

09S-SIW-032

Guidelines for reuse of multi-resolution physical models

Daniëlle Keus
Frank Benders

Klaas Jan de Kraker
Rob van der Meer
Peter Langeslag

TNO Defence, Security and Safety
Oude Waalsdorperweg 63

2509 JG The Hague
The Netherlands

danielle.keus@tno.nl, frank.benders@tno.nl, klaas_jan.dekraker@tno.nl,
rob.vandermeer@tno.nl, peter.langeslag@tno.nl

Keywords:
Multi-Resolution Modeling, reusability, meta-modeling, simulations

ABSTRACT
The reuse of mathematical models of physical phenomena, here called physical models, within simulations is
attractive because it has the potential of improving simulation results while reducing implementation and
testing work. In practice, however, it can be complicated to reuse a model that was originally developed for
other studies and applications. It becomes even more difficult when multiple stakeholders have different ideas
on how to use and extend the physical model.

An attractive approach to deal with this problem is to develop and maintain a multi-resolution physical model
that can be reused for different purposes. A multi-resolution model is a model that represents a system or
phenomenon at different levels of fidelity simultaneously. On the process side, such an approach requires a
policy for managing the use, the support and the development of the multi-resolution physical model. On the
more technical side, a multi-resolution physical model requires a model specification that maintains all internal
and external relationships while providing interoperability.

Focusing on the reusability of physical models, this paper presents and analyzes two examples of multi-
resolution physical models from different domains and discusses how they are used in different simulations. The
examples concern the modeling and use of (1) a missile model, including its different components, and (2) a
signal propagation model in an underwater environment. The examples show the global approach of how multi-
resolution physical models can be used. Based on the experiences of modeling and simulation experts and
physical modeling experts, this paper presents our guidelines and recommendations on how to facilitate the use
of multi resolution physical models in simulations. These guidelines are structured according to the different
software development phases, and help to improve the reusability and utility of physical models.

1. Introduction
This paper discusses physical models, which we
define as mathematical models of physical
phenomena. Typical examples of physical models
are weapon models and sensor models. However,
physical models also include physical phenomena
such as wave propagation. In general physical
models describe a physical phenomenon in
extensive detail. Hence these models contain lots of
formulas, tables, graphs and other details. The
descriptions contain much knowledge and they are
developed by subject matter experts like physicists.

Physical models are mostly developed for analysis
purposes, i.e. for analyzing the physical
phenomenon itself, and therefore the models are
often of high fidelity.
However, the resulting models are also very useful
for reuse and integration in other simulation
applications. The availability of high quality
physical models makes it very attractive to
integrate these models into other simulations
instead of rebuilding them. In other words, when
developing a simulation for training purposes or for

operational analysis, a part of this simulation can
be a physical model.
In [1] three kinds of reuse where distinguished:
object reuse, component reuse and application
system reuse. Reusing a physical model in a
simulation is an application of component reuse.
This paper presents two examples of physical
model reuse, which describe two typical ways to
integrate a physical model into a simulation.
The first example shows how a physical model of a
missile is used in the JROADS air defence
simulation suite. JROADS is an in-house
simulation tool used for training purposes, exercise
support and operational analysis. The second
example concerns an underwater acoustic
propagation model, which is used in our Under
Water Testbed (UWT) for operational analysis of
underwater warfare. In both of these examples
fidelity level of the physical model can be chosen.
Such a reuse of models can be very cost effective
because it leverages the development investment of
the high fidelity physical model and reduces the
total maintenance effort.
However, successfully integrating a physical model
into a simulation is difficult. Several challenges
must be overcome. These challenges are not only
technical in nature. Many of them are actually
organizational issues. Technical issues mainly
concern the interfacing of the physical model and
the simulation. Organizational issues concern the
cooperation between the different experts and their
roles and responsibilities, for example regarding
requirement management and support.

The remainder of this paper is organized as
follows. Section 2 presents and discusses two
alternative ways to integrate a physical model into
a simulation, which are illustrated in Section 3
using real life examples. Next, Section 4 presents
our reuse and integration guidelines based on our
experiences. Lastly, Section 5 presents our
conclusions and recommendations.

2 Integration approach
TNO Defence, Safety and Security develops many
physical models for the analysis of physical
phenomena.
Our general objective is to reuse such physical
models as a component in simulation models. We
distinguish two alternative integration approaches:
reusing a physical model as a library or integration
of the physical model as a component in the
simulation.

2.1 Reuse a physical model as a library
Often a physical model is implemented in software
as a library, as illustrated in Figure 1. In this
approach the physical model can be seen as a
component that can be reused. For example, a

missile library can be reused in various
simulations.

Simulation A
libraries

Physical Model B
………
………

Simulation A
libraries

Physical Model B
………
………

Figure 1: Reuse a physical model as a library

When creating a physical model as a library, first
the responsibilities of the model and its interfaces
need to be clearly defined. Then the transformation
step can be made to make a library.

The following aspects have to be taken into
account when creating and using such a library:
1. Component interfaces

The ‘interface agreement’ defines the input
and output of the physical model and it
exposes information of the physical model to
the host simulation. For example the software
engineer responsible for simulation A needs to
know how to interpret a parameter of the
missile model (physical model B) in order to
use this parameter in simulation A. The
software engineer of simulation A does not
need to understand the details of the physical
phenomenon and the local outcomes of
physical model B.

2. Use of this component: considering the fidelity
levels
The physical model needs to provide an
adequate fidelity level. The most flexible
solution is that the fidelity level can be chosen.
Subsection 2.3 describes that different fidelity
levels often also require different interface
parameters. In general the fidelity level of the
physical model needs to match the fidelity
level of the simulation.

3. Validity domain and range
The validity characteristics of the physical
model have to be taken into account. The
validity domain of the physical model, for
example the model for signal propagation, can
only be used in an underwater environment.
The model parameters must be in the validity
range. For example, in a radar model only
those frequencies can be used that are within
the frequency validity range.

4. Timing aspect of an event driven simulation
The time aspect may be implemented
differently in the simulation and the physical
model, e.g. event-driven and time-driven.
However, the physical model must be able to
respond to the events in an event-driven
simulation.

Benefits and disadvantages
The main advantage of the library approach is the
clear separation of responsibilities between the
simulation and the physical model. The expert
maintains the physical model that is behind the
library interface. If the interface is not changed, he
can improve the physical model independently. The
simulation engineer can integrate an improved
physical model library into the simulation
relatively easy, which improves the simulation.
Also a benefit of this approach is, because no
source code is published, that it protects intellectual
property.

Although this approach has a good utility, it can
also have disadvantages.
The main risk is that the physical model might be
reused for a purpose it was not intended for. One
possibility is that the simulation engineer finds out
that a function that he needs is actually not
supported. Another possibility is that the physical
model is used incorrectly, possibly invalidating the
simulation results.
To mitigate such risks, it is recommended to
elaborate the intended use and interfaces of the
library early in de design of library model. And on
the programming level, it is recommended to
validate the preconditions on the input parameters.

2.2 Integrate the source code of a physical model
A different way to perform component reuse is to
embed the component source code into the
simulation. In this approach, see also Figure 2, the
component is seen as a set of functions that can be
used in the simulation. The functions of the
physical model are clustered into several objects
(components) that can be invoked by the
simulation.

Simulation A

Physical Model B

Object X

Object Y

Object Z

Simulation A

Physical Model B

Object X

Object Y

Object Z

Figure 2: Integrate the source code of a physical
model

The following aspects have to be taken into
account when applying this integration approach.
1. Interfaces

The tight integration of the two models makes
it possible to have more interaction between

these models. These interactions can take place
at different fidelity levels in one simulation.
They are facilitated by specific object
interfaces.

2. Validity domain and range
This aspect is the same as in the library
approach.

3. Knowledge
The simulation can use a physical model as a
component, but modifications of this physical
model need to be done by the experts of the
physical model. Using components in this
tightly integrated way requires a lot more
knowledge of the integrator than in the library
case. The integrator needs to have knowledge
of the underlying physical description of the
model B to integrate it correctly into
simulation A.

Benefits and disadvantages
Benefits of this approach are: The timing aspect
has to be taken into account. However, this is less
of an issue than in the library approach. The tight
integration allows the simulation to invoke the
different steps/parts of the physical model when
desired. Dealing with the timing aspect is easier
than in the library approach.
Also more interactions between the two models are
possible. For example the logging facilities of
simulation A can be used for physical model B.
This can also enable more analyses options for the
expert who originally made the physical model B.
Furthermore, parts of the physical model
functionality can be improved by overriding
existing functions. This enables multi-resolution
implementations of parts of the physical model
algorithms.

The disadvantage is that the improvement of the
physical model after the integration step can
generate challenges. This can generate the need for
new agreements in the interfaces between
simulation A and physical model B. Also the new
knowledge in the physical model has to be taken
into account by the software engineers. This can
cause significant integration work. To do this
adequately, the behavior and the influence of
physical model B on simulation model A has to be
clear.

2.3 Comparing the approaches
If only the output of the physical model matters for
the simulation and the interface is transparent and
the interface parameters are clear and limited in
number then the “library approach” is advisable.
The physical model is used in one setting and
mostly at one fidelity level. If another fidelity level
with another set of interface parameters needs to be
used in the simulation, the physical model library is

replaced by another one. An example of this is
given in Subsection 3.1.
In those cases where the detailed internal state of
the physical model is needed by the simulation, the
“source code integration approach” is more
advisable. The local outcomes of the physical
model can be used by the simulation. These
outcomes are typically in the local memory of the
physical model component. In the library approach
these local outcomes are not accessible.
In the source code integration approach it is also
possible that the different resolution levels require
different interfaces and that different kinds of use
of the physical model require different interfaces.
An example of these different interfaces is given in
Subsection 3.2.

3 Examples of multi-resolution models
This section shows two examples of multi-
resolution models that are developed by TNO. First
the missile modeling in the air and missile defense
testbed (JROADS) is described (‘library
approach’). Second, the acoustic modeling in the
Underwater Warfare Testbed (UWT) is shown
(‘source code approach’).

3.1. Missile modeling in JROADS
The concept of multi-resolution modeling is used in
the JROADS Standard Missile 3 (SM-3) modeling.
In this section we will first introduce the JROADS
simulation package and the SM-3 multi-stage
ballistic interceptor. Then we will explain how the
SM-3 model is linked with the JROADS simulation
package and how configuration management is
organized. The last part of this section will discuss
the lessons learned during this integration process.

JROADS is a software suite for simulation of joint
air and missile defense systems [3]. JROADS is
capable of simulating a wide range of threats,
surface warfare platforms, tactical communication
links and support platforms. The development of
JROADS is aimed at three main applications: 1)
analysis on weapon system capabilities, 2)
testbedding of (real-time) systems and 3) live
exercise support.

Figure 3: Impression of a JROADS simulation
with SM-3

To support this wide variety of scenarios and
applications, a very flexible and modular

simulation architecture is required. A weapon
system is assembled by combining the required
subsystems such as radars, command & control,
motion and launchers, where the level of fidelity is
matched to the level of fidelity required for the
application. For a given weapon subsystem, several
implementations exist matching with a certain
application. This approach enables the user to meet
both the high fidelity requirements for analysis
purposes as well as the real-time requirement in an
exercise environment.

One example of this modular design is the
interceptor modeling. The most basic interceptor
fly-out that can be modeled is a constant velocity
model without a motion model and constraint by
altitude, ground range, cross range and downrange.
This model will fly the interceptor straight to the
target at constant velocity using ground truth and
proportional guidance. This model can be enhanced
by:

• an infrared-seeker, delivering a realistic
target track

• a simple motion restricting the maneuvers
by restricting G-forces

• a fly-out table giving maximum envelope
and realistic time-on-target

• stage falloff, producing dropped stages at
fixed flight times

Integration of the SM-3 model
This level of detail was not enough for analysis of a
specific interceptor, the Standard Missile 3 (SM-3),
produced by Raytheon. This interceptor is designed
to defend against short to intermediate range
ballistic missile threats during the midcourse phase
of flight. The Royal Netherlands Navy (RNLN) has
expressed its interest in acquiring these
interceptors. Therefore detailed modeling is needed
to assess the SM-3 capabilities and to support
exercises like JPOW X with the RNLNs possible
future SM-3 capability.

The SM-3 is an advanced weapon, different from
the more common interceptors like the Patriot
PAC-3 or Aster-30. The SM-3 consists of 4 stages
and associated components: 1) a booster, 2) the
dual thrust rocket motor, 3) the third stage rocket
motor and 4) a kinetic warhead with infrared
sensor. Guidance is based on data from the
launching platform until the third stage is reached.
From there, the SM-3 uses its infrared sensor to
acquire target track. TNO developed a detailed
model of the SM-3 which includes models of the
aerodynamic properties, the engines of the stages,
the guidance, the airframe and the sensor. This
model is implemented in MatLAB with the use of
SimuLink.

The MatLAB/SimuLink model of the SM-3 was
compiled to a Dynamic Link Library (DLL) using
MathWorks’ Real Time Toolbox. JROADS is
written in Java, and the DLL is accessed by the
Java Native Interface (JNI). When a SM-3
interceptor instance is used in JROADS, an
instance of the DLL is created and fed with
JROADS track data. Also a platform object is
created in JROADS, representing the missile-in-
flight. The position and course of this platform is
acquired from the DLL library.

From the viewpoint of the JROADS model, there is
no interface difference between using the internal
interceptor model or the detailed SM-3 model
implemented in the DLL. It can be accessed as a
platform with a position and course, accepts events
such as new track data and send events such as an
intercept event. Changing between the internal
model and the detailed model is a matter of
selecting the desired model in the scenario.

Benefits and disadvantages
The integration of the SM-3 model enables
JROADS to perform realistic intercepts with this
type of missile. This would not have been possible
without the integration. Due to the clear and easy
interface, the integration was realized in a very
short implementation time.

During the implementation and use of this library
link some issues appeared, which will be discussed:
1. Mismatch between SM-3 DLL design and the

usage by JROADS,
2. Lack of a validation step to ensure the

JROADS/SM-3 integration performs as
expected,

3. Dependence on support outside the JROADS
team.

The first issue arrived during the usage of the SM-3
model in the calculation of engagement solutions.
In this calculation, an SM-3 is virtually flown to
the target to determine flight-time, launch time and
intercept time. The process of calculating the best
engagement option is iterative, so it results in many
virtual missile flights. The performance of the SM-
3 model was not adequate to perform these
calculations in real-time. This issue was solved by
constructing a lookup table with the downrange,
cross range and altitude at the axis and the flight
time as data. This fly out table was generated
offline.
Also, the SM-3 model is used during missile flight
to refine the guidance instructions. In the same way
an engagement solution is determined, JROADS
creates a virtual missile in this calculation. This
requires simulation and instantiation of a missile-
in-flight. The SM-3 model is only capable of
simulating missiles from launch time and not given

a certain state. This was solved on our request in a
later version of the model.

The second issue, a missing validation step, was
identified during the first mission planning sessions
with the SM-3 capability. We found several cases
where JROADS was not capable of calculating an
engagement option while the intercept position was
well within the envelope of the interceptor.
Reviewing the cases showed a difference in
MatLAB and JROADS results. The fact that this
difference was found late in the process indicates
that a validation step during integration was
missing earlier in the integration process. This
validation step has now been added and
implemented by comparing fly out tables of
JROADS and the MatLAB SM-3 model.

The last issue is inherent to (re)use of externally
provided software components. By (re)using
software, one becomes dependent on the provider.
In this case the dependency is twofold; not only for
the delivery and maintenance of the software itself,
but also regarding the domain knowledge behind it.
During analyses, we must be able to investigate
every part of the modeling to determine the model
behaviour and to assess scenario results. When the
interceptor is a key component in an analysis,
support from the SM-3 model builders has to be
arranged. This is an extra constraint, especially
during long out-of-area military exercises.

3.2. Acoustic underwater warfare modeling
In 1994 TNO started the development of the
Underwater Warfare Testbed (UWT) [4][5][6].
This testbed simulates underwater defense systems
like sonars and mines, see also Figure 4. These
systems observe the environment by listening to
transmitted acoustic signals (e.g. engine noise,
sonar pulses). All signals propagate through the
environment and are attenuated and scattered by
the sea surface, bottom, and other reflecting objects
(e.g. submarines). This propagation is modeled by
the Acoustic Loss Model of Operational Tasks and
Studies (ALMOST) [5][7], of which the
development started in 1980. This model computes
the received signal levels at specified locations and
also determines time delays that are due to the
sound speed in the water, and bending of the sound
waves through the water.

Figure 4: Conceptual view of the UWT

The ALMOST model is developed in Fortran’77
and includes a large set of functions that can be
used to compute different aspects of the sonar
equation (e.g. received noise levels, ambient noise
levels, reverberation, echoes). All functions are
available in a library which is used in several stand-
alone applications within TNO.

Embedding use of the acoustic model
To facilitate the programmers that incorporate the
model, all functions are embedded in three C++
objects: 1) Repas (for passive and intercept sonar),
2) React (for mono-static active sonars), 3) Reabis
(for bi-static active sonars). These objects provide a
user-friendly interface to the acoustic model and
they hide details that need to be known to use the
Fortran code in the right order.
The Repas object is used to compute the
propagation loss for passive and intercept sonars.
These sonars do not transmit signals but only
observe the environment. The React object is used
when one sonar is transmitting and receiving its
own signals. The Reabis object is only used when
the transmitted signals are received by another
sonar in the environment, which is only the case in
more complex simulations.

Within the UWT the propagation of the signals is
modeled by the Environment object. This object is
responsible for collecting and managing all signals
that are produced in the environment. It also
handles all reflections that are introduced by the
reflecting objects in the environment. In the testbed
sensors are introduced to observe the signals in the
environment. Furthermore, the environment has the
notion of the location time. This enables it to
remove the signals when the levels drop below the
background level of the noise. The environment
uses the acoustic propagation model to build the
bridge between the UWT and the ALMOST
objects.

Signal

Environment

Observation
collector

Acoustic Propagation model

ALMOST

RepasObject

ReactObject

ReabisObject

UWT

Platform

Actuator

Sensor

RepasObject

ReactObject

Signal

Environment

Observation
collector

Acoustic Propagation model

ALMOST

RepasObject

ReactObject

ReabisObject

UWT

Platform

Actuator

Sensor

RepasObject

ReactObject

Figure 5: Model structure of the UWT

The computation of the received signal levels can
be performed with different levels of fidelity.
Especially in Monte-Carlo simulations, the fidelity
of the acoustic modeling is chosen to be low,
because otherwise the simulations last to long. In
those cases the complexity of the calculations is
reduced by parameter settings in the environment.
This environment will then use derived classes of
the Repas, React, and Reabis objects. These
derived objects implement the propagation with a
lower fidelity. Some of the functions in the
ALMOST Fortran code are still used (e.g.
calculations of time delays) but some are replaced
by tables (e.g. propagation loss) or computed in a
faster way.

A different way of speeding up can be achieved by
replacing the sensor with another less detailed
sensor. For example a sensor which does not
interact with the environment but only uses
predefined detection distances to model the sensor
performance. This can only be used when the
required fidelity is low or when the operational
conditions of the sensor can be computed on
forehand.

Testing of the simulation and acoustic model can
be done after integration and also can be done
separately. Each of the objects (i.e. RepasObject) is
used to build a separate executable that can be
executed using the same input as is used within the
simulation environment. This enables detailed
testing and maintenance by the domain experts and
also by the simulation builders.

Benefits and disadvantages
There are many benefits of this way of embedding
of the acoustic model in the simulation. First of all,
the implementation is very fast because all code is
compiled in one executable. In the past this was
accomplished by an automated Fortran to C
translator, but the current compilers can link the
C++ and Fortran code directly. Second, the
acoustic model developer can use his own favorite
programming language and can update the
implementation separately. Third, the embedding

of the model also enables to create other models
with other fidelity that can be used easily in the
testbed. Fourth, by creating the object wrappers
(embedding the functional code in objects) around
the acoustic model, the sequence in which
functions are called can be maintained easily. Also
the internal (intermediate) data can be stored in the
object which makes it easier to use the model. By
introducing derived classes, the fidelity of the
modeling can be modified without changing the
structure of the model. Within derived classes also
classified models can be implemented which need
not be available in all applications of the testbed.

If the library approach was used here, this would
have raised problems. The current three objects not
only act as a façade, they also contain state. In this
way they provide a convenient interface for the
simulation engineer.
If the library approach was used here, the library
would contain many low-level functions. These
low-level functions would all need to be used
correctly by the simulation engineer and in the
correct order. This would put a huge burden on the
simulation engineer.
Therefore it was decided to use the source code
integration approach here. This approach resulted
in a suitable interfacing between the physical
model and the rest of the simulation.

The difficulty of this approach is maintainability of
the physical model code; good version
management is required. Furthermore, the
interfaces (to the ALMOST objects) that are used
by all applications need to be managed carefully.
Also the associated interface and model
documentation is very important. Because the
ALMOST objects can be seen as a black-box, the
validity boundaries need to be checked to avoid
misuse of the model by less experienced users.

Conclusion and recommendations
It can be concluded that the embedding of
functional Fortran code is well possible and
facilitates the use of physical models in
simulations. A good design of the interface to the
model is very important to support future
extendibility and maintainability of the code. By
means of inheritance of the interface, multi-fidelity
applications can be built. It also enables multi-
resolution simulations in which parts of the
simulations are done with higher/lower fidelity.

4 Guidelines
This section will describe the most important
guidelines for reuse of (multi-resolution) physical
models in simulations.

A first step for an organization is to determine
which kind of tools or assets it wants to aim for.

Only those tools or assets should be considered as
reusable components that provide a clear benefit or
advantage to the organization.
Besides, the organization’s policies and processes
need to be defined and organizational prerequisites
need to be arranged. They can be based on the
results of NATO MSG-042 “Definition of a
‘Framework for Simulation Resources Reusability’
(FSRR)”, in particular the proposed Business
Model [8], [9].

For an organization to get the most benefit out of
reuse it is best practice to make an explicit
separation between the creators (developers) of the
component and the user who utilizes it in his
simulation [10]. This gives the model developer the
freedom of using his favorite programming
language and updating the implementation when
necessary, however under the constraints of
creating reusable code. The simulation developer,
who utilizes the model, has the opportunity to use a
well maintained and documented model so he does
not need to have specialized domain knowledge.
To provide the users with knowledge of the
available reusable models, a support team needs to
exist. This team manages the assets, provides user
support and training, performs maintenance of
assets and provides coordinated feedback on
problems. The support team has a managed
repository that contains all software components
available for reuse.
Finally the management has to be aware of their
role in the organization with respect to reuse. They
have to ensure that the overall process proceeds
efficiently, that the construction and support of new
assets is funded, and that conflicts between the
goals and schedules of the different groups are
resolved: there is tension between simulation
development objectives (especially capabilities and
schedule) and model development and evolution
(especially long-term reusability and quality).
In Figure 6, the functions in an organization for
reuse are displayed in their coherence. Ideally, all
members of an organization have a shared reuse
mindset.

Create Utilize

Support

Manage

Create Utilize

Support

Manage

Figure 6: Functions in an organization ideal for
reuse

The guidelines for creating reusable software are
organized for each software development phase,
see also Figure 7.

SpecificationSpecification

DesignDesign

ImplementationImplementation

Testing Maintenance

SpecificationSpecification

DesignDesign

ImplementationImplementation

Testing Maintenance

Figure 7: Software development phases

During the concept and specification phase it is
important to describe the model boundaries and
also investigate possible future extensions and
applications of the model. This is the basis for the
design of the reusable model component therefore
in this phase there is a huge interaction between the
support, create and utilizer communities.

In the design phase of the simulation and model, it
is important to identify model components that can
be developed separately and have a clearly defined
interface which can be reused in other applications.
The interface should contain all information that
could be necessary in the future for the
implementation of a higher fidelity model.
Furthermore, it is always important to separate the
(graphical) user-interface from the model and use
known design/architectural patterns to link them. In
this phase it is also important to describe how the
multi-resolution functionality is modeled (e.g. by
input parameters or inheritance of the model
interface). Also design patterns can be used to
support the integration (e.g. Strategy, bridge,
proxy, façade patterns). Most of de design is done
by the creators.

The selection of the programming language is
decided in the implementation phase. In most cases
this is determined by the preferences and language
knowledge of the scientist developing the model. It
is preferred that the selected language can be linked
directly to the most likely target simulations. The
simulator might be written in another language but
preferably in a language that can link easily to
other languages/libraries and is platform
independent. In this phase it is also essential to
document the interface and the use of the physical
model. Also event and error handling of the model
needs to be solved. This is done by the creators.

Testing of the integration of the physical model and
simulation is very important. Especially a good and
complete scenario set is essential. Besides testing
of the model, the interface needs to be tested
separately. Also misuse of the input should be
checked in the interface. The support group takes
care of testing and assists the users in the
integration.

During the maintenance phase, the model,
simulation, scenarios and all software
documentation should be maintained at one central
location. Also the model documentation and
knowledge should be secured, and the support
during the use of the model should be organized.
For this purpose the support group has a repository
at its disposal.

For the organization it is preferred that simulation
environments are developed with similar software
architectures. Having (many) simulation
environments that have different architectures
makes it difficult and time-consuming to reuse
model components. So, preferably all simulations
are using similar simulation kernels and
architectures (using the same interface and
modeling philosophy).

5 Conclusion and recommendations
This paper has presented our general approach to
the reuse of (multi-resolution) physical models in
simulations. Such reuse generally comes down to
linking a physical model to a simulation.
We have identified two possible approaches to
achieve this goal, both of which are based on real-
life cases. The descriptions of each of these cases
highlight how the linking is achieved and how
multi-resolution aspects are dealt with.
The first approach uses a library (DLL) to link a
physical model to a simulation, which provides a
clear separation of concerns. The physical model is
developed and maintained by the subject matter
expert, while the simulation engineer views the
physical model as a black box with a clear
interface. The mechanism for switching model
resolution is by replacing one library with a
suitable other one.
The second approach uses source code integration
to link a physical model to a simulation, which
requires close cooperation between the physicists
and the simulation engineer. Such cooperation
requires a common ‘language’ and understanding a
part of the other problem domain, and the
willingness to constructively develop a successful
integration. A suitable mechanism for switching
model resolution is to use special-purpose
parameters on the physical model interface. The
agreements about the interface between the
physical model and the simulation needs to be
transparent and registered.

Common guidelines have been formulated for both
linking approaches. These guidelines mainly
consider technical aspects of software engineering.
However, we have also found that other aspects,
such as organizational aspects, are of prime
importance, and therefore we also included
guidelines that concern organizational aspects.
We recommend that these guidelines are
implemented in a process that facilitates physical
model reuse and that ensures software quality. For
that purpose we have organized our guidelines
according to the different software development
phases, making our guidelines practically usable.

In the near future, we intend to work on achieving
‘effective realism’, i.e. the level of fidelity that is
required to achieve the goals of the simulation. In
other words, we will give attention to the matching
of the fidelity that is required with the fidelity that
is implemented. Multi-resolution models are very
helpful to facilitate the selection of the actual
fidelity in simulations for analysis and training
purposes.
Furthermore, we plan to further investigate other
ways of linking existing physical models to
simulations to achieve effective and efficient reuse
of (multi-resolution) physical models.

6 References
[1] K.J. de Kraker, M.van Emmerik, P. Langeslag,

W. Huiskamp, Towards successful
multifunctional reuse of simulation
components, 07S-SIW-051, 2007.

[2] D. Keus, M. Kamstra, K.J. de Kraker,

Experiences from a Multi-Resolution
Modeling case study using Model Driven
Architecture, 08S-SIW-011, 2008.

[3] W. van der Wiel, J-ROADS Air Defence
Simulation Support during the 2006 JPOW IX
Missile Defence Exercise, NATO MSG-045
Symposium on "Transforming Training and
Experimentation through Modelling and
Simulation”, Rome, Italy, 2006.

[4] Lentze, S, MOSES, development of an

Underwater Warfare Testbed, UDT Europe,
2001.

[5] P. Schippers, F.P.A. Benders, Acoustic
modelling and simulation of next generation
torpedoes, UDT Europe, 2003.

[6] F.P.A. Benders, R.R. Witberg, H.J.

Grootendorst, Torpedo and countermeasures
modelling in the Torpedo Defence System
Testbed, UDT Europe, 2004.

[7] P. Schippers, REACT - a model for Active
Sonar Range Predictions, UDT Europe, 1991

[8] Robert Elliott, Stefan Franzen, Lt. Sabas

González Godoy, Bernardo Martínez Rei,
Xavier Lecinq, David Edmondson, Wim
Huiskamp, Wanda Wharton, Lana McGlynn,
Cdr. Ángel San José Martín, FINAL REPORT
MSG-042 Definition of a ‘Framework for
Simulation Resources Reusability’ (FSRR)

[9] LtCdr. Ángel E. San José Martín (ESP-

NAVY), Lt. Sabas González-Godoy (ESP-
ARMY), Wim Huiskamp, Bernardo Martínez
Reif (ISDEFE) et al, “NATO MSG – 042
Definition of a Framework for Simulation
Resources Reusability (FSRR)”. Paper 2685
Published in Proceedings of I/ITSEC 2006,
Orlando.

[10] Systematic Software Reuse:Architecture,

Process and Organization are Crucial, Martin
L. Griss, Fusion Newsletter, Oct 1996

Author Biographies

DANIELLE KEUS is a member of the scientific
staff in the Defence, Security and Safety Division
at TNO. She is a MSc. in Electrical Engineering
from Delft University of Technology. She has a
background in software engineering, electrical
engineering. Currently she is involved in various
simulation projects in the areas of underwater
warfare, distributed intelligence, sea based
operations and modeling physical objects for
simulations.

FRANK BENDERS is a member of the scientific
staff in the Defence, Security and Safety Division
at TNO. He has a PDEng in Software Engineering
from the Stan Akkermans Institute Eindhoven. He
has a MSc. in Electrical Engineering from
Eindhoven University. He is involved in various
projects in the area of underwater warfare and
simulation, underwater acoustics and marine
mammal research.

DR. KLAAS JAN DE KRAKER is a member of
the scientific staff in the Defence, Security and
Safety Division at TNO. He holds a Ph.D. in
Computer Science from Delft University of
Technology. He has a background in Computer-
Aided Design and Manufacturing, collaboration
applications, software engineering
(methodologies), meta modeling and data
modeling. Currently he is leading various
simulation projects in the areas of simulation based
performance assessment, collective mission
simulation, multifunctional simulation and serious
gaming.

ROB VAN DER MEER is a member of the
scientific staff in the Defence, Security and Safety
Division at TNO. He is a MSc. in Electrical
Engineering from Delft University of Technology.
He has a background in biomedical engineering
and embedded systems. He is currently involved in
air defence research.

PETER LANGESLAG is a member of the
scientific staff in the Defence, Security and Safety
Division at TNO. As a research engineer he has a
broad experience in the architectural design of
simulators and the procurement and development
of training simulators for the Dutch army. Peter
supported the Royal Netherlands Army Simulation
Expert Centre in the implementation of a
Modelling and Simulation Repository. He also
contributed to the MSG-003 Feasibility Study on
Modelling & Simulation Technology in Support of
Simulation Based Acquisition (SBA) and was a
member of the MSG-030 task group on
Collaborative Working Environments (CWEs) for
Simulation Based Acquisition (SBA).

