scenario described in Section 3.1 was implemented is 
TNO’s Enhanced Virtual Environment (EVE). EVE is 
a modular, data-driven simulation framework intended 
for fast prototyping of new applications. Among other 
features, EVE provides 3D visualization as well as 
many subsystems for low-level steering and physics. 
The behavior subsystem for EVE was designed from 
scratch, so special attention could be given to the 
behavior modeling paradigm and the choice of 
scripting language.  
 
For the modeling of the behavior we chose to use a 
combination of hierarchical and stacked (Fu, 2004),  
(Tozour, 2004) FSM approaches. The reasons for this 
choice are twofold: First, the behavior described in a 
CIS is applicable to a group of entities, instead of a 
single entity. By using a hierarchical approach a group 
of entities (e.g. a platoon) can be instructed to execute 
a CIS by calling a single FSM. The FSM, in its turn, is 
responsible for assigning specific behaviors to (groups 
of) entities, which can be executed by sub-FSMs. The 
second reason considers the situational interrupts that 
cause other CISs to become active for a certain period 
of time. By using a stacked approach a new CIS can 
temporarily become active, while the previous CIS is 
pushed on top of the stack. When the new CIS ends 
and is no longer active, the old CIS will be popped 
from the stack and continue its execution. 
 
The scripting language that we choose to use is again 
Lua. Besides the advantages of Lua mentioned in 
Section 2.1 Lua was easy to integrate with EVE, which 
acts as its host application. 
 
Using the approach described above the scenario was 
implemented for EVE. State machine scripts were 
designed for both CISs Move bounding overwatch and 
React to indirect fire, as well as a default behavior, as 
shown in Figure 6. In these scripts events are triggered 
(situational interrupts), and the entire group executing 
the script will respond. For example, when an indirect-
fire event is received the group will activate the react-
to-indirect-fire script. In this script all group members 

will query the simulation engine (EVE) for their 
nearest cover location, and move there.  
 

 
Figure 6: The behaviors implemented in the EVE 
behavior subsystem, and how they relate. Note that 
the Move Bounding Overwatch FSM contains a sub-
FSM that is executed by a team to perform a single 
bound movement. 
 
The approach chosen for the modeling of the scenario 
in EVE proved successful. By using hierarchical and 
stacked FSMs, in combination with events, the CISs 
can be implemented while maintaining the original 
structure within and between CISs. 
 
3.5 Discussion 
When comparing our three implementations (illustrated 
in Figure 7) we find similarities, but also differences 
that concern the reusability of the behavior 
implementations. VBS2 is categorized as level 2, since 
it uses a engine-specific scripting language. The 
CryENGINE2 and our EVE implementation can both 
be categorized as level 3: they use an externalized 
engine-independent scripting language, but the AI 
paradigm is not externalized. Although the scripting 
language and even the AI paradigm of both are the 
same, the behavior implementations are hardly 
interchangeable. This is due to the differences in the 
details of the AI paradigm and Behavior API, as 
explained next. 
 
All simulation engines we used rely on some form of 
the finite state machine AI paradigm. However, there 
are differences in the way they are applied: First, in the 
CryENGINE2 each entity has its own behavior, 
whereas in EVE and VBS2 a behavior controls an 
entire group of entities. Second, our EVE 
implementation and the CryENGINE2 use events to 
control the execution of behavior specifications, 
whereas VBS2 uses a polling mechanism. And third, 
the engines differ in the flexibility they provide. For 



example in VBS2 one can also create a behavior for a 
single entity or even abandon the use of the FSM. On 
the other hand, in the CryENGINE2 one is forced to 
use the character-behavior-event-goalpipe 
functionality. 
 
The functionalities that the engines provide in the 
Behavior API differ as well. VBS2’s API is complete 
for the military domain: it contains numerous functions 
for controlling e.g. formations, command hierarchy, 
and radio communication. However, it sometimes lacks 
control. The CryENGINE2’s API is less complete 
(more generic), but provides more control, although at 
the price of complexity. An example of this is the 
function to find cover: VBS2’s findCover finds cover 
within a specified range, with optional line of sight to a 
target. CryENGINE2’s hide action can find cover 
within a specified range using more than 30 methods 
(nearest, nearest-backwards, nearest-to-target, behind-
vehicles, most-front-left-of-target, et cetera). 
 
In order to achieve a higher level of reusability it is 
advisable to strive for more standardization of both the 
AI paradigm and the Behavior API. A major step 
towards this objective is to take the AI paradigm out of 
the simulation engine (reusability level 4), which 
reduces the dependencies between the behavior 
specification and the simulation engine. The behaviors 
themselves can then be specified in a reusable format, 
utilizing home-made programs or AI middleware like 
Soar, ACT-R, AI.implant and Kynapse, which 
interface with the standardized Behavior API. A 
promising approach to developing a standardized 
Behavior API is to base it on existing standards. For 
certain applications, the Battle Management Language 
(BML) (SISO C-BML, 2008) draft standard is a good 
candidate in the tactical domain. BML promises an 
unambiguous and standardized language for 
communicating plans and orders to live, simulated, and 
robotic forces. 
 
Until the moment arrives that most simulation engines 
have adopted a common standardized Behavior API, 
an intermediate solution could be considered. This 
solution would use a standardized behavior 

specification as input for a process of code generation 
for those engines that do not support the standardized 
Behavior API. However, this approach can become a 
daunting task. 
 
4. Conclusions and Way Forward 
This paper has investigated the possibilities for 
developing and re-using behavior specifications. It 
focused on representing so-called Combat Instruction 
Sets (CISs) which are formal behavior specifications in 
natural language. We investigated the implementation 
of such specifications in different gaming and 
simulation environments. For this purpose we used the 
commercially available Virtual Battle Space 2 (VBS2) 
and CryENGINE2, and the in-house developed TNO 
Enhanced Virtual Environment (EVE). We studied in 
particular the possibilities and obstacles for re-use of 
behavior specifications in these environments. We 
experienced that the environments strongly differ in the 
possibilities they provide, and the limitations they 
impose for developing behavior specifications. 
Based on our experiences we have established that the 
following factors are key-elements in establishing re-
use of behavior specifications. 

o The degree of de-coupling of the behavior 
specifications from the simulation engine 
A strong de-coupling from the engine that is 
used is required, and preferably a well-known 
and accepted specification language 
(scripting). 

o The availability of a well-defined Behavior 
API 
A (standardized) Behavior API is required 
that functionally matches the problem domain 
at hand and that is implemented by different 
simulation engines. 

o The level of control that is provided by the 
applied AI paradigm 
The applied AI paradigm (e.g. stacked finite 
state machines) provides a certain level of 
control that can be employed in the behavior 
specifications. For many serious applications 
(e.g. implementing tactical doctrine) the 
required level of control is high. 

Figure 7: Illustrations of our implementations in VBS2 (left), CryENGINE2 (middle) and EVE (right) 



The factors mentioned above point in the direction of 
open architectures and systems. Such an approach 
opens up possibilities that many current simulation 
engines do not yet provide for developing and re-using 
behavior specifications. For example, the AI paradigm 
itself may be taken out of the simulation engine and be 
implemented externally using a scripting language 
(reusability level 4). A prerequisite for applying this 
approach successfully is that a standardized Behavior 
API is available. We suggest basing such a Behavior 
API on e.g. the Battle Management Language (BML) 
for the tactical domain. As an intermediate solution, 
before such a standardized Behavior API is available, a 
code generation process could be used to make a 
common behavior specification fit on specific 
simulation engines. This approach may however prove 
very challenging. Nonetheless, we certainly believe 
that a more open approach is the way forward for 
achieving higher levels of re-use. 
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