
Flexible Design and Implementation of Cognitive

Models for Predicting Pilot Errors in Cockpit Design

Jurriaan van Diggelen, Joris Janssen, Tina Mioch, Mark Neerincx

 TNO Human Factors,

 Kampweg 5,

3769 DE Soesterberg,

The Netherlands

{jurriaan.vandiggelen, joris.janssen, tina.mioch, mark.neerincx}@tno.nl

Abstract

This paper describes an integrated design and implementation framework for cog-

nitive models in complex task environments. We propose a task- and human-

centered development methodology for deriving the cognitive models, and present

a goal-based framework for implementing them. We illustrate our approach by

modelling cognitive lockup as an error producing mechanism for pilots, and pre-

sent the outcomes of the implemented cognitive models that resulted from apply-

ing our methods and tools.

Introduction
 The HUMAN project seeks to use a cognitive architecture for simulating and

predicting pilot errors in the aviation domain [3]. An ambitious endeavour such as

this one poses many challenges for the project team, such as eliciting domain in-

formation, developing plausible psychological models of motor, sensing and

thought processes, developing realistic scenarios, and implementing the cognitive

model using state-of-the-art Artificial Intelligence (AI) techniques. Each research

activity must be performed in close collaboration with the others, such that oppor-

tunities and constraints are properly observed and propagated throughout the pro-

ject.

This principle also applies for the AI implementation of the cognitive architec-

ture. We cannot expect to implement the architecture in a one-shot fashion, but

must be prepared for continuous adjustments of the implementation due to chang-

ing requirements, functionality, and scope. In other words, the implementation

must be flexible. The purpose of this paper is to show a flexible method for de-

signing and implementing the cognitive layer using the HUMAN architecture and

to report on our experiences modelling cognition using this methodology and ar-

chitecture in the aviation domain.

 The HUMAN project has adopted a multi-layered architecture where

each layer processes information on a different level of abstraction, and functions

relatively independent of the other layers. This has a number of benefits. Firstly, it

2

allows for a much more flexible implementation (by different parties) than a

monolithic architecture would. By distinguishing different relatively independent

components, developers can focus on more simple parts of the model, which

makes it easier to comprehend and adjust.

Secondly, the different layers correspond well with cognitive engineering the-

ory as proposed by Rasmussen [6], which makes implementation of psychological

models more straightforward.

 However, modelling mental processes in such a layered architecture also

poses a number of challenges for design, implementation and evaluation. A design

challenge is to make sure that domain and human factors knowledge are properly

identified and used throughout the development process. For this purpose, we

have applied the Situated Cognitive Engineering methodology [5].

Implementation challenges are to ensure interoperability between the layers

(i.e. making sure that the output of one layer is properly understood by the other

layer) and to decide which cognitive processes should be modelled in which lay-

ers, by which AI techniques. Also, we would like to separate domain-specific

knowledge from general reasoning mechanisms, which allows the framework to

be reused for different domains and easily altered when implementation require-

ments change. For the cognitive layer, we solved these implementation issues by

coupling multiple AI technologies such as Protégé-ontologies, CLIPS expert sys-

tems, and goal hierarchies.

The evaluation challenge consists of validating the cognitive layer by compar-

ing event traces from the computational model, with real data gathered from ex-

periments with human pilots. We discuss how we could use these outcomes for re-

fining the cognitive layer.

The paper is organized as follows. The next section describes the Situated Cog-

nitive Engineering methodology as a way to iteratively design, implement and

evaluate cognitive models. The generic software architecture is described in Sec-

tion 3. In the fourth section, we describe how we have applied the architecture to

implement the cognitive layer using a specific case. Section 5 provides a conclu-

sion and future work.

Situated Cognitive Engineering
The cognitive models are developed using the situated Cognitive Engineering

(sCE) methodology [5], as depicted in Figure 1.

3

T
o
o
l s

u
p
p
o
rt

Domain
Knowledge

Human Factors
Knowledge

Scenarios Cognitive models

Derive

Specify

Refine

Test

Refine

Review

Comments

Instantiate

Simulate

Sim Results

Technological
design space

Figure 1: Situated Cognitive Engineering (sCE) for Cogni-

tive Modelling

The methodology is characterized by the following properties:

- Cognitive models are developed incrementally, in an iterative process of

specification, refinement and testing.

- Human factors, domain aspects, and technological issues are studied early in

the engineering process, and used throughout the entire development process,

leading to a situated cognitive engineering approach.

- The approach offers tool-support for implementing the cognitive models, run-

ning simulations, and obtaining results.

As can be seen in the figure, the development of situated cognitive models occurs

in four stages: Derive, Specify, Test, and Refine. Each of these phases is further

explained below.

 In the derive phase, domain knowledge and human factors knowledge is

collected using several techniques, such as field observations, critical incidents

analyses and interviews with domain experts. For example, in the HUMAN pro-

ject we have investigated the aviation domain, by literature reviews and perform-

ing interviews with pilots. Additionally, we collect human factors knowledge

which is relevant for this domain. For example, we have identified cognitive

lockup as a potential serious error causing mechanism for airplane pilots.

 The next phase is the specify phase, where the knowledge obtained in the

previous phase is made more concrete in scenarios and cognitive models. We can

distinguish between two types of scenarios: scenarios which illustrate normative

behavior, and extreme scenarios which illustrate potential errors occurring under

certain conditions. The first type of scenarios results directly from the domain

study. The second type of scenarios results from domain knowledge which is

combined with human factors knowledge of error causing mechanisms. For exam-

4

ple, we could develop operationally relevant scenarios in which the pilot is faced

with a combination of context factors from which we know (from a human factors

perspective) that cognitive lockup is likely to occur. Simultaneously with the sce-

narios, we develop conceptual cognitive models which can be used to simulate the

pilot’s behavior which is described in these scenarios.

 In the test phase, the cognitive models are evaluated. This can be done by

obtaining feedback from colleagues, e.g. in scientific conferences or workshops. A

more objective way of testing is to implement the cognitive models, and instanti-

ate them with appropriate data, and obtain simulation results.

 In the refinement phase, the simulation results can be compared with the

actual data, which leads to a further refinement of the model.

Software Architecture
The tool-support we have developed for simulating cognitive models, is in-

cluded in the general HUMAN architecture. The HUMAN architecture is based on

Rasmussen’s three behavior levels in which cognitive processing takes place:

skill-based, rule-based and knowledge-based behavior [6]. The levels of process-

ing differ with regard to their demands on attention control dependent on prior ex-

perience:

- autonomous layer: this layer models reflexive behavior.

- associative layer: this layer models procedural behavior in terms of signs.

- cognitive layer: this layer models deliberative behavior in terms of symbols.

In addition to the three levels, Rasmussen also assigns a type of information to

each level. Information is categorized into signals, signs and symbols. At the skill-

based level, signals represent the information as it has been perceived, e.g. altitude

is 200 feet. Signals can then be enriched with further contextual information, e.g.

altitude < 1000 feet, and transformed into signs, to be used at the associative layer.

These signs can then be associated to semantic information and general knowl-

edge and transformed into symbols, to be used at the cognitive level. For more de-

tails on the general architecture see [3].

Because the mental processes which are of interest to this paper are high-level

processes, they are modeled at the cognitive layer. Most cognitive agent reasoning

processes can roughly be divided in three phases: a sense phase, a reason phase

and an act phase [7]. We can apply the same distinction for our cognitive simula-

tion tool.

In the sense phase, the right knowledge is gathered which serves as a basis to

make appropriate decisions. In the cognitive layer, new knowledge can be created

in two ways. Firstly, new knowledge can arise from perceptions in the environ-

ment. In our framework, this knowledge enters the cognitive layer via the associa-

tive layer. For this purpose, a translation is needed from knowledge represented in

the form of signs, to knowledge represented in the form of symbols. Secondly,

new knowledge can be a result of reasoning with existing knowledge. This is per-

formed by a knowledge reasoning component. We refer to both of these function-

alities as knowledge management.

5

In the reason phase, the agent uses its knowledge to decide which action to per-

form next. Following the intelligent agent paradigm, we use a goal hierarchy to

describe which actions must be executed, given the agent’s goals and beliefs.

Unlike many other approaches for goal-based agent deliberation, we do not only

strive for efficiency and effectiveness, but also for realism (i.e. analogue to human

deliberation). In this way, we can use the framework for modeling human errors as

well. We refer to these functionalities as decision making.

In the act phase, the agent performs the action, or task. In the context of this

paper, tasks are restricted to mental tasks. This means that a reasoning step is per-

formed, resulting in some piece of new knowledge. We refer to this functionality

as task execution.

For each of the three functionalities described above, we have developed a

separate module as depicted in Figure 2.

Figure 2: The components in the cognitive layer

DMM: The decision-making module is also called goal management, and deter-

mines which goal is executed. Each goal contains preconditions which specify

when the goal is active. To check the truth value of a precondition, it consults the

knowledge represented in the KMM. Which of the active goals will be selected to

be executed is determined by the goal-prioritization mechanism. In the human fac-

tors analysis phase of the cognitive engineering method, we identified Cognitive

Lockup (see [4]) as a relevant error producing mechanism (EPM). In the decision-

making module, we have modeled this by introducing task switch costs (TSC) rep-

resenting the difference that goal priorities must have before switching goals.

6

KMM: The Knowledge Management Module communicates with the Working

Memory (WM) in both directions. Signs are sent from WM to the KMM to enable

translation from signs to symbols. Symbols are sent from KMM to WM to store

these newly derived symbols for future use by the cognitive layer. We apply two

types of technology: ontologies and expert systems. Ontologies make syntactic

and semantic assumptions of signs and symbols explicit to facilitate implementa-

tion and communication [2]. To convert signs in AL into symbols in CL, we have

implemented a sign-symbol translator using the rule-based language CLIPS [1].

TEM: The Task Execution Module executes tasks that can lead to fulfillment of

the goal which has been selected by the DMM. Tasks (or lower-level goals) that

the AL can handle are passed to the AL. Tasks that involve sign-symbol transla-

tions or involve other kind of deductive reasoning are passed to the KMM.

Case
To demonstrate the functionality of the cognitive layer, we describe a case

which shows the occurrence of cognitive lockup.

Scenario

The scenario development is the result of the domain analysis and the applica-

tion of human factors knowledge (see Section 0). During the domain analysis, pi-

lots were interrogated about possible tasks and events that match the human fac-

tors knowledge about cognitive lockup. For example, as we are modeling tasks on

the cognitive layer, only tasks which the pilot executes consciously and non-

routinely should be chosen in the scenario. In addition, pilots could provide an

idea of importance and priority of different tasks.

This has resulted in a scenario where during the cruise phase, the pilot is flying

towards his destination. At one point a thunderstorm appears on the weather radar,

close to the destination airport. As it is not clear whether the thunderstorm affects

the current trajectory and the pilot needs to redirect to the alternate airport, the pi-

lot watches the storm closely to decide on its importance and development over

time. This task can be seen as an engaging task, which demands attention of the

pilot. During this monitoring task, the system indicates a malfunction with one of

the aircraft engines. The pilot recognizes this event (at timestep 1), but does not

immediately try to solve the issue. Instead the pilot continues the monitoring task

of the thunderstorm (at timestep 2). After a certain time (at timestep 3), the ur-

gency to handle the problem with the engines is realized by the pilot and the pilot

starts solving the system malfunction.

Implementation

As described in Section 0, three modules need to be instantiated to implement a

scenario. First, the decision-making module needs to be set to the cognitive-

lockup bias. Second, the Knowledge Management Module and the Task Execution

Module need to be implemented.

7

For the TEM, this means that the top-level goals and the low-level goals need

to be defined. The top-level goals for this scenario have been identified by the

domain experts to be the goals to monitor the thunderstorm (WatchStorm), and to

handle the system malfunction (HandleSystemMalfunction).

Event traces

During the execution of the case scenario, the model runs and produces traces

to show its activities. Figure 3 shows the priority value of each of the goals over

time. At timestep 0, the model is executing the WatchStorm goal. At timestep 1,

the virtual pilot notices the system malfunction, so the goal HandleSystemMal-

function becomes active. The initial priority of the goal is higher than the current

priority of WatchStorm. The model does not switch goals however, since the prior-

ity added with additional task switch costs is clearly higher than the priority of

HandleSystemMalfunction. At this point in time, cognitive lockup occurs. At

timestep 3, the total priority of HandleSystemMalfunction exceeds the total of

WatchStorm. This is the case because additional priority is added if a goal is active

for some time but not selected. The execution of WatchStorm is interrupted and

HandleSystemMalfunction is started. Watching the storm is still relevant, so the

goal stays active and can be executed further on in the scenario.

Figure 3: Goal priorities during storm-avoidance scenario.

The output of the model shows the occurrence of cognitive lockup. It prevents

the model to switch goals immediately, but instead the model chooses to continue

pursuing the current goal.

8

Conclusion
In this paper we have discussed methodological and developmental aspects of

modelling cognition in complex task environments. In particular, we have argued

for a flexible development approach, enabling iterative design of the cognitive

model, tailored to realistic settings, and led by human factors knowledge.

For this purpose, we adapted the situated Cognitive Engineering development

approach, and presented a modular goal-based support tool for implementing cog-

nitive models. We believe that the combination of these two frameworks have

been successful in deriving and modelling the aviation scenarios in which cogni-

tive lockup was a source of human error.

In the future, we would like to perform more development iterations of the

cognitive model. Also, we intend to perform more thorough testing of the cogni-

tive model by comparing simulated behaviour traces with real pilot behaviour.

This allows us to better incorporate the lessons learned from the previous iteration

in the next version of the cognitive model.

Acknowledgment
The work described in this paper is funded by the European Commission in the

7th Framework Programme, Transportation under the number FP7 – 211988.

This study is part of the research program "Autonomous Training" (V1023) under

contract for the Netherlands Department of Defense.

References
[1] CLIPS: a tool for building expert systems. http://clipsrules.sourceforge.net/

[2] Diggelen J. van, Beun R.J., Dignum F., Eijk R.M. van, Meyer J.-J.Ch.,

ANEMONE: An Effective Minimal Ontology Negotiation Environment, Pro-

ceedings of the Fifth International Conference on Autonomous Agents and

Multi-agent Systems (AAMAS06), ACM Press, pp. 899-906, 2006

[3] Lüdtke, A., Osterloh, J.-P., Mioch, T., Rister, F., Looije, R. (2010). Cognitive

Modelling of Pilot Errors and Error Recovery in Flight Management Tasks. In

Human Error, Safety and Systems Development, LNCS5962, Springer

[4] Mioch, T., Osterloh, J.-P., Javaux, D. (2010). Selecting Human Error Types

for Cognitive Modelling and Simulation. Under review.

[5] Neerincx, M.A., Lindenberg, J., Smets, N.J.J.M., Bos, A., Breebaart, L.,

Grant, T., Olmedo-Soler, A., Brauer, U., & Wolff, M. (2008). The Mission

Execution Crew Assistant: Improving Human-Machine Team Resilience for

Long Duration Missions. Proceedings of the 59
th

 International Astronautical

Congress (IAC2008), Glasgow.

[6] Rasmussen, J. (1983). Skills, rules, knowledge: Signals, signs and symbols

and other distinctions in human performance models. IEEE Transactions:

Systems, Man and Cybernetics,SMC-13(3), 257–266.

[7] Russel, S., Norvig, P. Artificial Intelligence, a modern approach (2003), Pren-

tice Hall publishers.

