
Design Patterns for and Automation of Federation State Control

T.W. van den Berg

R.E.J. Jansen
TNO Defence, Security and Safety

PO Box 96864,
2509JG The Hague, The Netherlands

tom.vandenberg@tno.nl, roger.jansen@tno.nl

H. Ufer
IABG
VG14

Schießplatz (Gebäude 170)
PO Box 17 64

D-49707 Meppen, Germany
ufer@iabg.de

Keywords:

State Control, Design patterns, Federation Agreements, XML, HLA.

ABSTRACT: The suitability of or choice for a particular design pattern for federation execution state control
depends on several factors, such as the degree in which legacy applications can support particular patterns and the
complexity of the federation. For small federations that involve only a handful of federates that execute at one
location, it may be sufficient to use manual control of the applications and document all necessary procedures in a
Federation Agreements document, whereas a complex federation executing on a wide area network can find many
benefits in using automated execution state control.
Standaridisation of design patterns for federation execution state control will promote re-use of federates in different
federation configurations. And formalisation of these design patterns using available standards will enable a certain
degree of automation of execution state control, independent of the federation.
This paper describes the functions of Federation Management, in particular execution state control, and provides an
overview of a number of commonly found execution state control patterns. It introduces the W3C State Chart XML
(SCXML) as state machine notation and demonstrates its use in the automation of federation execution state control
using available open source software from the Apache Commons project.

1. Introduction
The concept of design pattern originates from
Christopher Alexander back in 1977. In [1] he
describes: "Each pattern describes a problem which
occurs over and over again in our environment, and
then describes the core of the solution to that problem,
in such a way that you can use this solution a million
times over, without ever doing it the same way twice".
Erich Gamma et al applied the concept to software and
published in 1995 the book “Design patterns: Elements
of Reusable Object-Oriented Software” [2]. This book
describes what design patterns are by providing
amongst others standard elements associated with
patterns and many examples.

The concept of design pattern can also be applied to
execution state control for an HLA federation. Typical
design issues like federation initialization and

termination; start, stop, pause and resume; iteration;
replay; etc; appear over and over in every HLA
federation. The identification of common state control
design patterns will benefit federate developers and
further stimulate the reuse of federates in different
federation configurations.

State and activity diagrams are common practice for
modelling the behavior and functions of a system and
are a logical way to express execution state control
design patterns. With the widespread use of the Unified
Modeling Language (UML) also the use of Harel
statecharts has increased. Harel statecharts are in effect
state diagrams, extended with the notion of hierarchy,
concurrency and communication [3], [4]. A recent
development is that of SCXML (State Chart XML) of
the W3C [5]. SCXML is an XML [6] based markup
language for the definition of state machines. The

language is based on Harel statecharts and UML and it
supports execution by a so called execution
environment. Although SCXML is still a working draft
it appears to be a suitable candidate for state machine
representation and automated execution for federation
state control.

A Community of Practice on Federation Architecture
and Design established in the frame of the Technical
Activity Program MSG-052 of the NATO Modelling
and Simulation Group (NMSG) has elaborated and
published proposals for common execution state
control patterns for (geographically) distributed
simulations [12]. The suitability of these proposals is
presently being investigated in an experimentation
program of the NMSG Technical Activity Program
MSG-068 (NATO Education and Training Network
(NETN)). The experiences gained in these experiments
will form the basis for recommendations pertaining to
federation execution control in the NETN Federation
Agreement documents (FADs). The authors of this
paper are members of both MSG-052 and MSG-068.

The remainder of this paper is structured as follows:
• First follows in chapter 2 a brief introduction into

the basics of state and activity diagrams.
• Chapter 3 defines the general structure of an HLA

federation explaining the role of the Execution
Manager federate and Participating federates.

• Chapter 4 discusses a proposed template for a state
control pattern for the Participating federates.

• Chapter 5 describes a number of state control
patterns for the Execution Manager federate.

• Chapter 6 introduces the W3C State Chart XML as
state machine notation for state control patterns.

• Chapter 7 describes an Execution Manager
federate that is capable to execute SCXML and
that is constructed with open source software
components.

• Finally, chapter 8 summarizes the conclusions and
further developments.

2. State Diagrams and Activity Diagrams
Many readers will be familiar with state diagrams for
modeling the behavior of a system and activity
diagrams for modeling the functions or capabilities of a
system and how these two diagrams are related. This
chapter briefly describes the most important elements
of these diagrams in order to provide the reader enough
information to understand the state control patterns
described later in this paper.

2.1 State Diagrams
Figure 1 shows a simple state diagram: a composite
state A that is decomposed in two sub states, named

state 1 and state 2. In this example state 1 is the initial
state and state 2 is the final state of the state machine.
A transition from state 1 to state 2 is initiated by an
event, called ‘trigger’ (in MSG-052 terminology State
Transition Request (STR)), under the condition that the
‘guard’ evaluates to ‘true’. A description of the effect
of a transition is shown behind the forward slash.

stm Example A

State A

State1

State2 Final

Initial
Trigger [Guard] /Effect

Figure 1: A state transition.

The states shown in Figure 1 are so called “or-states”,
that is, the system is in exactly one of the shown states.
States can also be “and-states”, that is, a system can be
in multiple states at the same time. Figure 2 shows the
notation for and-states. State B is split in two regions
by a dashed line and each region contains a state
diagram consisting of or-states. The system is both in a
state from region B1 as in a state from region B2. And-
states are also called “concurrent states”.

stm Example B

State B

[Region B1]

[Region B2]

State3

State4

Initial

Initial

Final

Final

Figure 2: Concurrent states.

Pseudo states are an abstraction for various types of
transitions used in state diagrams, the most common
ones being the initial state and the final state. Another
pseudo state is called ‘junction’. A junction can be
used to split a transition into multiple transitions, each
with possible guards, as shown in Figure 3.

stm Example C

State C

State5

State6

State7
Junction

[x >= 0]

[x < 0]

Figure 3: Pseudo state: junction.

2.2 Activity Diagrams
A trigger in a state diagram may imply certain
activities to accomplish the desired effect. For each
trigger there may be a related activity diagram. The
name of the effect in the state diagram corresponds to
the name of the activity in the activity diagram.
In the state control patterns described later in this paper
each activity (i.e. effect of a transition) is named as
“DoName”. An activity may consist of sub activities or
actions, where an action is a basic functional unit of
work and cannot be further subdivided. Figure 4
provides an example where on the transition from state
8 to state 9 the activity “DoSomething” is performed.
The activity is shown in Figure 5 and consists of two
actions.

stm Example D

State D

Sta te8 Sta te9

anEvent
/DoSomething

Figure 4: State diagram with reference to activity.

act Example D

DoSomething

Action1 Action2

Init ial Fin al

Figure 5: Activity referenced from state diagram.

3. Federation Structure
Before we describe the state control patterns in the next
two chapters we first define in Figure 6 the general
structure of an HLA federation. We assume that the

execution management functions are centralized;
distributed execution management is not in the scope
of this paper. Consequently, a federation consists of an
Execution Manager (EM) federate and one or more
participating federates, interconnected via the Run
Time Infrastructure (RTI).

cmp Federation Structure

Run Time Infrastructure

Participating
Fede rate 1

Participating
Federate N

Exec ution
Manager Federate

Figure 6: Federation structure.

The EM federate controls the federation execution. It
initiates the transitions between states using the HLA
Federation Management services (synchronization
points and save/restore points) and Simulation
Management interactions. The EM federate may have a
GUI to initiate certain execution management events,
such as start or stop the simulation. The participating
federates are so called execution managed federates.
They are controlled by the EM federate and receive
state transition requests via the HLA Federation
Management services or as FOM specific Simulation
Management interactions. They perform the actions as
required for each state.

To implement a state control pattern the following
components should be in place:
• Federation Agreements that refer to the agreed

state control pattern, describe the triggers,
conditions and related activities of relevance to
federation execution control;

• An EM federate that controls the federation
execution according to the execution management
state control pattern;

• Participating federates that are controlled by the
EM federate and execute according to the
participating federate state control pattern.

4. Participating Federate State Control
Pattern
One of the outcomes of MSG-052 is a proposed
template for a state control pattern for participating
federates as discussed in this chapter. This pattern is
expected to cover a large set of federate applications.
However it is recognized that additional patterns may

be required for certain application areas, such as for
stochastic simulation, as discussed in chapter 5.

stm State Diagram

Joined

Not joined

Ready To Initialize

Initialized

Initial

Started Paused

Stopped

Final

Ready To Join

Final

Resign [Resign Allowed] /DoResign

Pause /DoPauseStart /DoStart

Resume /DoResume

Stop /DoStop

Initialize
/DoInitialization

Stop /DoStop

Pause /DoPause

Reset
/DoReset

Kil l Federate Application Process /DoKill

Join /DoJoin

Terminate Federate
Application Process
/DoTerminate

Create Federate
Application Process
/DoCreate

Figure 7: Participating federate state control
pattern.

The states are defined as follows:

• Not Joined: In this major state, the application is

not a member of the federation execution.

• Ready To Join: The application completed some

internal set-up actions and is now ready to join the
federation execution.

• Joined: In this major state, the application is a

member of the federation execution.

• Ready To Initialize: The federate is neither time

regulating nor time constrained, it has neither
published nor subscribed any object or interaction
class.

• Initialized: The federate may be time regulating

and time constrained, it has completed its initial
publications and subscriptions, it has registered its
initial objects, it has sent initial attribute values for

all registered objects, it has discovered all initial
object instances from other federates and it has
received all initial attribute value updates.

• Started: The federate is advancing simulation

time.

• Paused: The federate does not advance in

simulation time. The federate must be able to
return to the Started state.

• Stopped: The federate does not advance in

simulation time.

This pattern defines the major states, activities, and the
names of the events. However, it neither contains a
detailed description of the activity related to a state
transition, nor does it imply which events trigger a state
transition. These details are federation specific and
must be defined in the Federation Agreements
document. For example, an event can be triggered
manually, by interactions or by the federation
management services (synchronization points,
save/restore points) or by other means of inter-process
communication. The activity DoInitialization may
include for example the following actions to be
described in the Federation Agreements:
1. Enabled time management, if required.
2. Publish and subscribe to initial object and

interaction classes.
3. Register initial object instances with the federation

execution and update the attributes with initial
values.

4. Achieve synchronization point.

To perform an activity on a transition the definition of
a sub state diagram may be needed. For example if
DoInitialization requires attribute values of initial
object instances from other federates to complete the
initialization then the activity has to wait on discover
object and reflect attribute value events from the RTI.
In this case additional sub states are needed to handle
this, such as sub states like ObjectsRegistered,
ObjectsUpdated and ObjectsDiscovered. Once the
activity reaches the final state of this sub state diagram
it is possible to transition to the next state, Initialized.
These sub state diagrams result in additional patterns
for performing specific activities, further refining the
template pattern in Figure 7.

The pattern in Figure 7 only shows successful state
transitions. If a state transition fails then it should be
possible, depending on whether the problem can be
fixed for a retry or not, to return to the originating state
or to go to an error state. A more complete pattern
should also includes these state transition failures and

possibly an error state, that only allows to resign,
terminate or kill the federate.

We hope that many specific federation execution
management patterns can be aligned with this general
state diagram. In that case, federates implementing this
state diagram will be able to participate in many
federations with different federation execution
management patterns. The next chapter demonstrates
how specific state control patterns can be aligned with
this federate state diagram.

5. Execution Manager Federate State
Control Patterns
This chapter describes four execution management
state control patterns for controlling participating
federates: three Start-Stop patterns for real time
simulation and an Iteration pattern for non real time
simulation.
The Start-Stop patterns use simulation management
interactions and HLA synchronization points for
execution control. The first Start-Stop pattern is very
simple. As more features are added to each successive
Start-Stop pattern the complexity of the pattern
increases.
The Iteration pattern uses HLA synchronization and
save/restore points for execution control.

In summary the patterns are:

Pattern name Simulation
1. Start-Stop Real time
2. Start-Stop with initialization Real time
3. Start-Stop with initialization/reset Real time
4. Iteration Non real time

5.1 Start-Stop Pattern
The Start-Stop pattern is illustrated in Figure 8 and is a
simple state control pattern where we use Simulation
Management interactions to start, pause or stop the
time advancement of the simulation. This pattern is for
participating federates that – from execution
management point of view – only support the Paused
and Started states.

The EM federate has two states:

• Waiting: EM federate is waiting for the Start or

Resign event. Participating federates are in the
Paused state.

• Running: EM federate is waiting for the Pause or

Resign event. Participating federates are in the
Started state.

stm State Pattern 1

RunningWaiting

Initial

Final

Pause /DoPause

Start /DoStart

Resign
/DoResign

Resign
/DoResign

Join /DoJoin

Figure 8: Start-Stop state diagram.

On the Join event the EM federate creates and joins the
federation execution and enters the Waiting state.
Participating federates are expected to cycle
individually through the Ready To Initialize and
Initialized states and perform the activities join,
initialize and pause. Each participating federate ends in
the Paused state and waits for the StartResume
simulation interaction from the EM federate.
On the Start event the EM federate sends the
StartResume simulation interaction and transitions to
the Running state. Upon receipt of the interaction the
participating federates are expected to transition to the
Started state and start the time advancement of the
simulation.
On the Pause event the EM federate sends the
StopFreeze simulation interaction and transitions back
to the Waiting state. Upon receipt of the interaction the
participating federates are expected to transition to the
Paused state and stop the time advancement of the
simulation
On the Resign event the EM federate sends a
StopFreeze interaction. It resigns from and destroys the
federation execution, and terminates. Upon receipt of
the interaction the participating federates are expected
to stop the time advancement of the simulation, resign
from the federation execution and terminate.

The Join, Start, Freeze and Resign events trigger the
state transitions and these events are typically
generated from the EM federate user interface.

The EM federate activities and actions are summarized
in Figure 9. To preserve space in the activity diagram
the control flow arrows between the actions have been
omitted.

act Activ ity Pattern 1

DoPause

DoResignDoJoin DoStart

Join federation

Send
StartResume

simulation
interaction

Send
StopFreeze
simulation
interaction

Destroy
federation
execution

Send
StopFreeze
simulation
interaction

Resign from
federation

Create
federation
execution

Figure 9: Start-Stop activity diagram.

5.2 Start-Stop with Initialization Pattern
Often some kind of initialization is required amongst
the participating federates. For example, time
management needs to be enabled, initial object
instances need to be registered and updated. With
respect to the Start-Stop state diagram a number of
additional states are introduced to support this (and
more) from execution management point of view:

• Joining: EM federate is waiting for the

participating federates to join the federation
execution.

• Initializing: EM federate is waiting for the

participating federates to initialize.

• Suspended: EM federate is waiting for the Start or

Pause event. Participating federates are in the
Initialized state.

• Stopping: EM federate is waiting for the

participating federates to stop.

The state control diagram is shown in Figure 10.

stm State Pattern 2

Initializing

Waiting Running

Initial

Final

Stopping

Joining

Suspended

Stop /DoStop

Stop /DoStop

Federation Synchronized on Stopped /DoResign

Join /DoJoin

Federates Discovered
/DoInitial ize

Pause /DoPause

Start /DoStart

Federation Synchronized on Initialized

Pause /DoPause
Start /DoStart

Figure 10: Start-Stop with initialization state
diagram.

On the Join event the EM federate creates and joins the
federation execution and waits for the other
participating federates to join and transition to the state
Ready To Initialize. The EM federate enters the
Joining state.
When all participating federates have joined and are in
the Ready To Initialize state, the EM federate registers
and achieves the “Initialized” synchronization point
and transitions to the Initializing state. In this state the
participating federates are expected to perform their
initialization, achieve the synchronization point
“Initialized” and transition to the Initialized state.
Once the federation is synchronized the EM federate
transitions to the Suspended state. Participating
federates are expected to remain in the Initialized state
and wait for the StartResume or StopFreeze simulation
interaction from the EM federate.
The Start and Pause events are the same as in the Start-
Stop EM state diagram pattern (see previous
paragraph).

On the Stop event the EM federate sends a StopFreeze
simulation interaction. It registers and achieves the
“Stopped” synchronization point and transitions to the
Stopping state. The participating federates are
expected to stop the time advancement of the
simulation, achieve the synchronization point
“Stopped” and transition to the Stopped state.
Once the federation is synchronized the EM federate
resigns from and destroys the federation execution. The
participating federates are expected to resign from the
federation execution as well.

In this pattern we have chosen to send both a
StopFreeze simulation interaction as well as using a
“Stopped” synchronization point in order to provide the
possibility to each participating federate to process all
interactions and object updates before achieving the
synchronization point.

As already mentioned with the previous state control
pattern, the Join, Start, Pause and Stop events are
typically generated from the graphical user interface of
the EM federate. The events Federates Discovered and
Federation Synchronized are generated from the RTI.

The EM federate activities and actions are summarized
in Figure 11.

act Activ ity Pattern 2

DoInitialize

DoResign DoStart

Synchronize
federation
(Initialized)

Send
StartResume

simulation
interaction

DoPause

Send StopFreeze
simulation
interaction

Resign from
federation

Destroy
federation
execution

DoStop

Send StopFreeze
simulation
interaction

Synchronize
federation
(Stopped)

DoJoin

Create federation
execution

Join federation

Discov er joined
federates

Figure 11: Start-Stop with initialization activity
diagram.

5.3 Start-Stop with Initialization/Reset Pattern
This pattern elaborates further on the Start-Stop with
initialization pattern. It adds the possibility to reset the
participating federates to their initial state without the
need to restart federates. Two additional states have
been added to the state control pattern:

• Stopped: EM federate is waiting for the Reset or
Resign event. Participating federates are in the
Stopped state.

• Resetting: EM federate is waiting for the

participating federates to reset.

The resulting state control diagram is shown in Figure
12.

stm State Pattern 3

Initializing

Waiting Running

Initial

Final

Stopping

Joining

Resetting

Suspended

Stopped

Resign /DoResign

Reset
/DoReset

Federation
Synchronized
on Reset
/DoInitial ize

Federation Synchronized on Stopped

Start /DoStart
Pause /DoPause

Federation Synchronized on Initialized

Stop /DoStop

Pause
/DoPause

Start
/DoStart

Stop /DoStop

Federates Discovered
/DoInitial ize

Join /DoJoin

Figure 12: Start-Stop with initialization/reset state
diagram.

The EM federate states and activities are the same as in
the previous state control pattern, with the addition of
the Stopped and Resetting state and the related
activities.
On the Reset event the EM federate registers and
achieves the “Reset” synchronization point and
transitions to the state Resetting. In this state the
participating federates are expected to perform their
reset activity, achieve the synchronization point
“Reset” and transition to the state Ready To Initialize.
Once the federation is synchronized the EM federate
registers and achieves the “Initialized” synchronization

point and transitions to the Initializing state. In this
state the participating federates are expected to perform
their initialization, achieve the synchronization point
“Initialized” and transition to the Initialized state.

The EM federate activities and actions are summarized
in Figure 13.

act Activ ity Pattern 3

DoJoin

DoInitialize

DoResign

DoStart

Synchronize
federation
(Initialized)

Send
StartResume

simulation
interaction

DoPause

Send StopFreeze
simulation
interaction

Create federation
execution

Join federation

Resign from
federation

Destroy
federation
execution

Discov er joined
federates

DoStop

Send StopFreeze
simulation
interaction

Synchronize
federation
(Stopped)

DoReset

Synchronize
federation

(Reset)

Figure 13: Start-Stop with initialization/reset
activity diagram.

5.4 Iteration Pattern
The state control pattern in Figure 14 shows an
iterative state diagram that is typical for a Monte Carlo
(stochastic) simulation. This state control pattern is
however not supported by the state control pattern for
the participating federates shown in chapter 4. The
state control pattern for the participating federates
needs to be extended for this, or alternatively a new
pattern needs to be defined. The EM federate activities
and actions are summarized in Figure 15.

stm State Pattern 4

InitializingJoining

Sav ing

Restoring

Resetting

Running

Iterate

Final

Stopping

Initial

[i terations >= 0]
/DoRestore

Federation Saved
/iterations--

Federation Restored /DoReset

[iterations < 0]
/DoStop

Federates Discovered
/DoInitial ize

Federation
Synchronized
on
RunCompleted
/iterations--

Federation
Synchronized
on Stopped
/DoResign

Federation Synchronized on Reset /DoStart

Federation Synchronized
on Initial ized /DoSave

Join /DoJoin

Figure 14: Iteration state diagram.

Like the previously described Start-Stop patterns there
is a Joining and Initializing state (not described
further). Once initialization has completed the EM
federate initiates a Federation Save to be able to restore
the federation state for each successive iteration later
on. It enters the Saving state. Participating federates
are expected to save their federate state.
Once the federation has been saved the EM federate
enters the pseudo state Iteration. As long as there are
iterations to be done, the EM federate requests a
Federation Restore and transitions to the Restoring
state. Participating federates are expected to restore
their federate state.
Once the federation restore has completed the EM
federate registers and achieves the “Reset”
synchronization point and transitions to the Resetting
state. In this state participating federates are expected
to reset their object instances to the initial state values
required for this iteration. A seed and/or iteration
number might be involved to bring in perturbations for
certain model parameters of the federate (this added
complexity has been left out of the state diagram).
Once the reset has finished the EM federate registers
and achieves the “RunCompleted” synchronization
point and transitions to the Running state.
Participating federates are expected to start the time
advancement of the simulation and achieve the

synchronization point “RunCompleted” once the
simulation has completed (for this iteration).
The determination of the achievement of the
“RunCompleted” synchronization point may actually
be a complex decision making process involving one or
more participating federates. The assumption here is
that the EM federate is not involved in this decision
making process. For example, one of the participating
federates could act as an arbiter who determines when
the end of a simulation run has been reached (e.g. on
missile intercept or timeout). To mark the end of a run
the arbiter sends out an interaction to the other
participants in order for them to achieve the
synchronization point.
When the federation is synchronized the EM federate
transitions again to the pseudo state Iterate.
When there are no more iterations to go, the EM
federate registers and achieves the “Stopped”
synchronization point and transitions to the Stopping
state. In this state participating federates are expected
to stop the simulation and achieve the synchronization
point.
Once the federation is synchronized the EM federate
resigns from and destroys the federation execution, and
terminates. The participating federates are expected to
resign from the federation execution and terminate as
well.

act Activ ity Pattern 4

DoJoin

DoInitialize

Synchronize
federation
(Initialized)

DoSav e

Request
federation sav e

DoRestore

Request
federation

restore

DoReset

Synchronize
federation

(Reset)

DoStart

Synchronize
federation

(RunCompleted)

DoStop

Synchronize
federation
(Stopped)

DoResign

Create federation
execution

Join federation

Discov er joined
federates

Resign from
federation

Destroy
federation
execution

Figure 15: Iteration activity diagram.

6. State Chart XML
This chapter illustrates with some SCXML snippets
how a state control pattern can be translated to an
SCXML document with custom actions and events. As
an example we use the iteration pattern because this
pattern contains the most interesting ingredients w.r.t.

the translation to SCXML. The other state control
patterns can be mapped to SCXML in a similar way.
The next chapter describes an EM federate that is
capable of executing this SCXML document.

Note that the space in this paper is too limited to
explain all the aspects of SCXML. We restrict
ourselves to snippets showing the most relevant
elements of SCXML and let the reader refer to
reference [5] for more information.

The main elements of the SCXML document (see
Figure 16) for the iteration state control pattern are:
• A top level scxml element;
• A data model element that defines the data objects

used in the state machine, such as the names of the
federates that will join and the number of iterations
to perform;

• A sequence of state elements with on-entry
actions and with outgoing transitions.

Figure 16: SCXML document.

The state elements correspond to the states defined in
the state control pattern. In the pattern the actions are
performed on each transition, but for this SCXML
document we have decided to place all actions in the
on-entry part of each state element.

The custom actions defined in this SCXML document
ultimately map to (Java) code that is part of the
SCXML execution environment. This custom code will
typically result in an RTI call. The RTI callbacks are
also part of the execution environment and result in
events for the state machine. This mechanism is
explained in more detail in the next chapter. For now it
is sufficient to mention that we have the following
custom actions and events available in the SCXML
document:

Custom action: Event:
CreateAndJoinFederation -
DiscoverFederates DiscoverFederatesCompleted
SynchronizeFederation SynchronizeFederationCompleted
SaveFederation SaveFederationCompleted
RestoreFederation RestoreFederationCompleted
ResignAndDestroyFederation -
ResignFederates -
StartResume -
StopFreeze -

The CreateAndJoinFederation action is a combination
of CreateFederation and JoinFederation. Similarly the
ResignAndDestroyFederation is a combination of
ResignFederation and DestroyFederation.

An exception may be raised from a custom action in
case of an error. From SCXML point of view an
exception is the same as an event, but by giving these
events a special name it is possible to handle error
cases in the same way as other events.

Now we have a look at some SCXML snippets. We
start with the top level element of the SCXML
document, followed by the data model and a number of
state elements.

6.1 SCXML Element
The top level element of the SCXML document is:

<scxml xmlns="http://www.w3.org/2005/07/scxml"
 xmlns:rti="http://rti.actions/CUSTOM"
 version="1.0"
 initialstate="Joining">

The xmlns attribute defines the namespace for the
custom actions, in this case “rti”. The initialstate
attribute refers to the initial state of the state machine.

6.2 Data Model Element
The data model defines the data objects that we use in
the state machine. It is actually the only place in the
SCXML document to memorize state machine data, as
custom actions by itself are by definition memory less.
The data model is defined as:

<datamodel>
 <data name="federation">
 <execution xmlns="">

 <federation>World</federation>
 <federate>EM</federate>
 <fdd>file:/HelloWorld.xml</fdd>
 <federates>ned</federates>
 <timeout>10</timeout>
 <savelabel>TheSaveLabel</savelabel>
 <iterations>2</iterations>
 </execution>
 </data>
</datamodel>

The value of a data object can be accessed or updated
from the SCXML document via an XPath expression.
To access for example the value of the data object
“fdd” we use:

"Data(federation,'execution/fdd')"

6.3 State Elements
The next couple of snippets show the state elements
Joining, Initializing, Saving, Iterate and Resigning. The
other state elements are similar to these state elements
and the reader can easily infer them.

The initial state of the state machine is the Joining
state. The Joining state has two on-entry actions,
namely: CreateAndJoinFederation and
DiscoverFederates. For the second action the event
DiscoverFederatesCompleted is raised when all listed
federates have joined. This event causes a transition to
the next state, Initializing. An exception causes a
transition to the Error state.

<state id="Joining">
 <onentry>
 <rti:CreateAndJoinFederation
 federationname=
 "Data(federation,'execution/federation')"
 Federatename=
 "Data(federation,'execution/federate')"
 fdd=
 "Data(federation,'execution/fdd')" />

 <rti:DiscoverFederates
 Federatenames=
 "Data(federation, 'execution/federates')"
 timeout=
 "Data(federation, 'execution/timeout')" />
 </onentry>

 <transition
 event="DiscoverFederatesCompleted"
 target="Initializing"/>
 <transition
 event="CreateAndJoinFederationException"
 target="Error"/>
 <transition
 event="DiscoverFederatesException"
 target="Error"/>
</state>

The Initializing state has one on-entry action called
SynchronizeFederation. This action registers a
synchronization point. Once the federation is
synchronized, that is the participating federates have
achieved this synchronization point, the event

SynchronizeFederationCompleted is raised, causing a
transition to the Saving state.

<state id="Initializing">
 <onentry>
 <rti:SynchronizeFederation
 labelname="'Initialized'"/>
 </onentry>

 <transition
 event="SynchronizeFederationCompleted"
 target="Saving"/>
 <transition
 event="SynchronizeFederationException"
 target="Error"/>
</state>

The Saving state has one on-entry action called
SaveFederation, to initiate a Federation Save. The
event SaveFederationCompleted triggers a transition to
the next state, Iterate.

<state id="Saving">
 <onentry>
 <rti:SaveFederation
 savelabel=
 "Data(federation, 'execution/savelabel')" />
 </onentry>

 <transition
 event="SaveFederationCompleted"
 target="Iterate"/>
 <transition
 event="SaveFederationException"
 target="Error"/>
</state>

The Iterate state does a count down on the number of
iterations. In the on-entry part the number of iterations
is decremented by one. Depending on the current value
a transition is made to either the Restoring state or the
Stopping state.

<state id="Iterate">
 <onentry>
 <assign
 location=
 "Data(federation, 'execution/iterations')"
 Expr=
 "Data(federation, 'execution/iterations')-1"
/>
 </onentry>

 <transition
 cond="Data(federation, 'execution/iterations') >=
0"
 target="Restoring" />
 <transition target="Stopping" />
</state>

The Resigning state is a final state. It has an on-entry
action ResignAndDestroyFederation to resign from and
destroy the federation execution, as well as logging a
final message.

<state id="Resigning" final="true">
 <onentry>
 <rti:ResignAndDestroyFederation />
 <log expr="'The End'"/>

 </onentry>
</state>

7. Execution Manager Federate
The snippits as described in the previous chapter are
part of an SCXML document that specifies a state
diagram. TNO has developed an EM federate that can
execute such an SCXML document by using the
Apache Commons SCXML component [7].

Apache Commons SCXML is an implementation of the
W3C SCXML specification aimed at creating and
maintaining a Java SCXML engine. It is capable of
executing a state machine defined using an SCXML
document, and abstracts out the environment
interfaces. Commons SCXML is a reusable Java
component from the Apache Commons project, which
is an open-source project of the Apache Software
Foundation.

The TNO EM federate consists of the five packages as
shown in Figure 17.

class Domain Model

ExecutionControl MainCommons SCXML

HLA Middleware

RTI

GUI

SCXML document

RTI callback

update state
info

entry/exit
state
callback

start/stop state
machine

start/stop
handle events

start

trigger event

custom action

RTI call

specify

use

Figure 17: Package diagram of the TNO EM
federate.

The Commons SCXML and the RTI packages are third
party libraries, while the GUI, ExecutionControl and

HLA Middleware packages are developed for this use
case. The Model-View-Controller design pattern [8]
has been applied by dividing the federate into a:

1. Model:
The core functionality consists of the Commons
SCXML, the HLA Middleware, and the RTI library.
Commons SCXML executes the state machine by
performing custom actions as described in the SCXML
document until it has to wait on an event to be
triggered by the HLA Middleware. The triggering of
the events keeps the state machine running, because it
will cause state transitions and new actions to be
performed. The HLA Middleware provides an
abstraction of the RTI programming interface that can
be used easily by the custom actions. A custom action
can correspond to one or more RTI calls. Besides
hiding the interface details of the RTI, the HLA
Middleware implements an event handling loop that
receives and processes the RTI callbacks until a final
state has been reached or a stop command has been
received from the user interface. An RTI callback can
cause the triggering of an event. Commons SCXML
then decides whether this event causes a state
transition.

2. View:
The GUI lets the user select the SCXML document,
provides buttons to start and stop the state machine,
and displays the current state name.

3. Controller:
The ExecutionControl initializes Common SCXML
with the SCXML document and the list of custom
actions, handles the user input from the GUI, starts the
state machine by starting the SCXML executor, starts
the event handling loop of the HLA Middleware, stops
the state machine (when the user wants to stop it before
a final state has been reached) by stopping the event
handling loop of the HLA Middleware, handles state
change notifications from Commons SCXML and
sends the new state info to the GUI.

The action-event loop is the core of the federate
executing a state diagram: custom actions performed
by Commons SCXML result in RTI calls, while RTI
callbacks processed by the HLA Middleware result in
the triggering of events, etc. Also RTI exceptions
raised during RTI calls can cause the triggering of
exception events.

For the SynchronizeFederation action this loop is
illustrated in more detail in Figure 18. The action
results in multiple RTI calls and callbacks and it ends
with a single SynchronizeFederationCompleted event.
If something would have gone wrong, then it should

end with a SynchronizeFederationException event (this
is not shown in the figure).

sd Sequence Diagram

Common SCXML RTIHLA Middleware

SynchronizeFederation()

registerFederationSynchronizationPoint()

announceSynchronizationPoint()

synchronizationPointAchieved()

federationSynchronized()

SynchronizeFederationCompleted()

Figure 18: Sequence diagram of the
SynchronizeFederation action and resulting event.

The SCXML executor has no method to stop the
execution of the state machine before a final state has
been reached. However, the same result can be reached
by stopping the event handling loop of the HLA
Middleware, such that no events will be triggered
anymore and the state machine becomes inactive. If the
federate is still joined at that moment the HLA
Middleware will resign from the federation and the
state machine is able to be restarted without any
problem.

Commons SCXML allows an application to change the
state machine at run-time. States or transitions for
example may be added to the state machine through the
Commons SCXML programming interface. From the
Commons SCXML programming interface it is also
possible to manipulate the data model, thus allowing
data object values to be changed at run-time (by for
example a custom action). All in all, Commons
SCXML provides a rich programming interface to
manipulate the state machine and data model at run
time.

8. Conclusions and Further Developments
The main conclusions are:
• Three of the four execution management state

control patterns shown in this paper correlate very
well with the proposed participating federate state
control pattern. For the iteration pattern the
participating state pattern needs to be extended, or
alternatively a new pattern needs to be created.

• As the number of different execution state control
patterns and variants of the same pattern increase it
is important to have a taxonomy. This is currently
lacking.

• SCXML provides a formalism for state charts and
is suitable as specification language for HLA
execution state control patterns and as exchange
format between different execution manager
federate applications. However, the naming and
meaning of custom actions and events need to be
standardized. This is required to enable the
exchange of SCXML documents across different
SCXML execution environments.

• SCXML is human readable. No graphical editor is
required to create an SCXML document. The
snippets shown in this paper were all created in
WordPad.

• SCXML state names are global and must be
unique. Also nested states must have unique
names. It is possible to include state charts from
other SCXML documents. For example, smaller
patterns may be defined in separate documents and
included from the main document. The naming
restriction however limits this kind of reuse of
state charts.

• SCXML matures to a W3C standard. Already
execution environments are available for SCXML.
For Java there is the open source project Apache
Commons SCXML (see [7]). And for C++ there is
a commercial product from Sidema (see [9]).

Future work includes:
• The patterns presented in this paper are defined

from both the EM federate point of view and
participating federate point of view. This paper
gives first proposals for patterns from both views.
It is clear that different patterns are needed
depending on the type of application. For example,
patterns that model late joining and early leaving
federates, patterns for the Simulation Management
family of interactions/PDUs and patterns for
tightly or loosely coupled federations. Additional
patterns may involve more complex modeling
using concurrent states.

• Suitability of the proposed design patterns needs to
be investigated by corresponding experiments.
First experiments are being performed under
MSG-068.

• The BOM concept [10] formalizes the way a
conceptual model is described and part of this
definition are the pattern of interplay and the state
machine template components. We believe that the
state control patterns described in this paper
complement these BOM concepts. It would be a
step forward if the state machine defined in a
BOM can be translated automatically into an
(executable) SCXML document, thus making a
shift from the reuse of federate code to the reuse of

simulation models by using model driven
development techniques [11].

9. References
[1] Christopher Alexander, Sara Ishikawa, Murray

Silverstein, Max Jacobson, Ingrid Fiksdahl-King,
and Shlomo Angel. A Pattern Language: “Towns,
Buildings, Construction”. Oxford University
Press, New York, 1977.

[2] Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides: “Design patterns: Elements of
Reusable Object-Oriented Software”. Addison-
Wesley, ISBN 0-201-63361-2, 1995.

[3] David Harel: “Statecharts: A visual formalism for
complex systems”. Science of Computer
Programming, Volume 8 , Issue 3, ISSN 0167-
6423, June 1987.

[4] David Harel and Michal Politi: “Modeling
Reactive Systems with Statecharts”. McGraw-
Hill, ISBN 0-07-026205-5, 1998.

[5] W3C SCXML: http://www.w3.org/TR/scxml.
[6] REC-XML-19980210, Extensible Markup

Language (XML) 1.0, W3C Recommendation,
Feb. 1998.

[7] Apache Commons SCXML project:
http://commons.apache.org/scxml.

[8] Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad, Michael Stal:
“Pattern-Oriented Software Architecture – A
System of Patterns”. Wiley, ISBN 0-471-95869-7,
1996.

[9] Sidema: http://www.sscxml.com.
[10] SISO-STD-003-2006, SISO Base Object Model

(BOM) Template Specification, March 2006.
[11] Roger Jansen, Louwrens Prins, Wim Huiskamp,

“Template Driven Code Generator for HLA
Middleware”, Simulation Interoperability
Workshop, Spring 2007 (07F-SIW-038)

[12] MSG-052 Portal: http://msg052.smart-lab.se.
[13] MSG-068 Portal: subspace under MSG-052

Portal.

Author Biographies

TOM VAN DEN BERG is scientist in the M&S
department at TNO Defence, Security and Safety, The
Netherlands. He holds an M.Sc. degree in Mathematics
and Computing Science from Delft Technical
University. His research area includes distributed
processing and simulation systems, software
architectures and software process improvement.

ROGER JANSEN is a member of the scientific staff
in the M&S department at TNO Defence, Security and
Safety in the Netherlands. He holds an M.Sc. degree in
Computing Science and a Master of Technological
Design (MTD) degree in Software Technology, both
from Eindhoven University of Technology, The
Netherlands. He works in the field of distributed
simulation and his research interests include distributed
computing and simulation interoperability.

HARTMUT UFER studied physics at the University
of Osnabrück, Germany, and achieved his master
degree in 1992. During his work as a scientist at the
university he specialized in theoretical solid state
physics. Since 1998, Mr. Ufer works in the field of
distributed simulation, and, since 2002, works as a
senior software engineer at IABG mbH, Germany.

