

Re-usable behavior specifications for tactical doctrine

Klaas Jan de Kraker

Philip Kerbusch
Erik Borgers

TNO Defence, Security and Safety
Modelling & Simulation Department

Oude Waalsdorperweg 63
2509 JG The Hague

The Netherlands
klaas_jan.dekraker@tno.nl, philip.kerbusch@tno.nl, erik.borgers@tno.nl

Keywords:

Behavior modeling, behavior specification, architecture, game technology, scripting

ABSTRACT: Developing behavior specifications that are re-usable across different simulation applications is a
challenging task. Not only is the actual behavior often not fully understood, but devising a suitable architecture in
which the behavior can be incorporated and executed is also very difficult. It is well known that developing and
maintaining useful behavior specifications is very costly in time and resources. Therefore the re-use of behavior
specifications is an attractive option.
This paper proposes a conceptual architecture for enabling the re-use of behavior specifications. It leverages existing
gaming technology, which is used to compose re-usable behavior specifications. We have validated this approach by
implementing behavior specifications for tactical doctrine in different simulations and present our lessons learned.

1. Introduction
Simulations are heavily used in training, both on the
basic level such as learning drills for firemen and
soldiers, as well as on higher levels, e.g. for staff
training. Besides for training, simulations are seeing
more and more use for analyses, procurement, mission
preparation and decision-making purposes.
An important driver for using simulations is the
reduction of human effort. A simulation can reduce the
need for live role players in training, which reduces
cost and can provide flexibility and repeatability. The
arrival of commercial serious games has boosted the
use of Artificial Intelligence (AI) for modeling the
behavior of Computer Generated Forces (CGFs) in
simulations. In a typical military training application,
CGFs can play the role of opposing forces, flank
forces, civilians etc. Simulators are increasingly using
AI technology for realizing behaviors. For some
applications such as decision support in the battle field
or real-time disaster management forecasting,
simulating behavior is a must because there simply are
no human operators available for role-playing and
simulations for analysis and planning must run at far
higher speeds than humans could provide input.

1.1 The application of AI in simulations and games
The Modeling & Simulation department of the Dutch
TNO research institute investigates the use of
simulation in the military and safety & security
domain. We have observed that in The Netherlands as
well as abroad, the use of AI technology for behavior
modeling is increasing. This occurs for analysis,

doctrine development and training applications. For
example, the new Tactical Indoor Simulation
(TACTIS) trainer of the Royal Netherlands Army
(RNLA), relies on AI to simulate opposing forces or
the own forces flanking behavior. So-called Combat
Instruction Sets (CIS), which represent tactical
doctrine, have been put on paper and captured in code.
Examples of serious games that are in use by the
RNLA, the British Army and the Australian Army are
VBS2 (Bohemia Interactive, 2008) and Steel Beasts
(eSim Games, 2008). TNO uses its in-house developed
analysis tool Pollux for doctrine development. Each of
these environments implements CISs in some way to
represent the behavior of CGFs. Two observations that
we made are: 1) many current tools provide limited
possibilities for adjusting/extending behavior
specifications, and 2) re-use of such behavior
specifications rarely occurs.

We expect that the current trend towards more and
more evolved use of AI technology in simulations will
continue in the coming years. However, by not sharing
behavior specifications between tools, a dangerous trap
lingers.

1.2 A Far Cry from reuse and standardization
The authors feel that there is a low level of awareness
that the increased use of AI also rapidly creates new
challenges and potential bottlenecks. Current practice
is that every simulation platform seems to have its own
dedicated specification and implementation of entity
behavior. Every project team seems to develop and

Proceedings of the 18th Conference on Behavior Representation in Modeling and Simulation, Sundance, UT, 31 March - 2 April 2009
[paper: 09-BRIMS-006, pp. 15-22]

implement its own behavior models. There is typically
no reuse of models or code. This easily leads to high
costs and potential inconsistent behaviors between
simulators. This situation reminds us of the early days
of simulation, where every platform made its own 3D
models, built its own terrains and created its own
scenario files. Exchange of models, terrains or
platforms between simulations was not possible. Today
there are a number of standards, such as COLLADA
(Arnaud and Barnes, 2006), OpenFlight (OpenFlight,
2008) and MSDL (MSDL, 2008) that are used more
and more to exchange this type of data between
simulations. For example, in the case of terrain data,
solutions exist to automatically generate terrain
datasets for simulators based on a single common geo-
referenced source, as depicted in Figure 1, thereby
drastically reducing the effort needed (Kuijper et.al.,
2007) and leading to highly correlated terrains.

Figure 1: Generating terrain data from a common
source.

For behavior specifications however, no standardized
formats exist and reusing specifications or generating
behavior specifications for different simulators from a
common description seems a far cry from today’s
practice.

1.3 Levels of reuse
This leads to the central question addressed in this
paper: “can we make progress in reusing behavior
specifications”? In order to answer this question, we
will first define different levels of reusability, as
illustrated in Figure 2.

Level 0: the behavior implementations are totally
embedded in the simulation engine (i.e. hardcoded) and
cannot be changed.
Level 1: as level 0, but the simulation environment
provides an editor in which some parameters of the
behaviors can be altered, e.g. the amount of damage a
unit will accept before fleeing.
Level 2: as level 1, but the behavior specifications are
defined using a scripting language and can be edited to
change the entity behavior. The scripting language is

specific for the simulation engine. And the used AI
paradigm, e.g. a Finite State Machine (FSM) or the
Belief-Desire-Intention (BDI) model, is fixed.
Level 3: as level 2, but the behavior specifications are
defined using an engine-independent language, e.g.
Lua or Python. These behavior specifications have the
potential to be shared with other simulators with the
same AI paradigm.
Level 4: as level 3, but in this case not only the
behavior specification are externalized but also the
underlying AI paradigm. These behavior specifications
are only domain dependent and therefore they can be
reused relatively easy with simulators in the same
domain.
Externalizing the AI paradigm means that the tactical,
higher-level reasoning is performed by a specialized
software component. This component uses (tactical)
behavior specifications and performs decision making.
It delegates lower-level actions, e.g. move, to the
simulation engine. A similar architecture, in which
Goal-Oriented Action Planning (GOAP) AI was
interfaced with Unreal Tournament 2004, was
developed by Pittman (2008).

Figure 2: Reusability levels.

This paper describes our investigation into the practical
possibilities regarding these reuse levels. Our research
is based on experiments that involved the
implementation of CISs in a number of different
simulation environments, and we present our
conclusions regarding the re-use level which seems
most practical for our current purposes.

The remainder of this paper is organized as follows.
Section 2 describes our architecture and approach for
finding a solution to the “behavior reuse problem”.
Next, Section 3 describes our implementation
experiments and results. Section 4 presents our
conclusions and way forward.

2. Behavior modeling approach
This section describes the main parts of our behavior
modeling approach, which comprise a global vision
and architecture as well as derived implementation-
oriented goals and requirements.

2.1 Vision and architecture
Our aim is to develop a mechanism for behavior
specifications for CGFs that are well-structured,
composable, re-usable and repeatable. To achieve such
behavior specifications for tactical doctrine we believe
it is required to de-couple the behavior specification
from the behavior execution engine. Given the four
different levels of such de-coupling as described in the
previous section, we ultimately aim at achieving level
4. This achieves great re-usability by explicitly
modeling many behavior-related aspects including the
AI paradigm itself. However, given the capabilities of
current state-of-the-art simulation environments, our
current work is an example of level 3 which is
characterized by leveraging so-called engine-
independent scripting. We de-couple behavior
specifications from the execution engine, or in other
words, we take the behavior specifications out of the
execution environment and develop and maintain them
externally. The behavior specification scripts are
engine-independent, which means that they are not
defined in a simulator-specific language. Instead, they
are defined in a general purpose language, which
enables that the behavior specifications may be re-used
across different simulation environments. Figure 3
depicts a global architecture that embodies our more
practical vision.

Figure 3: Behavior specification architecture.

The behavior specifications are in this case defined
externally, i.e. outside the simulation engine. They
interface to the simulation engine through a Behavior
API, and they are executed by the AI engine (which
normally interacts with other components of the
simulation engine).
The Behavior API provides the basic functionality that
is needed for controlling the entity that is modeled. For
example, for an entity Soldier, the Behavior API may
include the function move(a, b) to instruct the Soldier
to move from a to b, and find_cover(..) to instruct the
Soldier to find cover (based on certain parameters).
The behavior specifications define the intended entity
behavior using

o the basic functionality of the Behavior API,
o the programming constructs of the used

scripting language.
Typical mechanisms of a scripting language include an
event mechanism, which allows the entity to respond to

events that occur, and other programming patterns that
provide control of the entity.
Together the Behavior API and the scripting language
provide the components that allow the composition of
behavior specifications.

The use of scripting languages is a concept that is
currently well-known and commonly applied in the
game developer’s community. For example, the
scripting language Lua (Lua, 2008) is a programming
language, designed as a scripting language that is used
in various open source and commercial games. Lua is a
lightweight, imperative language with extensible
semantics. In particular the feature of extensible
semantics makes it highly suitable for such
applications.

We anticipate that our approach has the following main
advantages and disadvantages.

Advantages
o Separating the behavior specifications from

the simulation engine enables that behavior
specifications can be adapted quickly, e.g.
without time consuming compilation of
source code of the simulator.

o Scripts could potentially be re-used between
simulations.

o Combining a Behavior API and scripting
language allows the definition of behavior
specifications that are well-structured,
composable, re-usable and repeatable.

o Scripting languages, like Lua, are compact
and powerful, which implies that they are
relatively easy to understand and to use. This
could include Behavior Subject Matter
Experts without any specific computer
software background.

Disadvantages
o Using scripting languages can cause

computational overhead. For example, in
order to reason about its options an entity
requires information about its environment, or
more precisely, it needs to perform
observations. Such observations (e.g.
obtaining all visible friendly, neutral or hostile
entities) need to be requested through the
Behavior API regularly, which causes
computational overhead.

o Scripting languages are not conducive to best
practices in software engineering and code
structuring, and they are generally harder to
debug.

2.2 Goals and Requirements
To deliver on our vision, we have worked out the main
goals and requirements of the components in the
architecture depicted in Figure 3.

The simulation engine (or the AI engine within it) must
implement the functions of the Behavior API
adequately. In our CIS case for example, the
simulation engine must implement the move function
for an entity Soldier such that the Soldier moves
realistically from a to b. Notice that what is considered
‘realistic’ or not, is likely to differ from application to
application. A realistic implementation of a move
function implies that environmental conditions, such as
terrain and threat, possibly influence the execution of
the move function. Also the implementation must
include a backtracking mechanism in case destination b
cannot be reached.

In practice, instead of developing a new simulation
engine, an engine is usually selected from a number of
existing simulation engines. It is critical to select a
simulation engine that meets the relevant behavior
requirements. The Behavior API must support the
problem at hand. On the one side, it must provide
sufficient control over an entity. On the other side,
however, it should not provide too low-level
functionality or parameters. In our case, where we are
studying CISs, a move function is very common,
whereas functions for path planning and steering
behavior are considered to be too detailed. Hence the
Behavior API should provide sufficient entity control
without exposing functions that are too detailed. Note
that when APIs are not exactly as needed, a
middleware layer could provide extra functionality or
conversions in order to make the API fit.

As mentioned before, the envisioned architecture
allows that the Behavior API functions can be used in
different specifications to compose structured behavior
specifications that are re-usable. Additionally, it should
be possible that these behavior specifications are in
turn re-usable in other simulators. This can for example
be achieved by using the Lua programming language.
This approach allows for defining a hierarchy of
behavior specifications that demonstrate coherent
behavior.

3. Implementation Experiments
In order to support the conceptual approach presented
in Section 2, proof-of-concept implementations of a
scenario composed of a selection of CISs were made,
both on commercial and in-house developed simulation
engines. For this purpose we used the commercially
available CryENGINE2 and Virtual Battle Space 2
(VBS2), and the in-house developed TNO Enhanced
Virtual Environment (EVE). The objective of our three
implementations is to find out how well modern
simulation engines are able to deal with behavior
defined at the level of a CIS. By comparing the results
of the implementations we are able to render a
judgment on how reusable the behavior specifications
are across different engines.

3.1 Scenario Setup
The execution of CIS behavior poses constraints and
requirements on the API of the simulation engine.
What these constraints and requirements are follows
directly from the abstraction level at which a CIS is
defined: A CIS is a formal specification of a combat
doctrine written in natural language. There are three
mayor aspects that characterize a CIS: 1) A CIS
describes the behavior of a group of entities, not a
single entity, 2) a CIS is able to activate other CISs if
required to achieve its goal, and 3) a CIS can be
interrupted by so called situational interrupts, usually
as a result of events that occur in the environment.

As described earlier in Section 2.2 the Behavior API of
the simulation engine should support the problem at
hand. Hence, the Behavior API should enable the
requirements of the behavior defined at the level of a
CIS, being: 1) performing actions, 2) obtaining
information from the environment, and 3) notifying
when events occur in which the CIS is interested. The
implemented scenario should cover at least all of these
requirements.

The scenario that we used is composed of two CISs:
An infantry squad of four members, divided over two
teams, performs the CIS Move bounding overwatch
while advancing to a certain position. While doing so,
they are subject to a mortar attack, and therefore
execute the CIS React to indirect fire. When the
indirect fire has stopped, the squad re-evaluates or
continues the bounding overwatch movement.

Figure 4: The Move bounding overwatch maneuver.
The bounding element advances to a concealed
position while the overwatch element provides
cover from a concealed position. Taken from FM3-
21.11: The SBCT Infantry Rifle Company (2003).

The CIS Move bounding overwatch describes how an
infantry squad traverses open terrain when hostile
contact is expected and speed is not essential, see also
Figure 4. Move bounding overwatch is characterized

by the bounding movement of one team (bounding
element), while the other team provides cover from a
concealed position (overwatch element). This CIS
requires both performing actions that are coordinated
between the teams and using information from the
environment, e.g. to find a concealed position to give
cover from.

The CIS React to indirect fire is an example of a CIS
executed as a reaction to a situational interrupt, in this
case when subject to artillery or mortar attack: all
squad elements immediately take cover within a certain
maximum radius. When the indirect fire has stopped
the squad will switch back, if applicable, to doing what
it was doing before the indirect fire attack.

Although the two CISs Move bounding overwatch and
React to indirect fire do not cover all possible
interaction between the behavior specification and the
simulation engine, all requirements of the Behavior
API for the execution of CISs are apparent.

3.2 Virtual Battlespace 2 (VBS2)
The first simulation engine in which we implemented
the scenario is Virtual Battlespace 2 (VBS2). VBS2
(Bohemia Interactive, 2008) is a commercial serious
game based on the first person shooter Armed Assault.
VBS2 is, as stated earlier, already being used by the
RNLA for training purposes.

VBS2 provides the ability to design scenarios using a
visual scenario editor in combination with its own
scripting language. Since VBS2 is aimed at the military
domain the collection of functions that the scripting
language provides can be considered very complete: it
contains functionality not commonly found in games,
e.g. for hierarchical group coordination.

To implement the scenario we used VBS2’s engine-
specific script language and the built-in Finite State
Machine (FSM) functionality. The FSM is a commonly
accepted AI paradigm that defines behavior in relation
to the mental state (Tozour, 2004), or similarly to a
context (Gonzalez, 2008), of an entity. We were able to
control an infantry squad and have it execute an FSM
that implements the bounding overwatch movement.
We also created an FSM that finds cover for each unit.

Although we succeeded in implementing the scenario
there were several difficulties. First, simulating the
indirect-fire attack in the scenario is cumbersome:
Since VBS2 does not support the creation of user-
defined events we had to develop a mechanism that
allows us to notify the FSM that an event had occurred.
This issue applies to all events that are not covered by
the limited set of built-in events. Second, VBS2
provides no control over the FSM itself after it is

started: One cannot determine whether the FSM is still
running, or in which state it currently is. As a result,
for example, automatically switching back to the
previous behavior after the indirect fire has stopped
becomes practically impossible. Summarizing, VBS2
provides an API that is quite complete. However, the
FSM functionality does not provide sufficient control
for behavior modeling.

3.3 CryENGINE2 (Crysis)
The CryENGINE2 (Crytek GmbH, 2008) is an
example of a modern simulation engine. The AAA
game Crysis was built on this engine. The
CryENGINE2 is supplied with a level editor, in which,
besides levels, CGF behavior can be graphically
designed using flow graphs. In addition to flow graphs,
CGF behavior can also be implemented using Lua
script files. We used Lua for our prototype.

The structural breakdown of a behavior for an entity in
the CryENGINE2 is depicted in Figure 5: On the
highest level the behavior is called a Character, which
in its turn is composed of one or more Behaviors
(analogous to the state of a FSM). At any given time
only a single behavior of a character is active and
receives events, which can be built-in or user defined.
As a result of an event the character can switch its
behavior, or activate any of the built-in or custom
designed goalpipes. A goalpipe is a (recursive)
collection of atomic actions, like move or fire.

Figure 5: The structural breakdown of behavior in
CryENGINE2. (1) Events trigger a change of
behavior, (2) as a result of an event a goalpipe is
activated, (3) another event is triggered, (4) besides
atomic actions a goalpipe can also contain other
goalpipes.

The scenario was implemented using the characters
and behavior approach described above. We created a
character where every CIS was defined as a behavior.
Coordinated by user-defined events an infantry squad
uses a bounding overwatch drill to advance to a certain
position. Other events (built-in) were used to simulate
indirect fire, which triggered the characters to switch
behavior and activate a goalpipe in order to find cover.

In order to switch back to the previous behavior when
the indirect fired has stopped, the CryENGINE2
provides a specific language element.
The chosen approach proves successful. The
combination of characters, behaviors, goalpipes, and
flexible events works well. A drawback is that a
behavior implementation in CryENGINE2 is for a
single entity, instead of for an entire group: This de-
centralized approach requires (user-defined) events for
group coordination. Given a CIS, a centralized
approach would be preferred.

3.4 TNO Simulation Framework EVE
The third and last simulation engine in which the
scenario described in Section 3.1 was implemented is
TNO’s Enhanced Virtual Environment (EVE). EVE is
a modular, data-driven simulation framework intended
for fast prototyping of new applications. Among other
features, EVE provides 3D visualization as well as
many subsystems for low-level steering and physics.
The behavior subsystem for EVE was designed from
scratch, so special attention could be given to the
behavior modeling paradigm and the choice of
scripting language.

For the modeling of the behavior we chose to use a
combination of hierarchical and stacked (Fu, 2004),
(Tozour, 2004) FSM approaches. The reasons for this
choice are twofold: First, the behavior described in a
CIS is applicable to a group of entities, instead of a
single entity. By using a hierarchical approach a group
of entities (e.g. a platoon) can be instructed to execute
a CIS by calling a single FSM. The FSM, in its turn, is
responsible for assigning specific behaviors to (groups
of) entities, which can be executed by sub-FSMs. The
second reason considers the situational interrupts that
cause other CISs to become active for a certain period
of time. By using a stacked approach a new CIS can
temporarily become active, while the previous CIS is
pushed on top of the stack. When the new CIS ends
and is no longer active, the old CIS will be popped
from the stack and continue its execution.

The scripting language that we choose to use is again
Lua. Besides the advantages of Lua mentioned in
Section 2.1 Lua was easy to integrate with EVE, which
acts as its host application.

Using the approach described above the scenario was
implemented for EVE. State machine scripts were
designed for both CISs Move bounding overwatch and
React to indirect fire, as well as a default behavior, as
shown in Figure 6. In these scripts events are triggered
(situational interrupts), and the entire group executing
the script will respond. For example, when an indirect-
fire event is received the group will activate the react-
to-indirect-fire script. In this script all group members

will query the simulation engine (EVE) for their
nearest cover location, and move there.

Figure 6: The behaviors implemented in the EVE
behavior subsystem, and how they relate. Note that
the Move Bounding Overwatch FSM contains a sub-
FSM that is executed by a team to perform a single
bound movement.

The approach chosen for the modeling of the scenario
in EVE proved successful. By using hierarchical and
stacked FSMs, in combination with events, the CISs
can be implemented while maintaining the original
structure within and between CISs.

3.5 Discussion
When comparing our three implementations (illustrated
in Figure 7) we find similarities, but also differences
that concern the reusability of the behavior
implementations. VBS2 is categorized as level 2, since
it uses a engine-specific scripting language. The
CryENGINE2 and our EVE implementation can both
be categorized as level 3: they use an externalized
engine-independent scripting language, but the AI
paradigm is not externalized. Although the scripting
language and even the AI paradigm of both are the
same, the behavior implementations are hardly
interchangeable. This is due to the differences in the
details of the AI paradigm and Behavior API, as
explained next.

All simulation engines we used rely on some form of
the finite state machine AI paradigm. However, there
are differences in the way they are applied: First, in the
CryENGINE2 each entity has its own behavior,
whereas in EVE and VBS2 a behavior controls an
entire group of entities. Second, our EVE
implementation and the CryENGINE2 use events to
control the execution of behavior specifications,
whereas VBS2 uses a polling mechanism. And third,
the engines differ in the flexibility they provide. For

example in VBS2 one can also create a behavior for a
single entity or even abandon the use of the FSM. On
the other hand, in the CryENGINE2 one is forced to
use the character-behavior-event-goalpipe
functionality.

The functionalities that the engines provide in the
Behavior API differ as well. VBS2’s API is complete
for the military domain: it contains numerous functions
for controlling e.g. formations, command hierarchy,
and radio communication. However, it sometimes lacks
control. The CryENGINE2’s API is less complete
(more generic), but provides more control, although at
the price of complexity. An example of this is the
function to find cover: VBS2’s findCover finds cover
within a specified range, with optional line of sight to a
target. CryENGINE2’s hide action can find cover
within a specified range using more than 30 methods
(nearest, nearest-backwards, nearest-to-target, behind-
vehicles, most-front-left-of-target, et cetera).

In order to achieve a higher level of reusability it is
advisable to strive for more standardization of both the
AI paradigm and the Behavior API. A major step
towards this objective is to take the AI paradigm out of
the simulation engine (reusability level 4), which
reduces the dependencies between the behavior
specification and the simulation engine. The behaviors
themselves can then be specified in a reusable format,
utilizing home-made programs or AI middleware like
Soar, ACT-R, AI.implant and Kynapse, which
interface with the standardized Behavior API. A
promising approach to developing a standardized
Behavior API is to base it on existing standards. For
certain applications, the Battle Management Language
(BML) (SISO C-BML, 2008) draft standard is a good
candidate in the tactical domain. BML promises an
unambiguous and standardized language for
communicating plans and orders to live, simulated, and
robotic forces.

Until the moment arrives that most simulation engines
have adopted a common standardized Behavior API,
an intermediate solution could be considered. This
solution would use a standardized behavior

specification as input for a process of code generation
for those engines that do not support the standardized
Behavior API. However, this approach can become a
daunting task.

4. Conclusions and Way Forward
This paper has investigated the possibilities for
developing and re-using behavior specifications. It
focused on representing so-called Combat Instruction
Sets (CISs) which are formal behavior specifications in
natural language. We investigated the implementation
of such specifications in different gaming and
simulation environments. For this purpose we used the
commercially available Virtual Battle Space 2 (VBS2)
and CryENGINE2, and the in-house developed TNO
Enhanced Virtual Environment (EVE). We studied in
particular the possibilities and obstacles for re-use of
behavior specifications in these environments. We
experienced that the environments strongly differ in the
possibilities they provide, and the limitations they
impose for developing behavior specifications.
Based on our experiences we have established that the
following factors are key-elements in establishing re-
use of behavior specifications.

o The degree of de-coupling of the behavior
specifications from the simulation engine
A strong de-coupling from the engine that is
used is required, and preferably a well-known
and accepted specification language
(scripting).

o The availability of a well-defined Behavior
API
A (standardized) Behavior API is required
that functionally matches the problem domain
at hand and that is implemented by different
simulation engines.

o The level of control that is provided by the
applied AI paradigm
The applied AI paradigm (e.g. stacked finite
state machines) provides a certain level of
control that can be employed in the behavior
specifications. For many serious applications
(e.g. implementing tactical doctrine) the
required level of control is high.

Figure 7: Illustrations of our implementations in VBS2 (left), CryENGINE2 (middle) and EVE (right)

The factors mentioned above point in the direction of
open architectures and systems. Such an approach
opens up possibilities that many current simulation
engines do not yet provide for developing and re-using
behavior specifications. For example, the AI paradigm
itself may be taken out of the simulation engine and be
implemented externally using a scripting language
(reusability level 4). A prerequisite for applying this
approach successfully is that a standardized Behavior
API is available. We suggest basing such a Behavior
API on e.g. the Battle Management Language (BML)
for the tactical domain. As an intermediate solution,
before such a standardized Behavior API is available, a
code generation process could be used to make a
common behavior specification fit on specific
simulation engines. This approach may however prove
very challenging. Nonetheless, we certainly believe
that a more open approach is the way forward for
achieving higher levels of re-use.

5. References
Arnaud, R., Barnes M.C. (2006). COLLADA: Sailing

the Gulf of 3d Digital Content Creation.
Wellesley MA: AK Peters, Ltd.

Bohemia Interactive (2008), Retrieved from the web
November 20, 2008,
http://www.bistudio.com/simulations.html

Crytek GmbH (2008), Retrieved from the web
November 20, 2008, http://www.crytek.com

eSim Games (2008), Retrieved from the web
November 20, 2008,
http://www.esimgames.com/steel_beasts_pro.htm

FM3-21.11: The SBCT Infantry Rifle Company
(2003), Retrieved from the web November 20,
2008,
http://www.globalsecurity.org/military/library/pol
icy/army/fm/3-21-91/c03.htm

Fu, D., Houlette, R. (2004), The Ultimate Guide to
FSMs in Games. In S. Rabin (Eds), AI Game
Programming Wisdom 2, (pp 283-302).
Hingham, Massachusetts: Charles River Media,
Inc.

Gonzalez, A., Stensrud, B., Barrett, G. (2008).
Formalizing context-based reasoning: A
modeling paradigm for representing tactical
human behavior. International Journal of
Intelligent Systems, vol 23 (7), 822-847.

Kuijper, F., Van Son, R., Van den Heuvel , F. (2007).
Rapid Modelling of Urban Mission Areas Using
Ground-Based Imagery, Proceedings of the 2007
Fall Simulation Interoperability Workshop,
Orlando, US, 07F-SIW-029

Lua (2008). Retrieved from the web November 20,
2008, http://www.lua.org/

MSDL (2008). Retrieved from the web November 20,
2008,
http://www.sisostds.org/index.php?tg=fileman&i

dx=get&id=5&gr=Y&path=SISO+Products%2F
SISO+Standards&file=SISO-STD-007-2008.doc

OpenFlight (2008). Retrieved from the web November
20, 2008, http://www.multigen-
paradigm.com/products/standards/openflight/

Pittman, D. (2008) Command Hierarchies Using Goal-
Oriented Action Planning. In S. Rabin (Eds), AI
Game Programming Wisdom 4, (pp 383-392).
Hingham, Massachusetts: Charles River Media,
Inc.

SISO C-BML (2008), Retrieved from the web
November 20, 2008,
http://www.sisostds.org/index.php?tg=fileman&i
dx=get&id=33&gr=Y&path=&file=CBML_Spec
_Final_1_29_08_v0.09.doc

Tozour, P. (2004). Stack-Based Finite-State Machines.
In S. Rabin (Eds), AI Game Programming
Wisdom 2, (pp 303-306). Hingham,
Massachusetts: Charles River Media, Inc.

Author Biographies

DR. KLAAS JAN DE KRAKER is a member of the
scientific staff at TNO Defence, Security and Safety.
He holds a Ph.D. in Computer Science from Delft
University of Technology.
He has a background in Computer-Aided Design and
Manufacturing, collaboration applications, software
engineering (methodologies), meta-modeling and data
modeling.
Currently he is leading various simulation projects in
the areas of simulation based performance assessment,
collective mission simulation, multifunctional
simulation and serious gaming.

PHILIP KERBUSCH, MSc. is a member of the
scientific staff at TNO Defence, Security and Safety.
Philip holds a MSc. degree cum laude in Artificial
Intelligence from Maastricht University. He has a
background in computer science and knowledge
engineering. His current work involves various
applications of artificial intelligence and 3D
visualization in the defense and safety domain.

ERIK BORGERS is a senior scientist in the M&S
department at TNO Defence, Security and Safety in the
Netherlands. He has a professional background in
Electronic Engineering and Artificial Intelligence (AI).
Erik leads the tactical modelling sub-section, which
focuses on realistic and reusable entity models,
including the use of AI. Erik has been active as a
project lead and architect during the production of
constructive and virtual staff trainers both for the
RNLA and for training civil Disaster Management
Teams. His current work focuses on the use of Agent
technology for kinetic and non-kinetic simulations,
interoperability and Serious Games.

