
Execution Management Solutions for Geographically Distributed Simulations

T.W. van den Berg

H.G.M. Janssen
R.E.J. Jansen

L.M. Prins
TNO Defence, Security and Safety

PO Box 96864,
2509JG The Hague, The Netherlands

tom.vandenberg@tno.nl, henk.janssen@tno.nl, roger.jansen@tno.nl, louwrens.prins@tno.nl

Keywords:
Execution Management, Federation Management, Scenario Management, HLA.

ABSTRACT: Managing the initialization, execution control and monitoring of HLA federates is not always
straightforward, especially for a geographically distributed time managed federation. Issues include pre and post run-
time data distribution and run-time data collection; starting, stopping and monitoring each federate application from
a single point of control; the sheer amount of data collected during a session; software and network stability when
performing long lasting, uninterrupted sessions, such as for Monte Carlo simulation; network latency and time
synchronization; execution control functions - in particular legacy applications may not support all required
functions.
One recent project is used as example to study in more detail how these Execution Management issues are solved. The
project SIGDM&S establishes a geographically distributed HLA federation for the analysis of maritime missile
defense scenarios using Monte Carlo simulation. This paper provides an overview of the Execution Management
issues, the solutions provided, lessons learned and recommendations for improvements in the area of execution
management.

1. Introduction
Managing the initialization, execution control and
monitoring of HLA federates is not always
straightforward, especially for a geographically
distributed time managed federation. Issues include pre
and post run-time data distribution and run-time data
collection; starting, stopping and monitoring each
federate application from a single point of control; the
sheer amount of data collected during a session;
software and network stability when performing long
lasting, uninterrupted sessions, such as for Monte Carlo
simulation; network latency and time synchronization;
execution control functions - in particular legacy
applications may not support all required functions and
require adaptations.

The availability of robust and reliable tools that support
the user in managing a geographically distributed HLA
federation is critical to the success of experimentation
and analysis. These tools must support a high degree of
automation in order to prevent the execution of
otherwise manual tasks as repeatedly starting and
stopping federate applications during a Monte Carlo
simulation, collecting log files and monitoring
progress.

In 2007 an international project was initiated between
the United States, Canada, Australia, Germany and The
Netherlands with the objective to establish a
Simulation Architecture for the evaluation of future
maritime Battle Management Command, Control,
Communication & Computing Information (BMC4I)
architectures. This project was named “Secure
International Geographically Distributed Modeling and
Simulation” (SIGDM&S). Due to the fact that most of
the national simulation models within the participating
countries are restricted for release, a geographically
distributed HLA based simulation has been developed
for the performance analysis of maritime missile
defense Command & Control Architectures and
systems. Through stochastic (Monte Carlo) simulation
the behavior of a complex system can be explored by
using random samples of parameters or inputs.

This paper provides an overview of the project and
execution management solution used. The paper is
structured as follows:
• Chapter 2 provides an overview of the project,

including the background and HLA federation
architecture.

• Next, chapter 3 discusses the concept of execution
management; what do we mean with federation
execution management?

• Chapter 4 discusses the federation execution
management solution that was applied and the
lessons learned.

• Finally, chapter 5 summarizes the conclusions and
provides some recommendations for
improvements in the area of execution
management tools.

2. SIGDM&S

2.1 Overview
In 1999 a Maritime Theater Missile Defense Forum
was established as an informal gathering of United
States, German and Netherlands Naval Flag Officers to
identify areas of common interest in Ballistic Missile
Defense and associated programs. This forum has now
evolved to eight nation participation (the United States,
Canada, Australia, Germany, The Netherlands, United
Kingdom, Spain and Italy), with the key focus on
coalition interoperability between the maritime
platforms of the participating nations. The Forum’s
imperative provides protection against the proliferation
of short, medium and long-range Ballistic Missiles,
Advanced Anti-Ship Cruise Missiles threats through
the creation of an interoperable sea-based defense
capability among coalition nations. The Forum’s
Coalition Maritime forces will provide protection
across the full spectrum of these threats, utilizing

existing interoperable sea-based systems to protect
against current threats while progressively improving
and developing systems and system-of-systems to
remain effective against evolving threats. Especially
the use of distributed network centric architectures can
multiply the capabilities of the coalition forces. Within
these architectures, the Maritime forces exchange
information to achieve situational awareness, threat
evaluation, weapon assignment and target engagement
at the force level.
In developing these distributed network centric
architectures, Modeling and Simulation is of vital
importance for testing, evaluating and performing
assessment of proposed future architectures in an early
stage of development. Therefore, the Forum
established the Modeling and Simulation Working
Group. A key objective of this Working Group is to
cooperatively develop, demonstrate and maintain a
comprehensive distributed modeling and simulation
framework for the benefit of supporting concept
development, design, analysis, evaluation and testing
of the envisioned network centric architectures.
As a first initiative a proof of concept was defined that
establishes an internationally distributed simulation to
be extended by additional capabilities in later
increments. The simulation had to be geographically
distributed in order to permit the execution of national
(proprietary) models in a multi-national geographically
distributed simulation. Figure 1 shows the geographical
location of the selected HLA federates in the
simulation.

Figure 1: Locations of the selected HLA federates in the simulation.

2.2 Defended Footprint Analysis
The initial capability and proof of concept established a
geographically distributed HLA federation with the
purpose to perform a defended footprint analysis
(DFA) for a single ship-interceptor-TBM scenario.
DFA determines the regions that a ship can defend
against TBM attacks launched from a specified launch
area. The analysis involves a stochastic (Monte Carlo)
simulation where the ship position is varied over a pre
determined set of grid points in the defended area (see
Figure 2). For each grid point multiple Monte Carlo
runs are performed, using random perturbations in
some of the parameters of the simulated systems. The
outcome of the simulation shows amongst others the
performance of the sensor system and provides the ship
positions that provide best defense in the given
scenario.

Figure 2: Defended footprint. In green the TBM
trajectory, in blue the grid points (mirrored across
the trajectory).

For DFA, repeatability is a highly desirable
characteristic. This allows unexpected or unusual
analysis results to be investigated in greater detail to
explain the underlying phenomenon. Repeatability
requires a conservative time management strategy in
which federates are both regulating (can control
federation time advance) and constrained (wait for
federation time advance) and interactions are time
stamped. Conservative time management generally
results in slower execution times.

2.3 Federation Architecture
The federation architecture is shown in Figure 3 and
the geographical distribution of the selected federates is
shown in Figure 1. The architecture consists of two
connected HLA federations: a Maritime Theater
Missile Defence (MTMD) Federation and a Local Ship
Federation. Below follows a brief description of the

HLA federates in each federation and the HLA Run
Time Infrastructure (RTI).

Local Ship Federation (Hengelo, NLD)
The local ship federation consists of federates,
representing the behavior of several ship subsystems (a
long range radar surveillance system, radar tracking
system, combat management system and ship platform
representation) which communicate with each other
through the HLA Run Time Infrastructure. The weapon
control system is logically part of the ship, but this
system is modeled in a separate federate in the MTMD
federation (see weapon federate).

Ship Federation Manager Federate (Hengelo, NLD)
This federate is used to bridge the geographically
distributed MTMD federation and the local ship
federation. This bridge allows the use of distinct sub
federations (with different FOMs), which minimizes
changes to existing federates and hence facilitates
model reuse and which enables data shielding.

Weapon Federate (Virginia Beach, USA)
The weapon federate consists of a number of
components. For various historical reasons these
components have been assembled in a single federate
application, but can be viewed as individual federates.
The components are:
• The threat generator is a component that simulates

a Tactical Ballistic Missile threat. The position of
the threat is sensed by the ship’s search radar,
which will publish the position of the threat as a
track for use by the weapon control system.

• The weapon control system is logically part of the
ship, simulated by the local ship federation. It
receives track information from the ship’s onboard
sensors and controls the interceptor with amongst
others launch commands and guidance
information.

• The interceptor simulates a ‘generic’ interceptor
possessing the following characteristics: a booster,
mid-flight guidance, and terminal IR homing
phase.

Exercise Controller Federate (The Hague, NLD)
The Exercise Controller is a federate that controls the
state transitions in the federation and coordinates the
various Monte Carlo runs for each grid point. It has a
graphical user interface to load a scenario file, adapt
some scenario parameters, start and stop the
simulation, and to monitor the current federation state.

Logger Federate (Halifax, CAN)
A data logger federate was developed that saves data in
both an XML format and a format usable by the 3D
viewer, SIMDIS. Both files are packaged by the logger

0 200 400 600 800 1000 1200 1400
-400

-300

-200

-100

0

100

200

300

400

Downrange [km]

C
ro

ss
ra

ng
e

[k
m

]

federate into a single compressed binary file. The 3D
Viewer (not an HLA federate by itself) can connect on
line to the data logger to visualize the data that is
currently processed by the data logger.

3D Viewer (Halifax, CAN)
The 3D viewer is based on SIMDIS from the US Naval
Research Labs. The 3D viewer can act as both an off
line and an on line viewer. As off line viewer it
visualizes the data as previously recorded by the data
logger. As on line viewer it connects (from any
geographical location) to the data logger and visualizes
the data as it is currently processed by the data logger.
Platforms are represented by a 3D visual representation
of the real-life hardware. Missiles and threats are
likewise represented in 3D. SIMDIS provides
situational awareness of the unfolding simulation
within a visual environment.

Test Federates
A suite of “Mock” test federates was developed to
provide low fidelity implementations of the behaviors
defined for the real federates. The test federates act and
react the same as the real federates with respect to the
FOM objects and interactions and HLA services. These
test federates were used as substitutes for the real
federates while each site was independently developing
their own deliverable federates. This was advantageous
since the development of each federate was therefore
much less dependent on the progress of the
development of the other federates. Also, while some
real models were not allowed to be released to other
participating countries, the test federates made local
testing possible at each site.

Run Time Infrastructure
The Run Time Infrastructure (RTI) is provided by the
TNO-RTI. This RTI is a mixed mode RTI and supports

both IEEE 1516 and HLA 1.3 compliant federates in
the same federation without additional tools. Note that
only the Weapon federate is still HLA 1.3. The TNO-
RTI is a partial RTI implementation but provides all of
the required RTI services for both the MTMD
federation as well as the local ship federation.

3. What is Federation Execution
Management?
There is no single agreed definition of “Federation
Execution Management”, but generally it covers both
the topics “federation management” and “scenario
management”.

Federation management is about the creation, control,
modification and deletion of the federation execution
as defined in the HLA Federate Interface Specification
[1], as well as the tasks to configure, start, monitor and
stop federate applications, to distribute pre run time
data and to collect post run time data. Therefore,
federation management includes more than just HLA
federation management.

For scenario management we use the statement from
the paper on Scenario Management - Common Design
Principles and Data Interchange Formats [2]. Scenario
management covers “All tasks associated with
development and execution of a scenario including
scenario development, initialization, modification and
execution control.” The execution of a scenario
concerns for example the tasks to start, pause, resume
and stop a scenario, to request the creation and deletion
of object instances and to provide initial values for
object instances.

A summary of the federation execution management
tasks is as follows:
• Start and stop of applications

 Local Ship Federation

Search
Sensor

Combat
Management

System

Ship

Platform

Data

Logger

3D

Viewer

Exercise

Controller

Test

Federates

Weapon
(Threat Generator, Interceptor,

Weapon Control System)

Tracking
Sensor

 MTMD Federation

Ship

Federation
Manager

Figure 3: Federation Architecture.

• Monitoring of applications
• Configuration of applications
• Data distribution and collection
• Network monitoring
• Performance monitoring
• Creation and deletion of federation execution
• State control using synchronization points and

save and restore points
• Scenario initialization (i.e. create, modify and

delete object instances, provide initial values)
• Scenario control (i.e. start, pause, resume, stop,

distribute control information such as scenario
name, run number and seed values)

When looking at federation execution management
then the tasks related to the development of a scenario
are not relevant. These tasks are usually performed
before the federation is executed. Therefore we only
consider the tasks scenario initialization and scenario
control. Also tasks related to federation deployment
and (re)booting of systems are not considered to be part
of federation execution management in this paper.

4. Federation Execution Management
Solution

4.1 Introduction
From federation execution management point of view
the objective is to support a federation that amongst
others:
• Executes over a WAN, with geographically

distributed federates.
• Executes at least 48 hours (uninterrupted) with

hundreds of Monte Carlo runs.
• Executes unattended.
• Produces a log file for each Monte Carlo run.
• Requires scenario initialization data for each

Monte Carlo run.

The execution management tasks have been allocated
to the following components:

Task: Allocated to:
1. Start and stop of

applications
Pitch Commander

2. Monitoring of
applications

Pitch Commander

3. Configuration of
applications

Pitch Commander

4. Data distribution and
collection

Pitch Commander,
FTP client and server

5. Network monitoring Various network tools
6. Performance monitoring TNO-RTI, MS Excel
7. Creation and deletion of

federation execution
Exercise Controller

8. State control Exercise Controller
9. Scenario initialization Exercise Controller
10. Scenario control Exercise Controller

Where the components are:
• Exercise Controller: an HLA federate to control

the federation state as it progresses through the
various Monte Carlo runs and to provide scenario
data to other federates.

• Pitch Commander: a commercial off the shelf
application to distribute and collect data and to
start, monitor and stop federate applications. See
[3].

• Various network tools: both commercial and open
source tools to monitor network usage.

• FTP client and server: off the shelf FTP server and
client for file transfer.

• TNO-RTI: an RTI implementation from TNO (see
chapter 2.3, Federation Architecture) including
functionality to collect performance data for off-
line monitoring.

• MS Excel: Microsoft Excel for producing trend
charts from data collected by the TNO-RTI.

These components are described in more detail in the
next chapter as part of the solution description.

4.2 Solution
This chapter discusses the solution applied for each
federation execution management task.

1. Start and stop of applications
The start and stop of federate applications is managed
with Pitch Commander [3]. Pitch Commander consists
of a Commander application and a number of so called
Agent applications. An Agent is installed on each host
that runs a federate and controls on behalf of the
Commander the startup, monitoring and shutdown of
the local federate. The Agent also provides the status of
the federate and its host computer to the central
Commander.

Figure 4: Start and stop with Pitch Commander.

Each federate supplier provided start and stop (Linux)
shell scripts or (Windows) bat files for their federate.
These scripts or bat files are invoked by the Agent on
behalf of the central Commander. The start and stop of
all federate applications in the federation was also

Host X

Pitch
Agent

Federate
X

Host C

Pitch
Commander

start, stop

automated using a single (Python) script that was
executed from the Commander scripting environment.
Figure 4 illustrates the functioning.

2. Monitoring of applications
Pitch Commander provides a number of basic monitors
to monitor for example CPU load, memory usage, disk
usage and network statistics per host computer. It is
also possible to monitor whether an application is
running or has been stopped.

3. Configuration of applications
The start and stop of a federate application on a host is
managed by the local Pitch Agent. Each federate
supplier has defined in the Agent the available actions
to start or stop their application. Each action is
associated with a script or bat file to start or stop the
application, including any configuration settings for the
application.

The Agent actions are invoked by the central
Commander. Thus by invoking different Agent actions
from the Commander the appropriate federate
configuration can be started.

4. Data distribution and collection
Pitch Commander provides File Transfer functionality
to transfer files between a host that runs the Pitch
Agent and the host that runs the Pitch Commander. A
transfer from one or more hosts to the central
Commander is called “collect”. A transfer from the
central Commander to one or more hosts is called
“deploy”.

This File Transfer functionality was initially used to
automatically collect the log files from the Data Logger
federate after the completion of all Monte Carlo runs
and transfer these files to the central Commander. With
this solution the complete process of starting the
federation execution, performing the federation
execution, stopping the federation execution and
collecting the log files was automated.

However, the amount of data generated by the
simulation was large and data collection over a wide
area network took much time while waiting for the next
federation execution. Therefore, the solution of
automatic data collection was abandoned. Log files
were manually placed on an FTP site at a convenient
point in time. An FTP client was used to collect these
files.

5. Network monitoring
Network monitoring was provided by What’s Up Gold
[4]. This (commercial) application provided continuous
monitoring of network connectivity and visual maps
for quick recognition of potential network problems.
Figure 5 provides an example of an imaginary network.

The open source software iperf [5] was utilized to
determine and measure actual bandwidth under load
conditions. These measurements were conducted prior
to and between federation executions to minimize
interference and provide representative values of
available bandwidth.

MTUroute [6] was a freeware application utilized to
verify that the correct Maximum Transmission Unit
(MTU) values were properly configured in encryption
devices and protocol stacks on host computers. MTU is
the size (in bytes) of the largest packet or frame that a
layer of a communications protocol can pass onwards.

Figure 5: A Whatsupgold network map (see [4]).

6. Performance monitoring
For this project a rather detailed analysis of the
federation performance was desired. We wanted to
know the simulation speed over time and what amount
of time each federate was spending on its main task or
on waiting due to HLA time management constraints.
Also it was interesting which part of this waiting time
was caused by the communication network. Using the
Management Object Model (MOM) [7] this kind of
detailed information cannot be gathered. Moreover, if it
could be gathered using the MOM it would result in
additional network traffic as more messages need to be
passed around. Additional on-line (during execution)
and off-line (after execution) monitors are needed for
the data that is maintained inside the RTI itself.

TAG TAR

TAG

CBs

TAG

TAR

TAR

TAG TAR

TAG

CBs

TAG

TAR

TAR

Federate

LRC

Network

CRC

Federate Call Back latency
Federate Time Advance latency

Network latency

CRC Time
Advance latencytime

Figure 6: General time advancement pattern for the federate.

To enable this kind of “inside” RTI monitoring a
federation performance model was constructed with the
key parameters to be measured by the RTI. The TNO-
RTI was adapted to collect this data for off-line
monitoring.

The performance model is explained in Figure 6. This
figure shows the general time advancement pattern for
the simulation execution. The figure shows a timeline
for the major components in the federation, the
processing by each component (shown as a grey block)
and the messages that are exchanged between the
components (shown by a vertical arrow).

The components are:
• Federate: this is either the Weapon federate, the

Ship Federation Manager federate, or the Logger
federate.

• CRC: this is the Central RTI Component that
manages, amongst other centralized HLA services,
the simulation time in a federation. This
component is deployed at the host that also runs
the Exercise Controller.

• LRC: this is the Local RTI Component that is
directly linked with the federate software on each
host that runs a federate. Federates use the LRC to
communicate amongst each other and to
communicate with the CRC.

• Network: this represents the various hardware and
software parts that make up the physical network
(this includes the network protocol stack on each
host, routers, cryptos, and RTI parts for handling
messages to and from the LRC).

The CRC calculates if and when a Time Advance
Grant (TAG) is allowed for each federate. If the LRC
receives a TAG from the CRC, then the LRC first
delivers all messages as call backs (CBs) to the

federate according to the HLA Time Management
rules, prior to delivering the TAG to the federate. On
its turn the federate issues a Time Advance Request
(TAR) to request the advancement of simulation time.

Figure 6 does not show the case where the LRC can
locally grant a TAR from the federate. For example,
when a federate requests time advances that are smaller
than all the other federates, then some of these requests
can be granted locally without permission from the
CRC. This optimization decreases latency times for all
federates. For a local TAG the time advance latency is
assumed zero. Local grants are taken into account in
the RTI measurements.

Using this performance model we were able to monitor
per individual federate the fraction of time spent on
simulation related processing (busy ratio) and network
related processing (network ratio).

To determine the busy ratio of a federate for the whole
federation execution the following formula is applied:

Busy ratio =

1 – (Total Federate Call Back latency
/ Effective Federate Execution Time)

Where the Effective federate execution time is the
total wall clock time that the federate is in the simulate
state.

To determine the network ratio of a federate for the
whole federation execution the following formula is
applied:

Network ratio =

Total Network latency /
Effective Federate Execution Time

Where the Total Network latency is defined as:

Total Network latency =

Total Federate Call Back latency –
Total CRC Time Advance latency

LRC processing time is neglected in the calculation of
the network ratio as it is relatively small with respect to
federate processing time.

Using the same data we were also able to monitor both
the simulation speed and the simulation time over time
for each federate. Figure 7 shows for example the
simulation speed over time for a federate with in red
the moving average with a period of 10. Figure 8
shows the progress of simulation time over time.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 100 200 300 400 500 600

Realtime (s)

Si
m

tim
e

/ R
ea

lti
m

e

Figure 7: The simulation speed over time for a
federate.

Simulation speed is defined as the ratio of simulation
time and real time. In stochastic simulation the
simulation speed is not constant but varies over the
course of the execution (as opposed to real time
simulation, where the speed is around ‘1’).

0

50

100

150

200

250

300

0 100 200 300 400 500 600

Realtime (s)

Si
m

tim
e

Figure 8: The simulation time over time for a
federate.

7. Creation and deletion of federation execution
The federation execution is created by the first federate
to start, in this case the Exercise Controller. With the
federation configuration used in this project the Central
RTI Component (CRC) was run on the same host that

runs the Exercise Controller (location The Hague, The
Netherlands).

8. State control
A dedicated Exercise Controller was developed to
control the state transitions in the federation. One of
the reasons for a dedicated application was that the
scripting environment of Pitch Commander did not
support the handling of RTI callbacks, such as the
receipt of HLA interactions.

The Exercise Controller initiated the transitions
between states using HLA synchronization points and
HLA save and restore. The state transition diagram is
shown in Figure 9. The transition triggers and guards
have been left out of the diagram for simplification.
The state diagram shows two (nested) loops: one loop
to go through all grid points and one loop to go through
all runs for a given grid point. The state diagram is for
illustration purpose only and is not further described.

stm State Diagram

Preliminaries

Initialise

Discov er Local Objects

Discov er Remote
Objects

Sav e

Reset

Suspended Local Sav e

Suspended

Restore

Suspended

Simulate

SuspendedShutdown

Resign

Initial

Final

[next run]

[next GP]

Figure 9: Exercise Controller state diagram.

The Exercise Controller has a GUI to start and stop the
simulation and to display the amount of wall clock time
spent on each Monte Carlo run and each grid point.

The remaining federates (Weapon, Ship Federation
Manager and Data Logger) are execution managed
federates and receive the state transition requests from
the Exercise Controller via the HLA Federation
Management services.

9. Scenario initialization
Scenario initialization is completely managed from the
Exercise Controller by sending HLA interactions. No
scenario initialization data is distributed pre-run time to
the federate applications.

The scenario initialization data is specified in an XML
scenario file that is only read by the Exercise
Controller. Amongst others this file specifies the
entities (i.e. ship, interceptor and TBM), their initial
position and the TBM launch times. The Exercise
Controller uses HLA interactions to:
• request the creation of an entity,
• set the initial position of an entity and
• set the launch time of a TBM.

10. Scenario control
Like scenario initialization discussed above also
scenario control is fully managed by the Exercise
Controller. Amongst others the following data is
specified in the XML scenario file: the size of the
defended footprint (in terms of grid points), the number
of runs per grid point, the initial state of the random
number generator and the execution mode (run or
replay).

Depending on the execution state (see earlier
discussion on state diagram) the Exercise Controller
sends an HLA interaction to indicate to other federates:
• the mode of execution,
• the initial state of the random number generator,
• the current grid point and run number and
• the end of a range of grid points.

4.3 Lessons Learned
This chapter lists some of the lessons learned with
respect to the solution applied.

1. Start and stop of applications
The “black box” approach of using a Pitch Agent
provided a flexible solution to start and stop individual
federates at any time, without the involvement of
remote operators in a different time zone and physical
location.

2. Network monitoring
Network latency is the dominating parameter in overall
federation execution time. For the network, hardware
and software configuration chosen for this project, the
execution time of the distributed federation is estimated
to be twice the execution time of the federation running
co-located on a LAN.

3. Performance monitoring
The additional monitors for federation performance
provided essential insight in federate busy and idle
times and network related processing. This kind of
information is generally needed for tuning federation
performance during federation development.

4. Creation and deletion of federation execution
The performance of the HLA time management
services depend very much on where the CRC is
running. Since the time advancements characteristics of
all federates, the network latency and the way how
time management is implemented by the RTI all have
influence on the overall performance, it is
recommended to investigate the best location of the
CRC for a particular federation. Performance
monitoring tools are an important asset for this.

As we have two federations (MTMD and Local Ship),
it would be better that the Ship Federation Manager
federate could connect to two different CRCs. In this
case, a CRC running on a host at Hengelo for the Local
Ship federation and a CRC running on a host in the
USA for the MTMD federation would be optimal in
terms of reducing latency times according to our
performance analysis.

The CRC of the TNO-RTI creates for each federation
execution an application called ‘fedex’ that coordinates
amongst others the time advancements in a federation
execution. So another solution could be that the CRC
can be configured manually or even determines
automatically where to run the fedex application for
optimal performance results.

5. State control
During the development of the Exercise Controller it
was noted that the management of the execution state
diagram can be generalized using a recent development
briefly described below. Due to time constraints
however a more project specific approach was
followed.

A recent development that will certainly benefit the
development of a “generic” Exercise Controller is that
of State Chart XML (SCXML) of the W3C [8].
SCXML is an XML based markup language for the
definition of state machines. Such a generic Exercise

Controller can have as input an SCXML file that
specifies the state diagram along with the triggers,
conditions and actions it has to perform on each state
transition. Actions are for example the initiation of an
HLA Save or Restore, or the registration of a
synchronization point.

6. Scenario initialization and control
For this project the scenario was relatively simple and
the (proprietary) XML scenario file was created
manually. For a more complex scenario a graphical
(2D map) scenario editor to generate the required XML
scenario file would be desirable and recommended.
Also the use of MSDL as scenario file format should
be studied.

7. General
Central federation execution management capable of
controlling the state of each federate proved to be
efficient for distributed federations at locations having
different time zones. However, voice communication
remains necessary, despite the high degree of
automation of federation execution management.

5. Conclusions
This chapter summarizes the conclusions for federation
execution management.

In the SIGDM&S project a plurality of “point tools”
was used for federation execution management, for
various technical reasons. A conclusion from this
project is that the need remains for a more integrated
solution for all federation execution management tasks.
For example network, host, federation and federate
monitoring should be more integrated. Pitch
Commander provided a number of capabilities as first
steps to this integrated solution.

During federation development and execution often
detailed monitoring information is required to
understand the behavior of the federation with respect
to time. Current federation execution management
tools do not provide these monitoring capabilities.
Future federation execution management tools should
provide more simulation related performance
monitoring capabilities. For example: trend lines,
snapshots and averages for e.g. federate busy and idle
times, federate network related processing, federate
simulation speed and federate object attribute values. It
has to be investigated whether it is desirable to extend
the MOM to provide more inside RTI information.

With current federation execution management tools
state control logic is usually coded in a programming
language like Java (Exercise Controller) or Python
(Pitch Commander). Future federation execution

management tools should support a common document
format for the specification and exchange of state
diagrams for federation state control. It is
recommended to research the application of State Chart
XML (SCXML) from the W3C [8] as a possible
candidate. Reference [9] discusses the application of
SCXML for state control design patterns and
demonstrates an HLA Execution Manager federate that
is capable of executing SCXML.

Future federation execution management tools should
provide support for resuming a long duration (Monte
Carlo) simulation from an earlier “save point” in case
of interruption.

6. References

[1] IEEE Std 1516.1-2000, IEEE Standard for

Modeling and Simulation (M&S), High Level
Architecture (HLA), Federate Interface
Specification.

[2] Björn Löfstrand, et al: Scenario Management –
Common Design Principles and Data Interchange
Formats; Simulation Interoperability Workshop
(04E-SIW-070); 2004.

[3] Pitch Commander: http://www.pitch.se.
[4] Whats Up Gold: http://www.whatsupgold.com.
[5] Iperf: http://iperf.sourceforge.net.
[6] MTUroute: http://www.elifulkerson.com/projects.
[7] IEEE Std 1516.2-2000, IEEE Standard for

Modeling and Simulation (M&S) High Level
Architecture (HLA). Object Model Template
(OMT) Specification, March 2001.

[8] W3C SCXML: http://www.w3.org/TR/scxml.
[9] T.W. van den Berg, et al: Design Patterns for and

Automation of Federation State Control;
Simulation Interoperability Workshop (09S-SIW-
009); 2009.

Author Biographies

TOM VAN DEN BERG is scientist in the M&S
department at TNO Defence, Security and Safety, The
Netherlands. He holds an M.Sc. degree in Mathematics
and Computing Science from Delft Technical
University. His research area includes distributed
processing and simulation systems, software
architectures and software process improvement.

HENK JANSSEN is Senior Project Manager in the
M&S Department at TNO Defence, Security and
Safety in the Netherlands. He holds a M.Sc. degree in
Aerospace Engineering, and has to date more than 20
years experience on the Modelling and Simulation of
complex weapon systems, distributed simulation
systems and simulation development process
improvement.

ROGER JANSEN is a member of the scientific staff
in the M&S department at TNO Defence, Security and
Safety in the Netherlands. He holds an M.Sc. degree in
Computing Science and a Master of Technological
Design (MTD) degree in Software Technology, both
from Eindhoven University of Technology, The
Netherlands. He works in the field of distributed
simulation and his research interests include distributed
computing and simulation interoperability.

LOUWRENS PRINS is a member of the scientific
staff in the M&S department at TNO Defence, Security
and Safety in the Netherlands; has a Bachelor of
Science degree and works in the field of software
engineering for various projects since 1998.

