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ABSTRACT: The suitability of or choice for a particular design pattern for federation execution state control 
depends on several factors, such as the degree in which legacy applications can support particular patterns and the 
complexity of the federation. For small federations that involve only a handful of federates that execute at one 
location, it may be sufficient to use manual control of the applications and document all necessary procedures in a 
Federation Agreements document, whereas a complex federation executing on a wide area network can find many 
benefits in using automated execution state control. 
Standaridisation of design patterns for federation execution state control will promote re-use of federates in different 
federation configurations. And formalisation of these design patterns using available standards will enable a certain 
degree of automation of execution state control, independent of the federation. 
This paper describes the functions of Federation Management, in particular execution state control, and provides an 
overview of a number of commonly found execution state control patterns. It introduces the W3C State Chart XML 
(SCXML) as state machine notation and demonstrates its use in the automation of federation execution state control 
using available open source software from the Apache Commons project. 
 
 
1. Introduction 
The concept of design pattern originates from 
Christopher Alexander back in 1977. In [1] he 
describes: "Each pattern describes a problem which 
occurs over and over again in our environment, and 
then describes the core of the solution to that problem, 
in such a way that you can use this solution a million 
times over, without ever doing it the same way twice". 
Erich Gamma et al applied the concept to software and 
published in 1995 the book “Design patterns: Elements 
of Reusable Object-Oriented Software” [2]. This book 
describes what design patterns are by providing 
amongst others standard elements associated with 
patterns and many examples. 
 
The concept of design pattern can also be applied to 
execution state control for an HLA federation. Typical 
design issues like federation initialization and 

termination; start, stop, pause and resume; iteration; 
replay; etc; appear over and over in every HLA 
federation. The identification of common state control 
design patterns will benefit federate developers and 
further stimulate the reuse of federates in different 
federation configurations. 
 
State and activity diagrams are common practice for 
modelling the behavior and functions of a system and 
are a logical way to express execution state control 
design patterns. With the widespread use of the Unified 
Modeling Language (UML) also the use of Harel 
statecharts has increased. Harel statecharts are in effect 
state diagrams, extended with the notion of hierarchy, 
concurrency and communication [3], [4]. A recent 
development is that of SCXML (State Chart XML) of 
the W3C [5]. SCXML is an XML [6] based markup 
language for the definition of state machines. The 



language is based on Harel statecharts and UML and it 
supports execution by a so called execution 
environment. Although SCXML is still a working draft 
it appears to be a suitable candidate for state machine 
representation and automated execution for federation 
state control. 
 
A Community of Practice on Federation Architecture 
and Design established in the frame of the Technical 
Activity Program MSG-052 of the NATO Modelling 
and Simulation Group (NMSG) has elaborated and 
published proposals for common execution state 
control patterns for (geographically) distributed 
simulations [12]. The suitability of these proposals is 
presently being investigated in an experimentation 
program of the NMSG Technical Activity Program 
MSG-068 (NATO Education and Training Network 
(NETN)). The experiences gained in these experiments 
will form the basis for recommendations pertaining to 
federation execution control in the NETN Federation 
Agreement documents (FADs). The authors of this 
paper are members of both MSG-052 and MSG-068. 
 
The remainder of this paper is structured as follows: 
• First follows in chapter 2 a brief introduction into 

the basics of state and activity diagrams. 
• Chapter 3 defines the general structure of an HLA 

federation explaining the role of the Execution 
Manager federate and Participating federates. 

• Chapter 4 discusses a proposed template for a state 
control pattern for the Participating federates. 

• Chapter 5 describes a number of state control 
patterns for the Execution Manager federate. 

• Chapter 6 introduces the W3C State Chart XML as 
state machine notation for state control patterns. 

• Chapter 7 describes an Execution Manager 
federate that is capable to execute SCXML and 
that is constructed with open source software 
components. 

• Finally, chapter 8 summarizes the conclusions and 
further developments. 

 
2. State Diagrams and Activity Diagrams 
Many readers will be familiar with state diagrams for 
modeling the behavior of a system and activity 
diagrams for modeling the functions or capabilities of a 
system and how these two diagrams are related. This 
chapter briefly describes the most important elements 
of these diagrams in order to provide the reader enough 
information to understand the state control patterns 
described later in this paper. 
 
2.1 State Diagrams 
Figure 1 shows a simple state diagram: a composite 
state A that is decomposed in two sub states, named 

state 1 and state 2. In this example state 1 is the initial 
state and state 2 is the final state of the state machine. 
A transition from state 1 to state 2 is initiated by an 
event, called ‘trigger’ (in MSG-052 terminology State 
Transition Request (STR)), under the condition that the 
‘guard’ evaluates to ‘true’. A description of the effect 
of a transition is shown behind the forward slash. 
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State2 Final
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Figure 1: A state transition. 
 
The states shown in Figure 1 are so called “or-states”, 
that is, the system is in exactly one of the shown states. 
States can also be “and-states”, that is, a system can be 
in multiple states at the same time. Figure 2 shows the 
notation for and-states. State B is split in two regions 
by a dashed line and each region contains a state 
diagram consisting of or-states. The system is both in a 
state from region B1 as in a state from region B2. And-
states are also called “concurrent states”. 
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Figure 2: Concurrent states. 
 
Pseudo states are an abstraction for various types of 
transitions used in state diagrams, the most common 
ones being the initial state and the final state. Another 
pseudo state is called ‘junction’. A junction can be 
used to split a transition into multiple transitions, each 
with possible guards, as shown in Figure 3. 
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Figure 3: Pseudo state: junction. 
 
2.2 Activity Diagrams 
A trigger in a state diagram may imply certain 
activities to accomplish the desired effect. For each 
trigger there may be a related activity diagram. The 
name of the effect in the state diagram corresponds to 
the name of the activity in the activity diagram. 
In the state control patterns described later in this paper 
each activity (i.e. effect of a transition) is named as 
“DoName”. An activity may consist of sub activities or 
actions, where an action is a basic functional unit of 
work and cannot be further subdivided. Figure 4 
provides an example where on the transition from state 
8 to state 9 the activity “DoSomething” is performed. 
The activity is shown in Figure 5 and consists of two 
actions. 
 

stm Example D

State D
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anEvent
/DoSomething

 
Figure 4: State diagram with reference to activity. 
 

act Example D

DoSomething

Action1 Action2

Init ial Fin al

 
Figure 5: Activity referenced from state diagram. 
 
3. Federation Structure 
Before we describe the state control patterns in the next 
two chapters we first define in Figure 6 the general 
structure of an HLA federation. We assume that the 

execution management functions are centralized; 
distributed execution management is not in the scope 
of this paper. Consequently, a federation consists of an 
Execution Manager (EM) federate and one or more 
participating federates, interconnected via the Run 
Time Infrastructure (RTI). 
 

cmp Federation Structure
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Figure 6: Federation structure. 
 
The EM federate controls the federation execution. It 
initiates the transitions between states using the HLA 
Federation Management services (synchronization 
points and save/restore points) and Simulation 
Management interactions. The EM federate may have a 
GUI to initiate certain execution management events, 
such as start or stop the simulation. The participating 
federates are so called execution managed federates. 
They are controlled by the EM federate and receive 
state transition requests via the HLA Federation 
Management services or as FOM specific Simulation 
Management interactions. They perform the actions as 
required for each state. 
 
To implement a state control pattern the following 
components should be in place: 
• Federation Agreements that refer to the agreed 

state control pattern, describe the triggers, 
conditions and related activities of relevance to 
federation execution control; 

• An EM federate that controls the federation 
execution according to the execution management 
state control pattern; 

• Participating federates that are controlled by the 
EM federate and execute according to the 
participating federate state control pattern. 

 
4. Participating Federate State Control 
Pattern 
One of the outcomes of MSG-052 is a proposed 
template for a state control pattern for participating 
federates as discussed in this chapter. This pattern is 
expected to cover a large set of federate applications. 
However it is recognized that additional patterns may 



be required for certain application areas, such as for 
stochastic simulation, as discussed in chapter 5. 
 

stm State Diagram

Joined

Not joined

Ready To Initialize

Initialized

Initial

Started Paused

Stopped

Final

Ready To Join

Final

Resign [Resign Allowed] /DoResign

Pause /DoPauseStart /DoStart

Resume /DoResume

Stop /DoStop

Initialize
/DoInitialization

Stop /DoStop

Pause /DoPause

Reset
/DoReset

Kil l Federate Application Process /DoKill

Join /DoJoin

Terminate Federate
Application Process
/DoTerminate

Create Federate
Application Process
/DoCreate

 
Figure 7: Participating federate state control 
pattern. 
 
The states are defined as follows: 
 
• Not Joined: In this major state, the application is 

not a member of the federation execution. 
 
• Ready To Join: The application completed some 

internal set-up actions and is now ready to join the 
federation execution. 

 
• Joined: In this major state, the application is a 

member of the federation execution. 
 
• Ready To Initialize: The federate is neither time 

regulating nor time constrained, it has neither 
published nor subscribed any object or interaction 
class. 

 
• Initialized: The federate may be time regulating 

and time constrained, it has completed its initial 
publications and subscriptions, it has registered its 
initial objects, it has sent initial attribute values for 

all registered objects, it has discovered all initial 
object instances from other federates and it has 
received all initial attribute value updates. 

 
• Started: The federate is advancing simulation 

time. 
 
• Paused: The federate does not advance in 

simulation time. The federate must be able to 
return to the Started state. 

 
• Stopped: The federate does not advance in 

simulation time. 
 
This pattern defines the major states, activities, and the 
names of the events. However, it neither contains a 
detailed description of the activity related to a state 
transition, nor does it imply which events trigger a state 
transition. These details are federation specific and 
must be defined in the Federation Agreements 
document. For example, an event can be triggered 
manually, by interactions or by the federation 
management services (synchronization points, 
save/restore points) or by other means of inter-process 
communication. The activity DoInitialization may 
include for example the following actions to be 
described in the Federation Agreements: 
1. Enabled time management, if required. 
2. Publish and subscribe to initial object and 

interaction classes. 
3. Register initial object instances with the federation 

execution and update the attributes with initial 
values. 

4. Achieve synchronization point. 
 
To perform an activity on a transition the definition of 
a sub state diagram may be needed. For example if 
DoInitialization requires attribute values of initial 
object instances from other federates to complete the 
initialization then the activity has to wait on discover 
object and reflect attribute value events from the RTI. 
In this case additional sub states are needed to handle 
this, such as sub states like ObjectsRegistered, 
ObjectsUpdated and ObjectsDiscovered. Once the 
activity reaches the final state of this sub state diagram 
it is possible to transition to the next state, Initialized. 
These sub state diagrams result in additional patterns 
for performing specific activities, further refining the 
template pattern in Figure 7. 
 
The pattern in Figure 7 only shows successful state 
transitions. If a state transition fails then it should be 
possible, depending on whether the problem can be 
fixed for a retry or not, to return to the originating state 
or to go to an error state. A more complete pattern 
should also includes these state transition failures and 



possibly an error state, that only allows to resign, 
terminate or kill the federate. 
 
We hope that many specific federation execution 
management patterns can be aligned with this general 
state diagram. In that case, federates implementing this 
state diagram will be able to participate in many 
federations with different federation execution 
management patterns. The next chapter demonstrates 
how specific state control patterns can be aligned with 
this federate state diagram. 
 
5. Execution Manager Federate State 
Control Patterns 
This chapter describes four execution management 
state control patterns for controlling participating 
federates: three Start-Stop patterns for real time 
simulation and an Iteration pattern for non real time 
simulation. 
The Start-Stop patterns use simulation management 
interactions and HLA synchronization points for 
execution control. The first Start-Stop pattern is very 
simple. As more features are added to each successive 
Start-Stop pattern the complexity of the pattern 
increases. 
The Iteration pattern uses HLA synchronization and 
save/restore points for execution control. 
 
In summary the patterns are: 
 
Pattern name Simulation 
1. Start-Stop Real time 
2. Start-Stop with initialization Real time 
3. Start-Stop with initialization/reset Real time 
4. Iteration Non real time 
 
5.1 Start-Stop Pattern 
The Start-Stop pattern is illustrated in Figure 8 and is a 
simple state control pattern where we use Simulation 
Management interactions to start, pause or stop the 
time advancement of the simulation. This pattern is for 
participating federates that – from execution 
management point of view – only support the Paused 
and Started states. 
 
The EM federate has two states: 
 
• Waiting: EM federate is waiting for the Start or 

Resign event. Participating federates are in the 
Paused state. 

 
• Running: EM federate is waiting for the Pause or 

Resign event. Participating federates are in the 
Started state. 

 

stm State Pattern 1
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Figure 8: Start-Stop state diagram. 
 
On the Join event the EM federate creates and joins the 
federation execution and enters the Waiting state. 
Participating federates are expected to cycle 
individually through the Ready To Initialize and 
Initialized states and perform the activities join, 
initialize and pause. Each participating federate ends in 
the Paused state and waits for the StartResume 
simulation interaction from the EM federate. 
On the Start event the EM federate sends the 
StartResume simulation interaction and transitions to 
the Running state. Upon receipt of the interaction the 
participating federates are expected to transition to the 
Started state and start the time advancement of the 
simulation. 
On the Pause event the EM federate sends the 
StopFreeze simulation interaction and transitions back 
to the Waiting state. Upon receipt of the interaction the 
participating federates are expected to transition to the 
Paused state and stop the time advancement of the 
simulation 
On the Resign event the EM federate sends a 
StopFreeze interaction. It resigns from and destroys the 
federation execution, and terminates. Upon receipt of 
the interaction the participating federates are expected 
to stop the time advancement of the simulation, resign 
from the federation execution and terminate. 
 
The Join, Start, Freeze and Resign events trigger the 
state transitions and these events are typically 
generated from the EM federate user interface. 
 
The EM federate activities and actions are summarized 
in Figure 9. To preserve space in the activity diagram 
the control flow arrows between the actions have been 
omitted. 
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Figure 9: Start-Stop activity diagram. 
 
5.2 Start-Stop with Initialization Pattern 
Often some kind of initialization is required amongst 
the participating federates. For example, time 
management needs to be enabled, initial object 
instances need to be registered and updated. With 
respect to the Start-Stop state diagram a number of 
additional states are introduced to support this (and 
more) from execution management point of view: 
 
• Joining: EM federate is waiting for the 

participating federates to join the federation 
execution. 

 
• Initializing: EM federate is waiting for the 

participating federates to initialize. 
 
• Suspended: EM federate is waiting for the Start or 

Pause event. Participating federates are in the 
Initialized state. 

 
• Stopping: EM federate is waiting for the 

participating federates to stop. 
 
The state control diagram is shown in Figure 10. 
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Figure 10: Start-Stop with initialization state 
diagram. 
 
On the Join event the EM federate creates and joins the 
federation execution and waits for the other 
participating federates to join and transition to the state 
Ready To Initialize. The EM federate enters the 
Joining state. 
When all participating federates have joined and are in 
the Ready To Initialize state, the EM federate registers 
and achieves the “Initialized” synchronization point 
and transitions to the Initializing state. In this state the 
participating federates are expected to perform their 
initialization, achieve the synchronization point 
“Initialized” and transition to the Initialized state. 
Once the federation is synchronized the EM federate 
transitions to the Suspended state. Participating 
federates are expected to remain in the Initialized state 
and wait for the StartResume or StopFreeze simulation 
interaction from the EM federate. 
The Start and Pause events are the same as in the Start-
Stop EM state diagram pattern (see previous 
paragraph). 



On the Stop event the EM federate sends a StopFreeze 
simulation interaction. It registers and achieves the 
“Stopped” synchronization point and transitions to the 
Stopping state. The participating federates are 
expected to stop the time advancement of the 
simulation, achieve the synchronization point 
“Stopped” and transition to the Stopped state. 
Once the federation is synchronized the EM federate 
resigns from and destroys the federation execution. The 
participating federates are expected to resign from the 
federation execution as well. 
 
In this pattern we have chosen to send both a 
StopFreeze simulation interaction as well as using a 
“Stopped” synchronization point in order to provide the 
possibility to each participating federate to process all 
interactions and object updates before achieving the 
synchronization point. 
 
As already mentioned with the previous state control 
pattern, the Join, Start, Pause and Stop events are 
typically generated from the graphical user interface of 
the EM federate. The events Federates Discovered and 
Federation Synchronized are generated from the RTI. 
 
The EM federate activities and actions are summarized 
in Figure 11. 
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Figure 11: Start-Stop with initialization activity 
diagram. 
 
5.3 Start-Stop with Initialization/Reset Pattern 
This pattern elaborates further on the Start-Stop with 
initialization pattern. It adds the possibility to reset the 
participating federates to their initial state without the 
need to restart federates. Two additional states have 
been added to the state control pattern: 
 

• Stopped: EM federate is waiting for the Reset or 
Resign event. Participating federates are in the 
Stopped state. 

 
• Resetting: EM federate is waiting for the 

participating federates to reset. 
 
The resulting state control diagram is shown in Figure 
12. 
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Figure 12: Start-Stop with initialization/reset state 
diagram. 
 
The EM federate states and activities are the same as in 
the previous state control pattern, with the addition of 
the Stopped and Resetting state and the related 
activities. 
On the Reset event the EM federate registers and 
achieves the “Reset” synchronization point and 
transitions to the state Resetting. In this state the 
participating federates are expected to perform their 
reset activity, achieve the synchronization point 
“Reset” and transition to the state Ready To Initialize. 
Once the federation is synchronized the EM federate 
registers and achieves the “Initialized” synchronization 



point and transitions to the Initializing state. In this 
state the participating federates are expected to perform 
their initialization, achieve the synchronization point 
“Initialized” and transition to the Initialized state. 
 
The EM federate activities and actions are summarized 
in Figure 13. 
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Figure 13: Start-Stop with initialization/reset 
activity diagram. 
 
5.4 Iteration Pattern 
The state control pattern in Figure 14 shows an 
iterative state diagram that is typical for a Monte Carlo 
(stochastic) simulation. This state control pattern is 
however not supported by the state control pattern for 
the participating federates shown in chapter 4. The 
state control pattern for the participating federates 
needs to be extended for this, or alternatively a new 
pattern needs to be defined. The EM federate activities 
and actions are summarized in Figure 15. 
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Figure 14: Iteration state diagram. 
 
Like the previously described Start-Stop patterns there 
is a Joining and Initializing state (not described 
further). Once initialization has completed the EM 
federate initiates a Federation Save to be able to restore 
the federation state for each successive iteration later 
on. It enters the Saving state. Participating federates 
are expected to save their federate state. 
Once the federation has been saved the EM federate 
enters the pseudo state Iteration. As long as there are 
iterations to be done, the EM federate requests a 
Federation Restore and transitions to the Restoring 
state. Participating federates are expected to restore 
their federate state. 
Once the federation restore has completed the EM 
federate registers and achieves the “Reset” 
synchronization point and transitions to the Resetting 
state. In this state participating federates are expected 
to reset their object instances to the initial state values 
required for this iteration. A seed and/or iteration 
number might be involved to bring in perturbations for 
certain model parameters of the federate (this added 
complexity has been left out of the state diagram). 
Once the reset has finished the EM federate registers 
and achieves the “RunCompleted” synchronization 
point and transitions to the Running state. 
Participating federates are expected to start the time 
advancement of the simulation and achieve the 



synchronization point “RunCompleted” once the 
simulation has completed (for this iteration). 
The determination of the achievement of the 
“RunCompleted” synchronization point may actually 
be a complex decision making process involving one or 
more participating federates. The assumption here is 
that the EM federate is not involved in this decision 
making process. For example, one of the participating 
federates could act as an arbiter who determines when 
the end of a simulation run has been reached (e.g. on 
missile intercept or timeout). To mark the end of a run 
the arbiter sends out an interaction to the other 
participants in order for them to achieve the 
synchronization point. 
When the federation is synchronized the EM federate 
transitions again to the pseudo state Iterate. 
When there are no more iterations to go, the EM 
federate registers and achieves the “Stopped” 
synchronization point and transitions to the Stopping 
state. In this state participating federates are expected 
to stop the simulation and achieve the synchronization 
point. 
Once the federation is synchronized the EM federate 
resigns from and destroys the federation execution, and 
terminates. The participating federates are expected to 
resign from the federation execution and terminate as 
well. 
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Figure 15: Iteration activity diagram. 
 
6. State Chart XML 
This chapter illustrates with some SCXML snippets 
how a state control pattern can be translated to an 
SCXML document with custom actions and events. As 
an example we use the iteration pattern because this 
pattern contains the most interesting ingredients w.r.t. 

the translation to SCXML. The other state control 
patterns can be mapped to SCXML in a similar way. 
The next chapter describes an EM federate that is 
capable of executing this SCXML document. 
 
Note that the space in this paper is too limited to 
explain all the aspects of SCXML. We restrict 
ourselves to snippets showing the most relevant 
elements of SCXML and let the reader refer to 
reference [5] for more information. 
 
The main elements of the SCXML document (see 
Figure 16) for the iteration state control pattern are: 
• A top level scxml element; 
• A data model element that defines the data objects 

used in the state machine, such as the names of the 
federates that will join and the number of iterations 
to perform; 

• A sequence of state elements with on-entry 
actions and with outgoing transitions. 

 

 
Figure 16: SCXML document. 
 
The state elements correspond to the states defined in 
the state control pattern. In the pattern the actions are 
performed on each transition, but for this SCXML 
document we have decided to place all actions in the 
on-entry part of each state element. 
 



The custom actions defined in this SCXML document 
ultimately map to (Java) code that is part of the 
SCXML execution environment. This custom code will 
typically result in an RTI call. The RTI callbacks are 
also part of the execution environment and result in 
events for the state machine. This mechanism is 
explained in more detail in the next chapter. For now it 
is sufficient to mention that we have the following 
custom actions and events available in the SCXML 
document: 
 

Custom action: Event: 
CreateAndJoinFederation - 
DiscoverFederates DiscoverFederatesCompleted 
SynchronizeFederation SynchronizeFederationCompleted 
SaveFederation SaveFederationCompleted 
RestoreFederation RestoreFederationCompleted 
ResignAndDestroyFederation - 
ResignFederates - 
StartResume - 
StopFreeze - 

 
The CreateAndJoinFederation action is a combination 
of CreateFederation and JoinFederation. Similarly the 
ResignAndDestroyFederation is a combination of 
ResignFederation and DestroyFederation. 
 
An exception may be raised from a custom action in 
case of an error. From SCXML point of view an 
exception is the same as an event, but by giving these 
events a special name it is possible to handle error 
cases in the same way as other events. 
 
Now we have a look at some SCXML snippets. We 
start with the top level element of the SCXML 
document, followed by the data model and a number of 
state elements. 
 
6.1 SCXML Element  
The top level element of the SCXML document is: 
 
<scxml xmlns="http://www.w3.org/2005/07/scxml" 
       xmlns:rti="http://rti.actions/CUSTOM" 
       version="1.0" 
       initialstate="Joining"> 

 
The xmlns attribute defines the namespace for the 
custom actions, in this case “rti”. The initialstate 
attribute refers to the initial state of the state machine. 
 
6.2 Data Model Element 
The data model defines the data objects that we use in 
the state machine. It is actually the only place in the 
SCXML document to memorize state machine data, as 
custom actions by itself are by definition memory less. 
The data model is defined as: 
 
<datamodel> 
  <data name="federation"> 
    <execution xmlns=""> 

      <federation>World</federation> 
      <federate>EM</federate> 
      <fdd>file:/HelloWorld.xml</fdd> 
      <federates>ned</federates> 
      <timeout>10</timeout> 
      <savelabel>TheSaveLabel</savelabel> 
      <iterations>2</iterations> 
    </execution> 
  </data> 
</datamodel> 

 
The value of a data object can be accessed or updated 
from the SCXML document via an XPath expression. 
To access for example the value of the data object 
“fdd” we use: 
 

"Data(federation,'execution/fdd')" 
 
6.3 State Elements 
The next couple of snippets show the state elements 
Joining, Initializing, Saving, Iterate and Resigning. The 
other state elements are similar to these state elements 
and the reader can easily infer them. 
 
The initial state of the state machine is the Joining 
state. The Joining state has two on-entry actions, 
namely: CreateAndJoinFederation and 
DiscoverFederates. For the second action the event 
DiscoverFederatesCompleted is raised when all listed 
federates have joined. This event causes a transition to 
the next state, Initializing. An exception causes a 
transition to the Error state. 
 
<state id="Joining">  
  <onentry> 
    <rti:CreateAndJoinFederation 
      federationname= 
       "Data(federation,'execution/federation')" 
      Federatename= 
        "Data(federation,'execution/federate')" 
      fdd= 
        "Data(federation,'execution/fdd')" /> 
     
    <rti:DiscoverFederates 
      Federatenames= 
        "Data(federation, 'execution/federates')" 
      timeout= 
        "Data(federation, 'execution/timeout')" /> 
  </onentry> 
 
  <transition 
    event="DiscoverFederatesCompleted" 
    target="Initializing"/> 
  <transition 
    event="CreateAndJoinFederationException" 
    target="Error"/> 
  <transition 
    event="DiscoverFederatesException" 
    target="Error"/> 
</state> 

 
The Initializing state has one on-entry action called 
SynchronizeFederation. This action registers a 
synchronization point. Once the federation is 
synchronized, that is the participating federates have 
achieved this synchronization point, the event 



SynchronizeFederationCompleted is raised, causing a 
transition to the Saving state. 
 
<state id="Initializing"> 
  <onentry> 
    <rti:SynchronizeFederation 
      labelname="'Initialized'"/> 
  </onentry> 
 
  <transition 
    event="SynchronizeFederationCompleted" 
    target="Saving"/> 
  <transition 
    event="SynchronizeFederationException" 
    target="Error"/> 
</state> 

 
The Saving state has one on-entry action called 
SaveFederation, to initiate a Federation Save. The 
event SaveFederationCompleted triggers a transition to 
the next state, Iterate. 
 
<state id="Saving"> 
  <onentry> 
    <rti:SaveFederation 
      savelabel= 
        "Data(federation, 'execution/savelabel')" /> 
  </onentry> 
 
  <transition 
    event="SaveFederationCompleted" 
    target="Iterate"/> 
  <transition 
    event="SaveFederationException" 
    target="Error"/>   
</state> 

 
The Iterate state does a count down on the number of 
iterations. In the on-entry part the number of iterations 
is decremented by one. Depending on the current value 
a transition is made to either the Restoring state or the 
Stopping state. 
 
<state id="Iterate"> 
  <onentry> 
    <assign 
      location= 
        "Data(federation, 'execution/iterations')" 
      Expr= 
        "Data(federation, 'execution/iterations')-1" 
/> 
  </onentry> 
 
  <transition 
    cond="Data(federation, 'execution/iterations') >= 
0" 
    target="Restoring" /> 
  <transition target="Stopping" /> 
</state> 

 
The Resigning state is a final state. It has an on-entry 
action ResignAndDestroyFederation to resign from and 
destroy the federation execution, as well as logging a 
final message. 
 
<state id="Resigning" final="true"> 
  <onentry> 
    <rti:ResignAndDestroyFederation /> 
    <log expr="'The End'"/> 

  </onentry> 
</state> 

 
7. Execution Manager Federate 
The snippits as described in the previous chapter are 
part of an SCXML document that specifies a state 
diagram. TNO has developed an EM federate that can 
execute such an SCXML document by using the 
Apache Commons SCXML component [7].  
 
Apache Commons SCXML is an implementation of the 
W3C SCXML specification aimed at creating and 
maintaining a Java SCXML engine. It is capable of 
executing a state machine defined using an SCXML 
document, and abstracts out the environment 
interfaces. Commons SCXML is a reusable Java 
component from the Apache Commons project, which 
is an open-source project of the Apache Software 
Foundation.  
 
The TNO EM federate consists of the five packages as 
shown in Figure 17.  
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Figure 17: Package diagram of the TNO EM 
federate. 
 
The Commons SCXML and the RTI packages are third 
party libraries, while the GUI, ExecutionControl and 



HLA Middleware packages are developed for this use 
case. The Model-View-Controller design pattern [8] 
has been applied by dividing the federate into a: 
 
1. Model: 
The core functionality consists of the Commons 
SCXML, the HLA Middleware, and the RTI library. 
Commons SCXML executes the state machine by 
performing custom actions as described in the SCXML 
document until it has to wait on an event to be 
triggered by the HLA Middleware. The triggering of 
the events keeps the state machine running, because it 
will cause state transitions and new actions to be 
performed. The HLA Middleware provides an 
abstraction of the RTI programming interface that can 
be used easily by the custom actions. A custom action 
can correspond to one or more RTI calls. Besides 
hiding the interface details of the RTI, the HLA 
Middleware implements an event handling loop that 
receives and processes the RTI callbacks until a final 
state has been reached or a stop command has been 
received from the user interface. An RTI callback can 
cause the triggering of an event. Commons SCXML 
then decides whether this event causes a state 
transition.   
 
2. View: 
The GUI lets the user select the SCXML document, 
provides buttons to start and stop the state machine, 
and displays the current state name. 
 
3. Controller: 
The ExecutionControl initializes Common SCXML 
with the SCXML document and the list of custom 
actions, handles the user input from the GUI, starts the 
state machine by starting the SCXML executor, starts 
the event handling loop of the HLA Middleware, stops 
the state machine (when the user wants to stop it before 
a final state has been reached) by stopping the event 
handling loop of the HLA Middleware, handles state 
change notifications from Commons SCXML and 
sends the new state info to the GUI. 
 
The action-event loop is the core of the federate 
executing a state diagram: custom actions performed 
by Commons SCXML result in RTI calls, while RTI 
callbacks processed by the HLA Middleware result in 
the triggering of events, etc. Also RTI exceptions 
raised during RTI calls can cause the triggering of 
exception events. 
 
For the SynchronizeFederation action this loop is 
illustrated in more detail in Figure 18. The action 
results in multiple RTI calls and callbacks and it ends 
with a single SynchronizeFederationCompleted event. 
If something would have gone wrong, then it should 

end with a SynchronizeFederationException event (this 
is not shown in the figure). 
 

sd Sequence Diagram

Common SCXML RTIHLA Middleware

SynchronizeFederation()

registerFederationSynchronizationPoint()

announceSynchronizationPoint()

synchronizationPointAchieved()

federationSynchronized()

SynchronizeFederationCompleted()

 
Figure 18: Sequence diagram of the 
SynchronizeFederation action and resulting event. 
 
The SCXML executor has no method to stop the 
execution of the state machine before a final state has 
been reached. However, the same result can be reached 
by stopping the event handling loop of the HLA 
Middleware, such that no events will be triggered 
anymore and the state machine becomes inactive. If the 
federate is still joined at that moment the HLA 
Middleware will resign from the federation and the 
state machine is able to be restarted without any 
problem.  
 
Commons SCXML allows an application to change the 
state machine at run-time. States or transitions for 
example may be added to the state machine through the 
Commons SCXML programming interface. From the 
Commons SCXML programming interface it is also 
possible to manipulate the data model, thus allowing 
data object values to be changed at run-time (by for 
example a custom action). All in all, Commons 
SCXML provides a rich programming interface to 
manipulate the state machine and data model at run 
time. 
 
8. Conclusions and Further Developments 
The main conclusions are: 
• Three of the four execution management state 

control patterns shown in this paper correlate very 
well with the proposed participating federate state 
control pattern. For the iteration pattern the 
participating state pattern needs to be extended, or 
alternatively a new pattern needs to be created. 

• As the number of different execution state control 
patterns and variants of the same pattern increase it 
is important to have a taxonomy. This is currently 
lacking. 



• SCXML provides a formalism for state charts and 
is suitable as specification language for HLA 
execution state control patterns and as exchange 
format between different execution manager 
federate applications. However, the naming and 
meaning of custom actions and events need to be 
standardized. This is required to enable the 
exchange of SCXML documents across different 
SCXML execution environments. 

• SCXML is human readable. No graphical editor is 
required to create an SCXML document. The 
snippets shown in this paper were all created in 
WordPad. 

• SCXML state names are global and must be 
unique. Also nested states must have unique 
names. It is possible to include state charts from 
other SCXML documents. For example, smaller 
patterns may be defined in separate documents and 
included from the main document. The naming 
restriction however limits this kind of reuse of 
state charts. 

• SCXML matures to a W3C standard. Already 
execution environments are available for SCXML. 
For Java there is the open source project Apache 
Commons SCXML (see [7]). And for C++ there is 
a commercial product from Sidema (see [9]). 

 
Future work includes: 
• The patterns presented in this paper are defined 

from both the EM federate point of view and 
participating federate point of view. This paper 
gives first proposals for patterns from both views. 
It is clear that different patterns are needed 
depending on the type of application. For example, 
patterns that model late joining and early leaving 
federates, patterns for the Simulation Management 
family of interactions/PDUs and patterns for 
tightly or loosely coupled federations. Additional 
patterns may involve more complex modeling 
using concurrent states. 

• Suitability of the proposed design patterns needs to 
be investigated by corresponding experiments. 
First experiments are being performed under 
MSG-068.  

• The BOM concept [10] formalizes the way a 
conceptual model is described and part of this 
definition are the pattern of interplay and the state 
machine template components. We believe that the 
state control patterns described in this paper 
complement these BOM concepts. It would be a 
step forward if the state machine defined in a 
BOM can be translated automatically into an 
(executable) SCXML document, thus making a 
shift from the reuse of federate code to the reuse of 

simulation models by using model driven 
development techniques [11]. 
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