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ABSTRACT: Managing the initialization, execution control and monitoring of HLA federates is not always 
straightforward, especially for a geographically distributed time managed federation. Issues include pre and post run-
time data distribution and run-time data collection; starting, stopping and monitoring each federate application from 
a single point of control; the sheer amount of data collected during a session; software and network stability when 
performing long lasting, uninterrupted sessions, such as for Monte Carlo simulation; network latency and time 
synchronization; execution control functions - in particular legacy applications may not support all required 
functions. 
One recent project is used as example to study in more detail how these Execution Management issues are solved. The 
project SIGDM&S establishes a geographically distributed HLA federation for the analysis of maritime missile 
defense scenarios using Monte Carlo simulation. This paper provides an overview of the Execution Management 
issues, the solutions provided, lessons learned and recommendations for improvements in the area of execution 
management. 
 
 
1. Introduction 
Managing the initialization, execution control and 
monitoring of HLA federates is not always 
straightforward, especially for a geographically 
distributed time managed federation. Issues include pre 
and post run-time data distribution and run-time data 
collection; starting, stopping and monitoring each 
federate application from a single point of control; the 
sheer amount of data collected during a session; 
software and network stability when performing long 
lasting, uninterrupted sessions, such as for Monte Carlo 
simulation; network latency and time synchronization; 
execution control functions - in particular legacy 
applications may not support all required functions and 
require adaptations. 
 
The availability of robust and reliable tools that support 
the user in managing a geographically distributed HLA 
federation is critical to the success of experimentation 
and analysis. These tools must support a high degree of 
automation in order to prevent the execution of 
otherwise manual tasks as repeatedly starting and 
stopping federate applications during a Monte Carlo 
simulation, collecting log files and monitoring 
progress. 

 
In 2007 an international project was initiated between 
the United States, Canada, Australia, Germany and The 
Netherlands with the objective to establish a 
Simulation Architecture for the evaluation of future 
maritime Battle Management Command, Control, 
Communication & Computing Information (BMC4I) 
architectures. This project was named “Secure 
International Geographically Distributed Modeling and 
Simulation” (SIGDM&S). Due to the fact that most of 
the national simulation models within the participating 
countries are restricted for release, a geographically 
distributed HLA based simulation has been developed 
for the performance analysis of maritime missile 
defense Command & Control Architectures and 
systems.  Through stochastic (Monte Carlo) simulation 
the behavior of a complex system can be explored by 
using random samples of parameters or inputs.  
 
This paper provides an overview of the project and 
execution management solution used. The paper is 
structured as follows: 
• Chapter 2 provides an overview of the project, 

including the background and HLA federation 
architecture. 



• Next, chapter 3 discusses the concept of execution 
management; what do we mean with federation 
execution management? 

• Chapter 4 discusses the federation execution 
management solution that was applied and the 
lessons learned. 

• Finally, chapter 5 summarizes the conclusions and 
provides some recommendations for 
improvements in the area of execution 
management tools. 

 
2. SIGDM&S 
 
2.1 Overview 
In 1999 a Maritime Theater Missile Defense Forum 
was established as an informal gathering of United 
States, German and Netherlands Naval Flag Officers to 
identify areas of common interest in Ballistic Missile 
Defense and associated programs. This forum has now 
evolved to eight nation participation (the United States, 
Canada, Australia, Germany, The Netherlands, United 
Kingdom, Spain and Italy), with the key focus on 
coalition interoperability between the maritime 
platforms of the participating nations. The Forum’s 
imperative provides protection against the proliferation 
of short, medium and long-range Ballistic Missiles, 
Advanced Anti-Ship Cruise Missiles threats through 
the creation of an interoperable sea-based defense 
capability among coalition nations. The Forum’s 
Coalition Maritime forces will provide protection 
across the full spectrum of these threats, utilizing 

existing interoperable sea-based systems to protect 
against current threats while progressively improving 
and developing systems and system-of-systems to 
remain effective against evolving threats. Especially 
the use of distributed network centric architectures can 
multiply the capabilities of the coalition forces. Within 
these architectures, the Maritime forces exchange 
information to achieve situational awareness, threat 
evaluation, weapon assignment and target engagement 
at the force level. 
In developing these distributed network centric 
architectures, Modeling and Simulation is of vital 
importance for testing, evaluating and performing 
assessment of proposed future architectures in an early 
stage of development. Therefore, the Forum 
established the Modeling and Simulation Working 
Group. A key objective of this Working Group is to 
cooperatively develop, demonstrate and maintain a 
comprehensive distributed modeling and simulation 
framework for the benefit of supporting concept 
development, design, analysis, evaluation and testing 
of the envisioned network centric architectures.  
As a first initiative a proof of concept was defined that 
establishes an internationally distributed simulation to 
be extended by additional capabilities in later 
increments. The simulation had to be geographically 
distributed in order to permit the execution of national 
(proprietary) models in a multi-national geographically 
distributed simulation. Figure 1 shows the geographical 
location of the selected HLA federates in the 
simulation. 
 

Figure 1: Locations of the selected HLA federates in the simulation. 



2.2 Defended Footprint Analysis 
The initial capability and proof of concept established a 
geographically distributed HLA federation with the 
purpose to perform a defended footprint analysis 
(DFA) for a single ship-interceptor-TBM scenario. 
DFA determines the regions that a ship can defend 
against TBM attacks launched from a specified launch 
area. The analysis involves a stochastic (Monte Carlo) 
simulation where the ship position is varied over a pre 
determined set of grid points in the defended area (see 
Figure 2). For each grid point multiple Monte Carlo 
runs are performed, using random perturbations in 
some of the parameters of the simulated systems. The 
outcome of the simulation shows amongst others the 
performance of the sensor system and provides the ship 
positions that provide best defense in the given 
scenario. 
 

 
Figure 2: Defended footprint. In green the TBM 
trajectory, in blue the grid points (mirrored across 
the trajectory). 
 
For DFA, repeatability is a highly desirable 
characteristic. This allows unexpected or unusual 
analysis results to be investigated in greater detail to 
explain the underlying phenomenon. Repeatability 
requires a conservative time management strategy in 
which federates are both regulating (can control 
federation time advance) and constrained (wait for 
federation time advance) and interactions are time 
stamped. Conservative time management generally 
results in slower execution times. 
 
2.3 Federation Architecture 
The federation architecture is shown in Figure 3 and 
the geographical distribution of the selected federates is 
shown in Figure 1. The architecture consists of two 
connected HLA federations: a Maritime Theater 
Missile Defence (MTMD) Federation and a Local Ship 
Federation. Below follows a brief description of the 

HLA federates in each federation and the HLA Run 
Time Infrastructure (RTI). 
 
Local Ship Federation (Hengelo, NLD) 
The local ship federation consists of federates, 
representing the behavior of several ship subsystems (a 
long range radar surveillance system, radar tracking 
system, combat management system and ship platform 
representation) which communicate with each other 
through the HLA Run Time Infrastructure. The weapon 
control system is logically part of the ship, but this 
system is modeled in a separate federate in the MTMD 
federation (see weapon federate). 
 
Ship Federation Manager Federate (Hengelo, NLD) 
This federate is used to bridge the geographically 
distributed MTMD federation and the local ship 
federation. This bridge allows the use of distinct sub 
federations (with different FOMs), which minimizes 
changes to existing federates and hence facilitates 
model reuse and which enables data shielding. 
 
Weapon Federate (Virginia Beach, USA) 
The weapon federate consists of a number of 
components. For various historical reasons these 
components have been assembled in a single federate 
application, but can be viewed as individual federates. 
The components are: 
• The threat generator is a component that simulates 

a Tactical Ballistic Missile threat. The position of 
the threat is sensed by the ship’s search radar, 
which will publish the position of the threat as a 
track for use by the weapon control system. 

• The weapon control system is logically part of the 
ship, simulated by the local ship federation. It 
receives track information from the ship’s onboard 
sensors and controls the interceptor with amongst 
others launch commands and guidance 
information. 

• The interceptor simulates a ‘generic’ interceptor 
possessing the following characteristics: a booster, 
mid-flight guidance, and terminal IR homing 
phase. 

 
Exercise Controller Federate (The Hague, NLD) 
The Exercise Controller is a federate that controls the 
state transitions in the federation and coordinates the 
various Monte Carlo runs for each grid point. It has a 
graphical user interface to load a scenario file, adapt 
some scenario parameters, start and stop the 
simulation, and to monitor the current federation state.  
 
Logger Federate (Halifax, CAN) 
A data logger federate was developed that saves data in 
both an XML format and a format usable by the 3D 
viewer, SIMDIS. Both files are packaged by the logger 
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federate into a single compressed binary file. The 3D 
Viewer (not an HLA federate by itself) can connect on 
line to the data logger to visualize the data that is 
currently processed by the data logger. 
 
3D Viewer (Halifax, CAN) 
The 3D viewer is based on SIMDIS from the US Naval 
Research Labs. The 3D viewer can act as both an off 
line and an on line viewer. As off line viewer it 
visualizes the data as previously recorded by the data 
logger. As on line viewer it connects (from any 
geographical location) to the data logger and visualizes 
the data as it is currently processed by the data logger. 
Platforms are represented by a 3D visual representation 
of the real-life hardware. Missiles and threats are 
likewise represented in 3D. SIMDIS provides 
situational awareness of the unfolding simulation 
within a visual environment. 
 
Test Federates 
A suite of “Mock” test federates was developed to 
provide low fidelity implementations of the behaviors 
defined for the real federates. The test federates act and 
react the same as the real federates with respect to the 
FOM objects and interactions and HLA services. These 
test federates were used as substitutes for the real 
federates while each site was independently developing 
their own deliverable federates. This was advantageous 
since the development of each federate was therefore 
much less dependent on the progress of the 
development of the other federates. Also, while some 
real models were not allowed to be released to other 
participating countries, the test federates made local 
testing possible at each site.  
 
Run Time Infrastructure 
The Run Time Infrastructure (RTI) is provided by the 
TNO-RTI. This RTI is a mixed mode RTI and supports 

both IEEE 1516 and HLA 1.3 compliant federates in 
the same federation without additional tools. Note that 
only the Weapon federate is still HLA 1.3. The TNO-
RTI is a partial RTI implementation but provides all of 
the required RTI services for both the MTMD 
federation as well as the local ship federation. 
 
3. What is Federation Execution 
Management? 
There is no single agreed definition of “Federation 
Execution Management”, but generally it covers both 
the topics “federation management” and “scenario 
management”.  
 
Federation management is about the creation, control, 
modification and deletion of the federation execution 
as defined in the HLA Federate Interface Specification 
[1], as well as the tasks to configure, start, monitor and 
stop federate applications, to distribute pre run time 
data and to collect post run time data. Therefore, 
federation management includes more than just HLA 
federation management. 
 
For scenario management we use the statement from 
the paper on Scenario Management - Common Design 
Principles and Data Interchange Formats [2]. Scenario 
management covers “All tasks associated with 
development and execution of a scenario including 
scenario development, initialization, modification and 
execution control.” The execution of a scenario 
concerns for example the tasks to start, pause, resume 
and stop a scenario, to request the creation and deletion 
of object instances and to provide initial values for 
object instances. 
 
A summary of the federation execution management 
tasks is as follows: 
• Start and stop of applications 
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Figure 3: Federation Architecture. 



• Monitoring of applications 
• Configuration of applications 
• Data distribution and collection 
• Network monitoring 
• Performance monitoring 
• Creation and deletion of federation execution 
• State control using synchronization points and 

save and restore points 
• Scenario initialization (i.e. create, modify and 

delete object instances, provide initial values) 
• Scenario control (i.e. start, pause, resume, stop, 

distribute control information such as scenario 
name, run number and seed values) 

 
When looking at federation execution management 
then the tasks related to the development of a scenario 
are not relevant. These tasks are usually performed 
before the federation is executed. Therefore we only 
consider the tasks scenario initialization and scenario 
control. Also tasks related to federation deployment 
and (re)booting of systems are not considered to be part 
of federation execution management in this paper. 
 
4. Federation Execution Management 
Solution 
 
4.1 Introduction 
From federation execution management point of view 
the objective is to support a federation that amongst 
others: 
• Executes over a WAN, with geographically 

distributed federates. 
• Executes at least 48 hours (uninterrupted) with 

hundreds of Monte Carlo runs. 
• Executes unattended. 
• Produces a log file for each Monte Carlo run. 
• Requires scenario initialization data for each 

Monte Carlo run. 
 
The execution management tasks have been allocated 
to the following components: 
 
Task: Allocated to: 
1. Start and stop of 

applications 
Pitch Commander 

2. Monitoring of 
applications 

Pitch Commander 

3. Configuration of 
applications 

Pitch Commander 

4. Data distribution and 
collection 

Pitch Commander, 
FTP client and server 

5. Network monitoring Various network tools 
6. Performance monitoring TNO-RTI, MS Excel 
7. Creation and deletion of 

federation execution 
Exercise Controller 

8. State control Exercise Controller 
9. Scenario initialization Exercise Controller 
10. Scenario control Exercise Controller 
 
Where the components are: 
• Exercise Controller: an HLA federate to control 

the federation state as it progresses through the 
various Monte Carlo runs and to provide scenario 
data to other federates. 

• Pitch Commander: a commercial off the shelf 
application to distribute and collect data and to 
start, monitor and stop federate applications. See 
[3]. 

• Various network tools: both commercial and open 
source tools to monitor network usage. 

• FTP client and server: off the shelf FTP server and 
client for file transfer. 

• TNO-RTI: an RTI implementation from TNO (see 
chapter 2.3, Federation Architecture) including 
functionality to collect performance data for off-
line monitoring. 

• MS Excel: Microsoft Excel for producing trend 
charts from data collected by the TNO-RTI. 

 
These components are described in more detail in the 
next chapter as part of the solution description. 
 
4.2 Solution 
This chapter discusses the solution applied for each 
federation execution management task. 
 
1. Start and stop of applications 
The start and stop of federate applications is managed 
with Pitch Commander [3]. Pitch Commander consists 
of a Commander application and a number of so called 
Agent applications. An Agent is installed on each host 
that runs a federate and controls on behalf of the 
Commander the startup, monitoring and shutdown of 
the local federate. The Agent also provides the status of 
the federate and its host computer to the central 
Commander. 
 

 
Figure 4: Start and stop with Pitch Commander. 
 
Each federate supplier provided start and stop (Linux) 
shell scripts or (Windows) bat files for their federate. 
These scripts or bat files are invoked by the Agent on 
behalf of the central Commander. The start and stop of 
all federate applications in the federation was also 
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automated using a single (Python) script that was 
executed from the Commander scripting environment. 
Figure 4 illustrates the functioning. 
 
2. Monitoring of applications 
Pitch Commander provides a number of basic monitors 
to monitor for example CPU load, memory usage, disk 
usage and network statistics per host computer. It is 
also possible to monitor whether an application is 
running or has been stopped. 
 
3. Configuration of applications 
The start and stop of a federate application on a host is 
managed by the local Pitch Agent. Each federate 
supplier has defined in the Agent the available actions 
to start or stop their application. Each action is 
associated with a script or bat file to start or stop the 
application, including any configuration settings for the 
application. 
 
The Agent actions are invoked by the central 
Commander. Thus by invoking different Agent actions 
from the Commander the appropriate federate 
configuration can be started. 

 
4. Data distribution and collection 
Pitch Commander provides File Transfer functionality 
to transfer files between a host that runs the Pitch 
Agent and the host that runs the Pitch Commander. A 
transfer from one or more hosts to the central 
Commander is called “collect”. A transfer from the 
central Commander to one or more hosts is called 
“deploy”. 
 
This File Transfer functionality was initially used to 
automatically collect the log files from the Data Logger 
federate after the completion of all Monte Carlo runs 
and transfer these files to the central Commander. With 
this solution the complete process of starting the 
federation execution, performing the federation 
execution, stopping the federation execution and 
collecting the log files was automated. 
 
However, the amount of data generated by the 
simulation was large and data collection over a wide 
area network took much time while waiting for the next 
federation execution. Therefore, the solution of 
automatic data collection was abandoned.  Log files 
were manually placed on an FTP site at a convenient 
point in time. An FTP client was used to collect these 
files. 
 
 
 

5. Network monitoring 
Network monitoring was provided by What’s Up Gold 
[4]. This (commercial) application provided continuous 
monitoring of network connectivity and visual maps 
for quick recognition of potential network problems. 
Figure 5 provides an example of an imaginary network. 
 
The open source software iperf [5] was utilized to 
determine and measure actual bandwidth under load 
conditions. These measurements were conducted prior 
to and between federation executions to minimize 
interference and provide representative values of 
available bandwidth. 
 
MTUroute [6] was a freeware application utilized to 
verify that the correct Maximum Transmission Unit 
(MTU) values were properly configured in encryption 
devices and protocol stacks on host computers. MTU is 
the size (in bytes) of the largest packet or frame that a 
layer of a communications protocol can pass onwards. 
 

 
Figure 5: A Whatsupgold network map (see [4]). 
 
6. Performance monitoring 
For this project a rather detailed analysis of the 
federation performance was desired. We wanted to 
know the simulation speed over time and what amount 
of time each federate was spending on its main task or 
on waiting due to HLA time management constraints. 
Also it was interesting which part of this waiting time 
was caused by the communication network. Using the 
Management Object Model (MOM) [7] this kind of 
detailed information cannot be gathered. Moreover, if it 
could be gathered using the MOM it would result in 
additional network traffic as more messages need to be 
passed around. Additional on-line (during execution) 
and off-line (after execution) monitors are needed for 
the data that is maintained inside the RTI itself. 
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Figure 6: General time advancement pattern for the federate. 
 
To enable this kind of “inside” RTI monitoring a 
federation performance model was constructed with the 
key parameters to be measured by the RTI. The TNO-
RTI was adapted to collect this data for off-line 
monitoring. 
 
The performance model is explained in Figure 6. This 
figure shows the general time advancement pattern for 
the simulation execution. The figure shows a timeline 
for the major components in the federation, the 
processing by each component (shown as a grey block) 
and the messages that are exchanged between the 
components (shown by a vertical arrow). 
 
The components are: 
• Federate: this is either the Weapon federate, the 

Ship Federation Manager federate, or the Logger 
federate. 

• CRC: this is the Central RTI Component that 
manages, amongst other centralized HLA services, 
the simulation time in a federation. This 
component is deployed at the host that also runs 
the Exercise Controller. 

• LRC: this is the Local RTI Component that is 
directly linked with the federate software on each 
host that runs a federate. Federates use the LRC to 
communicate amongst each other and to 
communicate with the CRC. 

• Network: this represents the various hardware and 
software parts that make up the physical network 
(this includes the network protocol stack on each 
host, routers, cryptos, and RTI parts for handling 
messages to and from the LRC). 

 
The CRC calculates if and when a Time Advance 
Grant (TAG) is allowed for each federate. If the LRC 
receives a TAG from the CRC, then the LRC first 
delivers all messages as call backs (CBs) to the 

federate according to the HLA Time Management 
rules, prior to delivering the TAG to the federate. On 
its turn the federate issues a Time Advance Request 
(TAR) to request the advancement of simulation time. 
 
Figure 6 does not show the case where the LRC can 
locally grant a TAR from the federate. For example, 
when a federate requests time advances that are smaller 
than all the other federates, then some of these requests 
can be granted locally without permission from the 
CRC. This optimization decreases latency times for all 
federates. For a local TAG the time advance latency is 
assumed zero. Local grants are taken into account in 
the RTI measurements. 
 
Using this performance model we were able to monitor 
per individual federate the fraction of time spent on 
simulation related processing (busy ratio) and network 
related processing (network ratio). 
 
To determine the busy ratio of a federate for the whole 
federation execution the following formula is applied: 
 
Busy ratio = 

1 – (Total Federate Call Back latency 
/ Effective Federate Execution Time) 

 
Where the Effective federate execution time is the 
total wall clock time that the federate is in the simulate 
state. 
 
To determine the network ratio of a federate for the 
whole federation execution the following formula is 
applied: 
 
Network ratio = 

Total Network latency / 
Effective Federate Execution Time 

 



Where the Total Network latency is defined as: 
 
Total Network latency = 

Total Federate Call Back latency – 
Total CRC Time Advance latency 

 
LRC processing time is neglected in the calculation of 
the network ratio as it is relatively small with respect to 
federate processing time. 
 
Using the same data we were also able to monitor both 
the simulation speed and the simulation time over time 
for each federate. Figure 7 shows for example the 
simulation speed over time for a federate with in red 
the moving average with a period of 10. Figure 8 
shows the progress of simulation time over time. 
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Figure 7: The simulation speed over time for a 
federate. 
 
Simulation speed is defined as the ratio of simulation 
time and real time. In stochastic simulation the 
simulation speed is not constant but varies over the 
course of the execution (as opposed to real time 
simulation, where the speed is around ‘1’). 
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Figure 8: The simulation time over time for a 
federate. 
 
7. Creation and deletion of federation execution 
The federation execution is created by the first federate 
to start, in this case the Exercise Controller. With the 
federation configuration used in this project the Central 
RTI Component (CRC) was run on the same host that 

runs the Exercise Controller (location The Hague, The 
Netherlands).  
 
8. State control 
A dedicated Exercise Controller was developed to 
control the state transitions in the federation. One of 
the reasons for a dedicated application was that the 
scripting environment of Pitch Commander did not 
support the handling of RTI callbacks, such as the 
receipt of HLA interactions. 
 
The Exercise Controller initiated the transitions 
between states using HLA synchronization points and 
HLA save and restore. The state transition diagram is 
shown in Figure 9. The transition triggers and guards 
have been left out of the diagram for simplification. 
The state diagram shows two (nested) loops: one loop 
to go through all grid points and one loop to go through 
all runs for a given grid point. The state diagram is for 
illustration purpose only and is not further described. 
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Figure 9: Exercise Controller state diagram. 
 



The Exercise Controller has a GUI to start and stop the 
simulation and to display the amount of wall clock time 
spent on each Monte Carlo run and each grid point. 
 
The remaining federates (Weapon, Ship Federation 
Manager and Data Logger) are execution managed 
federates and receive the state transition requests from 
the Exercise Controller via the HLA Federation 
Management services. 
 
9. Scenario initialization 
Scenario initialization is completely managed from the 
Exercise Controller by sending HLA interactions. No 
scenario initialization data is distributed pre-run time to 
the federate applications. 
 
The scenario initialization data is specified in an XML 
scenario file that is only read by the Exercise 
Controller. Amongst others this file specifies the 
entities (i.e. ship, interceptor and TBM), their initial 
position and the TBM launch times. The Exercise 
Controller uses HLA interactions to: 
• request the creation of an entity, 
• set the initial position of an entity and 
• set the launch time of a TBM. 
 
10. Scenario control 
Like scenario initialization discussed above also 
scenario control is fully managed by the Exercise 
Controller. Amongst others the following data is 
specified in the XML scenario file: the size of the 
defended footprint (in terms of grid points), the number 
of runs per grid point, the initial state of the random 
number generator and the execution mode (run or 
replay). 
 
Depending on the execution state (see earlier 
discussion on state diagram) the Exercise Controller 
sends an HLA interaction to indicate to other federates: 
• the mode of execution, 
• the initial state of the random number generator, 
• the current grid point and run number and 
• the end of a range of grid points. 
 
4.3 Lessons Learned 
This chapter lists some of the lessons learned with 
respect to the solution applied. 
 
1. Start and stop of applications 
The “black box” approach of using a Pitch Agent 
provided a flexible solution to start and stop individual 
federates at any time, without the involvement of 
remote operators in a different time zone and physical 
location. 
 

2. Network monitoring 
Network latency is the dominating parameter in overall 
federation execution time. For the network, hardware 
and software configuration chosen for this project, the 
execution time of the distributed federation is estimated 
to be twice the execution time of the federation running 
co-located on a LAN. 
 
3. Performance monitoring 
The additional monitors for federation performance 
provided essential insight in federate busy and idle 
times and network related processing. This kind of 
information is generally needed for tuning federation 
performance during federation development. 
 
4. Creation and deletion of federation execution 
The performance of the HLA time management 
services depend very much on where the CRC is 
running. Since the time advancements characteristics of 
all federates, the network latency and the way how 
time management is implemented by the RTI all have 
influence on the overall performance, it is 
recommended to investigate the best location of the 
CRC for a particular federation. Performance 
monitoring tools are an important asset for this. 
 
As we have two federations (MTMD and Local Ship), 
it would be better that the Ship Federation Manager 
federate could connect to two different CRCs. In this 
case, a CRC running on a host at Hengelo for the Local 
Ship federation and a CRC running on a host in the 
USA for the MTMD federation would be optimal in 
terms of reducing latency times according to our 
performance analysis. 
 
The CRC of the TNO-RTI creates for each federation 
execution an application called ‘fedex’ that coordinates 
amongst others the time advancements in a federation 
execution. So another solution could be that the CRC 
can be configured manually or even determines 
automatically where to run the fedex application for 
optimal performance results.  
 
5. State control 
During the development of the Exercise Controller it 
was noted that the management of the execution state 
diagram can be generalized using a recent development 
briefly described below. Due to time constraints 
however a more project specific approach was 
followed. 
 
A recent development that will certainly benefit the 
development of a “generic” Exercise Controller is that 
of State Chart XML (SCXML) of the W3C [8]. 
SCXML is an XML based markup language for the 
definition of state machines. Such a generic Exercise 



Controller can have as input an SCXML file that 
specifies the state diagram along with the triggers, 
conditions and actions it has to perform on each state 
transition. Actions are for example the initiation of an 
HLA Save or Restore, or the registration of a 
synchronization point. 
 
6. Scenario initialization and control 
For this project the scenario was relatively simple and 
the (proprietary) XML scenario file was created 
manually. For a more complex scenario a graphical 
(2D map) scenario editor to generate the required XML 
scenario file would be desirable and recommended. 
Also the use of MSDL as scenario file format should 
be studied. 
 
7. General 
Central federation execution management capable of 
controlling the state of each federate proved to be 
efficient for distributed federations at locations having 
different time zones. However, voice communication 
remains necessary, despite the high degree of 
automation of federation execution management. 
 
5. Conclusions 
This chapter summarizes the conclusions for federation 
execution management. 
 
In the SIGDM&S project a plurality of “point tools” 
was used for federation execution management, for 
various technical reasons. A conclusion from this 
project is that the need remains for a more integrated 
solution for all federation execution management tasks. 
For example network, host, federation and federate 
monitoring should be more integrated. Pitch 
Commander provided a number of capabilities as first 
steps to this integrated solution. 
 
During federation development and execution often 
detailed monitoring information is required to 
understand the behavior of the federation with respect 
to time. Current federation execution management 
tools do not provide these monitoring capabilities. 
Future federation execution management tools should 
provide more simulation related performance 
monitoring capabilities. For example: trend lines, 
snapshots and averages for e.g. federate busy and idle 
times, federate network related processing, federate 
simulation speed and federate object attribute values. It 
has to be investigated whether it is desirable to extend 
the MOM to provide more inside RTI information. 
 
With current federation execution management tools 
state control logic is usually coded in a programming 
language like Java (Exercise Controller) or Python 
(Pitch Commander). Future federation execution 

management tools should support a common document 
format for the specification and exchange of state 
diagrams for federation state control. It is 
recommended to research the application of State Chart 
XML (SCXML) from the W3C [8] as a possible 
candidate. Reference [9] discusses the application of 
SCXML for state control design patterns and 
demonstrates an HLA Execution Manager federate that 
is capable of executing SCXML. 
 
Future federation execution management tools should 
provide support for resuming a long duration (Monte 
Carlo) simulation from an earlier “save point” in case 
of interruption. 
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