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ABSTRACT  
The reuse of mathematical models of physical phenomena, here called physical models, within simulations is 
attractive because it has the potential of improving simulation results while reducing implementation and 
testing work. In practice, however, it can be complicated to reuse a model that was originally developed for 
other studies and applications. It becomes even more difficult when multiple stakeholders have different ideas 
on how to use and extend the physical model.  
 
An attractive approach to deal with this problem is to develop and maintain a multi-resolution physical model 
that can be reused for different purposes. A multi-resolution model is a model that represents a system or 
phenomenon at different levels of fidelity simultaneously. On the process side, such an approach requires a 
policy for managing the use, the support and the development of the multi-resolution physical model. On the 
more technical side, a multi-resolution physical model requires a model specification that maintains all internal 
and external relationships while providing interoperability. 
 
Focusing on the reusability of physical models, this paper presents and analyzes two examples of multi-
resolution physical models from different domains and discusses how they are used in different simulations. The 
examples concern the modeling and use of (1) a missile model, including its different components, and (2) a 
signal propagation model in an underwater environment. The examples show the global approach of how multi-
resolution physical models can be used. Based on the experiences of modeling and simulation experts and 
physical modeling experts, this paper presents our guidelines and recommendations on how to facilitate the use 
of multi resolution physical models in simulations. These guidelines are structured according to the different 
software development phases, and help to improve the reusability and utility of physical models.  
 
 
1. Introduction 
This paper discusses physical models, which we 
define as mathematical models of physical 
phenomena. Typical examples of physical models 
are weapon models and sensor models. However, 
physical models also include physical phenomena 
such as wave propagation. In general physical 
models describe a physical phenomenon in 
extensive detail. Hence these models contain lots of 
formulas, tables, graphs and other details. The 
descriptions contain much knowledge and they are 
developed by subject matter experts like physicists.  

Physical models are mostly developed for analysis 
purposes, i.e. for analyzing the physical 
phenomenon itself, and therefore the models are 
often of high fidelity. 
However, the resulting models are also very useful 
for reuse and integration in other simulation 
applications. The availability of high quality 
physical models makes it very attractive to 
integrate these models into other simulations 
instead of rebuilding them. In other words, when 
developing a simulation for training purposes or for 



operational analysis, a part of this simulation can 
be a physical model.  
In [1] three kinds of reuse where distinguished: 
object reuse, component reuse and application 
system reuse. Reusing a physical model in a 
simulation is an application of component reuse. 
This paper presents two examples of physical 
model reuse, which describe two typical ways to 
integrate a physical model into a simulation.  
The first example shows how a physical model of a 
missile is used in the JROADS air defence 
simulation suite. JROADS is an in-house 
simulation tool used for training purposes, exercise 
support and operational analysis. The second 
example concerns an underwater acoustic 
propagation model, which is used in our Under 
Water Testbed (UWT) for operational analysis of 
underwater warfare. In both of these examples 
fidelity level of the physical model can be chosen. 
Such a reuse of models can be very cost effective 
because it leverages the development investment of 
the high fidelity physical model and reduces the 
total maintenance effort.  
However, successfully integrating a physical model 
into a simulation is difficult. Several challenges 
must be overcome. These challenges are not only 
technical in nature. Many of them are actually 
organizational issues. Technical issues mainly 
concern the interfacing of the physical model and 
the simulation. Organizational issues concern the 
cooperation between the different experts and their 
roles and responsibilities, for example regarding 
requirement management and support. 
 
The remainder of this paper is organized as 
follows. Section 2 presents and discusses two 
alternative ways to integrate a physical model into 
a simulation, which are illustrated in Section 3 
using real life examples. Next, Section 4 presents 
our reuse and integration guidelines based on our 
experiences. Lastly, Section 5 presents our 
conclusions and recommendations. 
 
2 Integration approach 
TNO Defence, Safety and Security develops many 
physical models for the analysis of physical 
phenomena. 
Our general objective is to reuse such physical 
models as a component in simulation models. We 
distinguish two alternative integration approaches: 
reusing a physical model as a library or integration 
of the physical model as a component in the 
simulation. 
 
2.1 Reuse a physical model as a library 
Often a physical model is implemented in software 
as a library, as illustrated in Figure 1. In this 
approach the physical model can be seen as a 
component that can be reused. For example, a 

missile library can be reused in various 
simulations. 
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Figure 1: Reuse a physical model as a library 
 
When creating a physical model as a library, first 
the responsibilities of the model and its interfaces 
need to be clearly defined. Then the transformation 
step can be made to make a library. 
 
The following aspects have to be taken into 
account when creating and using such a library: 
1. Component  interfaces  

The ‘interface agreement’ defines the input 
and output of the physical model and it 
exposes information of the physical model to 
the host simulation. For example the software 
engineer responsible for simulation A needs to 
know how to interpret a parameter of the 
missile model (physical model B) in order to 
use  this parameter in simulation A. The 
software engineer of simulation A does not 
need to understand the details of the physical 
phenomenon and the local outcomes of 
physical model B. 

2. Use of this component: considering the fidelity 
levels 
The physical model needs to provide an 
adequate fidelity level. The most flexible 
solution is that the fidelity level can be chosen. 
Subsection 2.3 describes that different fidelity 
levels often also require different interface 
parameters. In general the fidelity level of the 
physical model needs to match the fidelity 
level of the simulation. 

3. Validity domain and range 
The validity characteristics of the physical 
model have to be taken into account. The 
validity domain of the physical model, for 
example the model for signal propagation, can 
only be used in an underwater environment. 
The model parameters must be in the validity 
range. For example, in a radar model only 
those frequencies can be used that are within 
the frequency validity range. 

4. Timing aspect of an event driven simulation 
The time aspect may be implemented 
differently in the simulation and the physical 
model, e.g. event-driven and time-driven. 
However, the physical model must be able to 
respond to the events in an event-driven 
simulation.  

 



Benefits and disadvantages 
The main advantage of the library approach is the 
clear separation of responsibilities between the 
simulation and the physical model. The expert 
maintains the physical model that is behind the 
library interface. If the interface is not changed, he 
can improve the physical model independently. The 
simulation engineer can integrate an improved 
physical model library into the simulation 
relatively easy, which improves the simulation. 
Also a benefit of this approach is, because no 
source code is published, that it protects intellectual 
property. 
 
Although this approach has a good utility, it can 
also have disadvantages. 
The main risk is that the physical model might be 
reused for a purpose it was not intended for. One 
possibility is that the simulation engineer finds out 
that a function that he needs is actually not 
supported. Another possibility is that the physical 
model is used incorrectly, possibly invalidating the 
simulation results. 
To mitigate such risks, it is recommended to 
elaborate the intended use and interfaces of the 
library early in de design of library model. And on 
the programming level, it is recommended to 
validate the preconditions on the input parameters. 
 
2.2 Integrate the source code of a physical model  
A different way to perform component reuse is to 
embed the component source code into the 
simulation. In this approach, see also Figure 2, the 
component is seen as a set of functions that can be 
used in the simulation. The functions of the 
physical model are clustered into several objects 
(components) that can be invoked by the 
simulation. 
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Figure 2: Integrate the source code of a physical 
model 
 
The following aspects have to be taken into 
account when applying this integration approach. 
1. Interfaces 

The tight integration of the two models makes 
it possible to have more interaction between 

these models. These interactions can take place 
at different fidelity levels in one simulation. 
They are facilitated by specific object 
interfaces. 

2. Validity domain and range 
This aspect is the same as in the library 
approach. 

3. Knowledge 
The simulation can use a physical model as a 
component, but modifications of this physical 
model need to be done by the experts of the 
physical model. Using components in this 
tightly integrated way requires a lot more 
knowledge of the integrator than in the library 
case. The integrator needs to have knowledge 
of the underlying physical description of the 
model B to integrate it correctly into 
simulation A. 

 
Benefits and disadvantages 
Benefits of this approach are: The timing aspect 
has to be taken into account. However, this is less 
of an issue than in the library approach. The tight 
integration allows the simulation to invoke the 
different steps/parts of the physical model when 
desired. Dealing with the timing aspect is easier 
than in the library approach. 
Also more interactions between the two models are 
possible. For example the logging facilities of 
simulation A can be used for physical model B. 
This can also enable more analyses options for the 
expert who originally made the physical model B. 
Furthermore, parts of the physical model 
functionality can be improved by overriding 
existing functions. This enables multi-resolution 
implementations of parts of the physical model 
algorithms. 
 
The disadvantage is that the improvement of the 
physical model after the integration step can 
generate challenges. This can generate the need for 
new agreements in the interfaces between 
simulation A and physical model B. Also the new 
knowledge in the physical model has to be taken 
into account by the software engineers. This can 
cause significant integration work. To do this 
adequately, the behavior and the influence of 
physical model B on simulation model A has to be 
clear. 
 
2.3 Comparing the approaches 
If only the output of the physical model matters for 
the simulation and the interface is transparent and 
the interface parameters are clear and limited in 
number then the “library approach” is advisable. 
The physical model is used in one setting and 
mostly at one fidelity level. If another fidelity level 
with another set of interface parameters needs to be 
used in the simulation, the physical model library is 



replaced by another one. An example of this is 
given in Subsection 3.1.  
In those cases where the detailed internal state of 
the physical model is needed by the simulation, the 
“source code integration approach” is more 
advisable. The local outcomes of the physical 
model can be used by the simulation. These 
outcomes are typically in the local memory of the 
physical model component. In the library approach 
these local outcomes are not accessible. 
In the source code integration approach it is also 
possible that the different resolution levels require 
different interfaces and that different kinds of use 
of the physical model require different interfaces. 
An example of these different interfaces is given in 
Subsection 3.2. 
 
3 Examples of multi-resolution models 
This section shows two examples of multi-
resolution models that are developed by TNO. First 
the missile modeling in the air and missile defense 
testbed (JROADS) is described (‘library 
approach’). Second, the acoustic modeling in the 
Underwater Warfare Testbed (UWT) is shown 
(‘source code approach’). 
 
3.1. Missile modeling in JROADS 
The concept of multi-resolution modeling is used in 
the JROADS Standard Missile 3 (SM-3) modeling. 
In this section we will first introduce the JROADS 
simulation package and the SM-3 multi-stage 
ballistic interceptor. Then we will explain how the 
SM-3 model is linked with the JROADS simulation 
package and how configuration management is 
organized. The last part of this section will discuss 
the lessons learned during this integration process. 
 
JROADS is a software suite for simulation of joint 
air and missile defense systems [3]. JROADS is 
capable of simulating a wide range of threats, 
surface warfare platforms, tactical communication 
links and support platforms. The development of 
JROADS is aimed at three main applications: 1) 
analysis on weapon system capabilities, 2) 
testbedding of (real-time) systems and 3) live 
exercise support. 
 

 
Figure 3: Impression of a JROADS simulation 
with SM-3 
 
To support this wide variety of scenarios and 
applications, a very flexible and modular 

simulation architecture is required. A weapon 
system is assembled by combining the required 
subsystems such as radars, command & control, 
motion and launchers, where the level of fidelity is 
matched to the level of fidelity required for the 
application. For a given weapon subsystem, several 
implementations exist matching with a certain 
application. This approach enables the user to meet 
both the high fidelity requirements for analysis 
purposes as well as the real-time requirement in an 
exercise environment. 
 
One example of this modular design is the 
interceptor modeling. The most basic interceptor 
fly-out that can be modeled is a constant velocity 
model without a motion model and constraint by 
altitude, ground range, cross range and downrange. 
This model will fly the interceptor straight to the 
target at constant velocity using ground truth and 
proportional guidance. This model can be enhanced 
by: 

• an infrared-seeker, delivering a realistic 
target track 

• a simple motion restricting the maneuvers 
by restricting G-forces 

• a fly-out table giving maximum envelope 
and realistic time-on-target 

• stage falloff, producing dropped stages at 
fixed flight times 

 
Integration of the SM-3 model 
This level of detail was not enough for analysis of a 
specific interceptor, the Standard Missile 3 (SM-3), 
produced by Raytheon. This interceptor is designed 
to defend against short to intermediate range 
ballistic missile threats during the midcourse phase 
of flight. The Royal Netherlands Navy (RNLN) has 
expressed its interest in acquiring these 
interceptors. Therefore detailed modeling is needed 
to assess the SM-3 capabilities and to support 
exercises like JPOW X with the RNLNs possible 
future SM-3 capability. 
 
The SM-3 is an advanced weapon, different from 
the more common interceptors like the Patriot 
PAC-3 or Aster-30. The SM-3 consists of 4 stages 
and associated components: 1) a booster, 2) the 
dual thrust rocket motor, 3) the third stage rocket 
motor and 4) a kinetic warhead with infrared 
sensor. Guidance is based on data from the 
launching platform until the third stage is reached. 
From there, the SM-3 uses its infrared sensor to 
acquire target track. TNO developed a detailed 
model of the SM-3 which includes models of the 
aerodynamic properties, the engines of the stages, 
the guidance, the airframe and the sensor. This 
model is implemented in MatLAB with the use of 
SimuLink. 
 



The MatLAB/SimuLink model of the SM-3 was 
compiled to a Dynamic Link Library (DLL) using 
MathWorks’ Real Time Toolbox. JROADS is 
written in Java, and the DLL is accessed by the 
Java Native Interface (JNI). When a SM-3 
interceptor instance is used in JROADS, an 
instance of the DLL is created and fed with 
JROADS track data. Also a platform object is 
created in JROADS, representing the missile-in-
flight. The position and course of this platform is 
acquired from the DLL library. 
 
From the viewpoint of the JROADS model, there is 
no interface difference between using the internal 
interceptor model or the detailed SM-3 model 
implemented in the DLL. It can be accessed as a 
platform with a position and course, accepts events 
such as new track data and send events such as an 
intercept event. Changing between the internal 
model and the detailed model is a matter of 
selecting the desired model in the scenario.  
 
Benefits and disadvantages 
The integration of the SM-3 model enables 
JROADS to perform realistic intercepts with this 
type of missile. This would not have been possible 
without the integration. Due to the clear and easy 
interface, the integration was realized in a very 
short implementation time. 
 
During the implementation and use of this library 
link some issues appeared, which will be discussed: 
1. Mismatch between SM-3 DLL design and the 

usage by JROADS,  
2. Lack of a validation step to ensure the 

JROADS/SM-3 integration performs as 
expected, 

3. Dependence on support outside the JROADS 
team. 

 
The first issue arrived during the usage of the SM-3 
model in the calculation of engagement solutions. 
In this calculation, an SM-3 is virtually flown to 
the target to determine flight-time, launch time and 
intercept time. The process of calculating the best 
engagement option is iterative, so it results in many 
virtual missile flights. The performance of the SM-
3 model was not adequate to perform these 
calculations in real-time. This issue was solved by 
constructing a lookup table with the downrange, 
cross range and altitude at the axis and the flight 
time as data. This fly out table was generated 
offline. 
Also, the SM-3 model is used during missile flight 
to refine the guidance instructions. In the same way 
an engagement solution is determined, JROADS 
creates a virtual missile in this calculation. This 
requires simulation and instantiation of a missile-
in-flight. The SM-3 model is only capable of 
simulating missiles from launch time and not given 

a certain state. This was solved on our request in a 
later version of the model. 
 
The second issue, a missing validation step, was 
identified during the first mission planning sessions 
with the SM-3 capability. We found several cases 
where JROADS was not capable of calculating an 
engagement option while the intercept position was 
well within the envelope of the interceptor. 
Reviewing the cases showed a difference in 
MatLAB and JROADS results. The fact that this 
difference was found late in the process indicates 
that a validation step during integration was 
missing earlier in the integration process. This 
validation step has now been added and 
implemented by comparing fly out tables of 
JROADS and the MatLAB SM-3 model. 
 
The last issue is inherent to (re)use of externally 
provided software components. By (re)using 
software, one becomes dependent on the provider. 
In this case the dependency is twofold; not only for 
the delivery and maintenance of the software itself, 
but also regarding the domain knowledge behind it. 
During analyses, we must be able to investigate 
every part of the modeling to determine the model 
behaviour and to assess scenario results. When the 
interceptor is a key component in an analysis, 
support from the SM-3 model builders has to be 
arranged. This is an extra constraint, especially 
during long out-of-area military exercises. 
 
3.2. Acoustic underwater warfare modeling 
In 1994 TNO started the development of the 
Underwater Warfare Testbed (UWT) [4][5][6]. 
This testbed simulates underwater defense systems 
like sonars and mines, see also Figure 4. These 
systems observe the environment by listening to 
transmitted acoustic signals (e.g. engine noise, 
sonar pulses). All signals propagate through the 
environment and are attenuated and scattered by 
the sea surface, bottom, and other reflecting objects 
(e.g. submarines). This propagation is modeled by 
the Acoustic Loss Model of Operational Tasks and 
Studies (ALMOST) [5][7], of which the 
development started in 1980. This model computes 
the received signal levels at specified locations and 
also determines time delays that are due to the 
sound speed in the water, and bending of the sound 
waves through the water. 
 



 
Figure 4: Conceptual view of the UWT 
 
The ALMOST model is developed in Fortran’77 
and includes a large set of functions that can be 
used to compute different aspects of the sonar 
equation (e.g. received noise levels, ambient noise 
levels, reverberation, echoes). All functions are 
available in a library which is used in several stand-
alone applications within TNO. 
 
Embedding use of the acoustic model 
To facilitate the programmers that incorporate the 
model, all functions are embedded in three C++ 
objects: 1) Repas (for passive and intercept sonar), 
2) React (for mono-static active sonars), 3) Reabis 
(for bi-static active sonars). These objects provide a 
user-friendly interface to the acoustic model and 
they hide details that need to be known to use the 
Fortran code in the right order. 
The Repas object is used to compute the 
propagation loss for passive and intercept sonars. 
These sonars do not transmit signals but only 
observe the environment. The React object is used 
when one sonar is transmitting and receiving its 
own signals. The Reabis object is only used when 
the transmitted signals are received by another 
sonar in the environment, which is only the case in 
more complex simulations.  
 
Within the UWT the propagation of the signals is 
modeled by the Environment object. This object is 
responsible for collecting and managing all signals 
that are produced in the environment. It also 
handles all reflections that are introduced by the 
reflecting objects in the environment. In the testbed 
sensors are introduced to observe the signals in the 
environment. Furthermore, the environment has the 
notion of the location time. This enables it to 
remove the signals when the levels drop below the 
background level of the noise. The environment 
uses the acoustic propagation model to build the 
bridge between the UWT and the ALMOST 
objects.  
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Figure 5: Model structure of the UWT 
 
The computation of the received signal levels can 
be performed with different levels of fidelity. 
Especially in Monte-Carlo simulations, the fidelity 
of the acoustic modeling is chosen to be low, 
because otherwise the simulations last to long. In 
those cases the complexity of the calculations is 
reduced by parameter settings in the environment. 
This environment will then use derived classes of 
the Repas, React, and Reabis objects. These 
derived objects implement the propagation with a 
lower fidelity. Some of the functions in the 
ALMOST Fortran code are still used (e.g. 
calculations of time delays) but some are replaced 
by tables (e.g. propagation loss) or computed in a 
faster way.  
 
A different way of speeding up can be achieved by 
replacing the sensor with another less detailed 
sensor. For example a sensor which does not 
interact with the environment but only uses 
predefined detection distances to model the sensor 
performance. This can only be used when the 
required fidelity is low or when the operational 
conditions of the sensor can be computed on 
forehand. 
 
Testing of the simulation and acoustic model can 
be done after integration and also can be done 
separately. Each of the objects (i.e. RepasObject) is 
used to build a separate executable that can be 
executed using the same input as is used within the 
simulation environment. This enables detailed 
testing and maintenance by the domain experts and 
also by the simulation builders. 
 
Benefits and disadvantages 
There are many benefits of this way of embedding 
of the acoustic model in the simulation. First of all, 
the implementation is very fast because all code is 
compiled in one executable. In the past this was 
accomplished by an automated Fortran to C 
translator, but the current compilers can link the 
C++ and Fortran code directly. Second, the 
acoustic model developer can use his own favorite 
programming language and can update the 
implementation separately. Third, the embedding 



of the model also enables to create other models 
with other fidelity that can be used easily in the 
testbed. Fourth, by creating the object wrappers 
(embedding the functional code in objects) around 
the acoustic model, the sequence in which 
functions are called can be maintained easily. Also 
the internal (intermediate) data can be stored in the 
object which makes it easier to use the model. By 
introducing derived classes, the fidelity of the 
modeling can be modified without changing the 
structure of the model. Within derived classes also 
classified models can be implemented which need 
not be available in all applications of the testbed. 
 
If the library approach was used here, this would 
have raised problems. The current three objects not 
only act as a façade, they also contain state. In this 
way they provide a convenient interface for the 
simulation engineer. 
If the library approach was used here, the library 
would contain many low-level functions. These 
low-level functions would all need to be used 
correctly by the simulation engineer and in the 
correct order. This would put a huge burden on the 
simulation engineer. 
Therefore it was decided to use the source code 
integration approach here. This approach resulted 
in a suitable interfacing between the physical 
model and the rest of the simulation. 
 
The difficulty of this approach is maintainability of 
the physical model code; good version 
management is required. Furthermore, the 
interfaces (to the ALMOST objects) that are used 
by all applications need to be managed carefully. 
Also the associated interface and model 
documentation is very important. Because the 
ALMOST objects can be seen as a black-box, the 
validity boundaries need to be checked to avoid 
misuse of the model by less experienced users. 
 
Conclusion and recommendations 
It can be concluded that the embedding of 
functional Fortran code is well possible and 
facilitates the use of physical models in 
simulations. A good design of the interface to the 
model is very important to support future 
extendibility and maintainability of the code. By 
means of inheritance of the interface, multi-fidelity 
applications can be built. It also enables multi-
resolution simulations in which parts of the 
simulations are done with higher/lower fidelity.  
 
4 Guidelines 
This section will describe the most important 
guidelines for reuse of (multi-resolution) physical 
models in simulations.  
 
A first step for an organization is to determine 
which kind of tools or assets it wants to aim for. 

Only those tools or assets should be considered as 
reusable components that provide a clear benefit or 
advantage to the organization. 
Besides, the organization’s policies and processes 
need to be defined and organizational prerequisites 
need to be arranged. They can be based on the 
results of NATO MSG-042 “Definition of a 
‘Framework for Simulation Resources Reusability’ 
(FSRR)”, in particular the proposed Business 
Model [8], [9]. 
 
For an organization to get the most benefit out of 
reuse it is best practice to make an explicit 
separation between the creators (developers) of the 
component and the user who utilizes it in his 
simulation [10]. This gives the model developer the 
freedom of using his favorite programming 
language and updating the implementation when 
necessary, however under the constraints of 
creating reusable code. The simulation developer, 
who utilizes the model, has the opportunity to use a 
well maintained and documented model so he does 
not need to have specialized domain knowledge.  
To provide the users with knowledge of the 
available reusable models, a support team needs to 
exist. This team manages the assets, provides user 
support and training, performs maintenance of 
assets and provides coordinated feedback on 
problems. The support team has a managed 
repository that contains all software components 
available for reuse. 
Finally the management has to be aware of their 
role in the organization with respect to reuse. They 
have to ensure that the overall process proceeds 
efficiently, that the construction and support of new 
assets is funded, and that conflicts between the 
goals and schedules of the different groups are 
resolved: there is tension between simulation 
development objectives (especially capabilities and 
schedule) and model development and evolution 
(especially long-term reusability and quality). 
In Figure 6, the functions in an organization for 
reuse are displayed in their coherence. Ideally, all 
members of an organization have a shared reuse 
mindset. 
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Figure 6: Functions in an organization ideal for 
reuse 
 



The guidelines for creating reusable software are 
organized for each software development phase, 
see also Figure 7. 
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Figure 7: Software development phases 
 
During the concept and specification phase it is 
important to describe the model boundaries and 
also investigate possible future extensions and 
applications of the model. This is the basis for the 
design of the reusable model component therefore 
in this phase there is a huge interaction between the 
support, create and utilizer communities. 
 
In the design phase of the simulation and model, it 
is important to identify model components that can 
be developed separately and have a clearly defined 
interface which can be reused in other applications. 
The interface should contain all information that 
could be necessary in the future for the 
implementation of a higher fidelity model. 
Furthermore, it is always important to separate the 
(graphical) user-interface from the model and use 
known design/architectural patterns to link them. In 
this phase it is also important to describe how the 
multi-resolution functionality is modeled (e.g. by 
input parameters or inheritance of the model 
interface). Also design patterns can be used to 
support the integration (e.g. Strategy, bridge, 
proxy, façade patterns). Most of de design is done 
by the creators. 
 
The selection of the programming language is 
decided in the implementation phase. In most cases 
this is determined by the preferences and language 
knowledge of the scientist developing the model. It 
is preferred that the selected language can be linked 
directly to the most likely target simulations. The 
simulator might be written in another language but 
preferably in a language that can link easily to 
other languages/libraries and is platform 
independent. In this phase it is also essential to 
document the interface and the use of the physical 
model. Also event and error handling of the model 
needs to be solved. This is done by the creators. 
 

Testing of the integration of the physical model and 
simulation is very important. Especially a good and 
complete scenario set is essential. Besides testing 
of the model, the interface needs to be tested 
separately. Also misuse of the input should be 
checked in the interface. The support group takes 
care of testing and assists the users in the 
integration. 
 
During the maintenance phase, the model, 
simulation, scenarios and all software 
documentation should be maintained at one central 
location. Also the model documentation and 
knowledge should be secured, and the support 
during the use of the model should be organized. 
For this purpose the support group has a repository 
at its disposal. 
 
For the organization it is preferred that simulation 
environments are developed with similar software 
architectures. Having (many) simulation 
environments that have different architectures 
makes it difficult and time-consuming to reuse 
model components. So, preferably all simulations 
are using similar simulation kernels and 
architectures (using the same interface and 
modeling philosophy).  
 
5 Conclusion and recommendations 
This paper has presented our general approach to 
the reuse of (multi-resolution) physical models in 
simulations. Such reuse generally comes down to 
linking a physical model to a simulation. 
We have identified two possible approaches to 
achieve this goal, both of which are based on real-
life cases. The descriptions of each of these cases 
highlight how the linking is achieved and how 
multi-resolution aspects are dealt with. 
The first approach uses a library (DLL) to link a 
physical model to a simulation, which provides a 
clear separation of concerns. The physical model is 
developed and maintained by the subject matter 
expert, while the simulation engineer views the 
physical model as a black box with a clear 
interface. The mechanism for switching model 
resolution is by replacing one library with a 
suitable other one.  
The second approach uses source code integration 
to link a physical model to a simulation, which 
requires close cooperation between the physicists 
and the simulation engineer. Such cooperation 
requires a common ‘language’ and understanding a 
part of the other problem domain, and the 
willingness to constructively develop a successful 
integration. A suitable mechanism for switching 
model resolution is to use special-purpose 
parameters on the physical model interface. The 
agreements about the interface between the 
physical model and the simulation needs to be 
transparent and registered. 



 
Common guidelines have been formulated for both 
linking approaches. These guidelines mainly 
consider technical aspects of software engineering. 
However, we have also found that other aspects, 
such as organizational aspects, are of prime 
importance, and therefore we also included 
guidelines that concern organizational aspects. 
We recommend that these guidelines are 
implemented in a process that facilitates physical 
model reuse and that ensures software quality. For 
that purpose we have organized our guidelines 
according to the different software development 
phases, making our guidelines practically usable.  
 
In the near future, we intend to work on achieving 
‘effective realism’, i.e. the level of fidelity that is 
required to achieve the goals of the simulation. In 
other words, we will give attention to the matching 
of the fidelity that is required with the fidelity that 
is implemented. Multi-resolution models are very 
helpful to facilitate the selection of the actual 
fidelity in simulations for analysis and training 
purposes. 
Furthermore, we plan to further investigate other 
ways of linking existing physical models to 
simulations to achieve effective and efficient reuse 
of (multi-resolution) physical models. 
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