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Abstract—The problem of unmanned aerial vehicles clas-
sification using continuous wave radar is considered in this
paper. Classification features are extracted from micro-Doppler
signature. Before the classification, the micro-Doppler signature
is filtered and aligned to compensate the Doppler shift caused
by the target’s body motion. Eigenpairs extracted from the
correlation matrix of the signature are used as informative
features for classification. The proposed approach is verified
on real radar measurements collected with 9.5 GHz radar.
Planes, quadrocopter, helicopters and stationary rotors as well
as birds are considered for classification. Moreover, a possibility
of distinguishing different number of rotors is considered. The
obtained results show the effectiveness of the proposed approach.
It provides capability of correct classification with a probability
of around 95%.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are a special type of

aerial targets which have small physical size as they are

pilotless. Classification of them by High Range Resolution

Radar Profiles (HRRPs) is problematic because sub centimetre

resolution is required to capture a spatial structure of targets

less than 100 cm in length.

The contributions of rotating turbine or propeller blades in

radar backscattering in the form of micro-Doppler contents [1]

can contain additional classification information about UAV

characteristics. These micro-Doppler contributions are unique

for different types of UAVs [2].

Exploiting micro-Doppler signatures for classification al-

lows the use of low-cost continuous wave radar in automatic

target recognition (ATR) systems. The main contribution of

this paper is in the definition and extraction of new robust

features that can be extracted from the micro-Doppler signa-

ture. The proposed features are based on basis functions of the

micro-Doppler signature and they can be extracted by applying

Eigen or Singular Value Decomposition. The resulting features

are orthogonal and unique providing essential and uncorrelated

information about the target under consideration.

Previously, the main attention of researches was paid to

target classification by micro-Doppler signatures of humans,

animals or big aerial targets [3]. The UAV classification based

on micro-Doppler signature is a novel topic.

In this paper we consider in detail all processing steps

required for feature extraction after a target has been detected.

These steps include estimation and filtering of the micro-

Doppler signature, alignment of the micro-Doppler signature

in order to compensate the Doppler contribution of the target’s

body motion and the actual feature extraction. We assess

the robustness of the extracted features by feeding them to

different types of classifiers. The assessment is performed

using measured radar data of different types of targets such

as aircraft, a quadrocopter, helicopters, stationary rotors and

birds. Each target type induces a unique micro-Doppler sig-

nature depending on the velocity, orientation and direction of

the motion.

The rest of the paper is organized as follows. The proposed

approach is introduced in details in the Section II. Then

experimental verification is given in the Section III. Finally,

conclusions are provided.

II. PROPOSED APPROACH

A. General scheme

The general scheme of the proposed ATR system consists

of the following steps:

a) Micro-Doppler signature estimation: To obtain micro-

Doppler signature, the received signal must be transformed to

time-frequency (TF) domain. The simplest and effective way

is to apply Short-Time Frequency Transform (STFT).

b) Filtering: The radar and the analogue-to-digital con-

verter (ADC) cause time-independent interference (noise pat-

tern) to the true signal. This noise can be estimated by

processing the signal-free record. When the noise pattern is

estimated it can be removed from the actual radar records.

Good robustness is shown by the “spectral subtraction” [4]

method and it is implemented in this work.

c) Alignment of the micro-Doppler signature: We want

to classify targets by micro-Doppler signature, meaning by

contribution from propellers and not from the target’ body.

The motion of the body must be estimated and compensated

before extracting features from micro-Doppler signature.

d) Feature extraction: The main contribution of the pro-

posed ATR scheme is in extracted features from TF domain.

The distinguishing features will be extracted in the form of

basis functions of the spectrogram which are processed by

amplitude of Fourier transform.

e) Classifier: In this paper, three different types of clas-

sifiers are considered in order to evaluate the robustness of

the proposed features. The first two classifiers are the linear

and non-linear Support Vector Machines (SVMs) belonging

to non-probabilistic classifiers, and the third one is the Naive
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Bayes Classifier (NBC) belonging to probabilistic linear clas-

sifiers.

B. Estimation of micro-Doppler signature

Assume s ∈ C
N is a received Doppler signal in the radar,

where N is the length of the signal in number of temporal

samples. The received Doppler signal is obtained by I/Q

demodulation of the reflected radio wave. In the digital form

it can be written as:

s(n) =
K
∑

k=1

ake
jfk(n) + ǫ(n), (1)

where j =
√
−1 is imaginary unit, K is the number of

scatters, ak is reflectivity of the k-th scatterer, fk(n) is Doppler

frequency shift of the k-th scatterer, ǫ(n) is additive noise.

The micro-Doppler signature of the moving target is esti-

mated as the magnitude of the spectrogram of the Doppler

signal:

S(f, t) =

∣

∣

∣

∣

M−1
∑

m=0

w(m)s

(

m+ (t− 1)(N − L)

)

e−j2πfm/M

∣

∣

∣

∣

,

(2)

where w(m) is the smoothing window function of length M ,

for instance, Hamming window can be exploited; f is the

frequency index; L is the overlap of successive Fourier lengths,

expressed in samples ; the dimensionality of the spectrogram

is S ∈ R
M×Q, Q = N−L

M−L .

C. Filtering

The noise ǫ could be removed from the observation s by

the “spectral subtraction” noise reduction procedure. The main

idea of this approach is subtraction of an estimate of the

average noise spectrum from the noisy signal spectrum. We

assume that noise exhibits a static frequency profile with varied

gain. Spectral subtraction is applied in our paper to reduce

radar interference effects.

The average noise spectrum is estimated by periodogram:

Υ(f) =
1

Q

Q
∑

t=1

S(ǫ)(f, t), (3)

where S(ǫ) is a STFT of noise only signal ǫ.

The gain of noise is estimated as a normalized length of the

projection of the noisy signal spectrum onto noise spectrum:

G(t) =
M
∑

f=1

Υ(f)S(f, t)

||Υ||2 , (4)

where ||Υ|| =
√

Υ(1)2 +Υ(2)2 + ...+Υ(M)2 is a Eu-

clidean norm of the noise pattern.

The noise can be removed from the signature as:

U(f, t) = S(f, t)−G(t)Υ(f). (5)

D. Alignment of the micro-Doppler signatures

In order to extract behaviour of micro-Doppler features the

motion of the target must be compensated. This can be done

by tracking the change of velocity of the target’s body.

Let us assume that target’s body is a scatterer with the

highest reflectivity coefficient. Therefore, the target’s body

will appear as the maximum at the STFT. We need to track

this maximum and then compensate the motion. However, the

contribution of the stationary clutter is not removed yet. For

this purpose we propose to apply a weighting function before

estimating the maximum:

h(f) = −γe−
f2

2σ2 (6)

where γ = 128000/Fs, σ = 7·(3200/Fs)
3 and Fs is sampling

frequency. It should be noticed that the weighting function h
is obtained in dB scale.

As initial points to track the target’s body motion, we

take 10% of samples with the highest amplitude from the

spectrogram. Then, an unsupervised clusterings is applied

to reduce the number of initial points within the neighbour

area. Then for each remain initial point, the maximum is

tracked within local window with first increasing and then

decreasing time index. In such a way we obtain a number of

possible tracks. Then the track corresponding to the maximum

accumulated energy is selected as the target’s body track V (t).
The tracked velocity V (t) is approximated by a polynomial

of order 1 to reduce the number of outliers. In such a way

the track is assumed to be a simple line. The micro-Doppler

signature is shifted then: Û(f, t) = U
(

f + V̂ (t), t
)

. The last

procedure is done by linear interpolation.

Finally, the micro-Doppler signature is ready for feature

extraction.

E. Feature extraction

The features are based on extraction of bases of the micro-

Doppler signature. These bases are orthogonal to each other

and contain essential information about the rotating parts of

the target. After the alignment we assume that the spectrogram

can be viewed as a low rank matrix.

First we need to compute the correlation between different

frequency components. Correlation matrix is computed as:

Ψ(f1, f2) =

Q
∑

t=1

Û(f1, t)Û(f2, t). (7)

Second step is to estimate eigenpairs {vr, λr}, where vr
is r-th eigenvector and λr corresponds r-th eigenvalue, such

that λ1 > λ2 > ... > λr. Each eigenpair satisfies the following

equality:
M
∑

f2=1

Ψ(f1, f2)vr(f2) = λrvr(f1) (8)

Eigenvectors are orthogonal and unique forming the basis

functions of the signal’s spectrum. Eigendecomposition of

Ψ or Singular Value Decomposition of Û can be used for

estimation of eigenpairs. The steps (7) and (8) are similar
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to Principal Component Analysis (PCA) with only small

difference. For PCA the data must be mean centred before

calculating the correlation matrix. In our case the first (and the

most important) eigenvector corresponds to the mean vector

of the spectrogram.

Next, the Fourier transform of the eigenvectors is computed

to obtain features with strong ”energy compaction” property,

i.e. the features where most of the signal information is

concentrated. Typically, the signal information is contained in

just a few low-frequency components. Due to this property we

can calculate only the I first (low-frequency) coefficients to

represent the data:

yr =
I
⋃

i=1

{
∣

∣

∣

∣

M
∑

f=1

vr(f)e
−j2πfl/M

∣

∣

∣

∣

}

. (9)

Finally, the feature set is obtained by combining the first

five transformed eigenvectors and five eigenvalues:

F =
5
⋃

r=1

{yr, λr}. (10)

III. CLASSIFICATION RESULTS

The proposed ATR system is evaluated on real radar

measurements. The radar data have been collected with a

continuous-wave radar operating in X-band at radio frequency

of 9.5 GHz. These radar measurements have been performed

within the framework of D-RACE, the Dutch Radar Centre of

Expertise, a strategic alliance of Thales Nederland B.V. and

TNO. The measured data have been made available for the

present study.

The UAVs considered for classification by the proposed

technique are listed with their characteristics in Table I.

Different types of the UAVs are considered: two planes, a

quadrocopter and three helicopters. For comparison, stationary

rotating rotors with different number of blades as well as

diverse types of birds are considered for classification. At

least 30 seconds were recorded of each class. The data

were recorded at open space with the distance to target less

than 30 m. The aspect angle, distance and velocity were

varying as within the real situation.

The sampling frequency of the ADC is set to 32 kHz. The

radar signal is divided onto a number of segments of fixed

length, by processing these segments a decision about the

class label is made. The length of one segment is set to 0.5

s. The overlapping between segments is 75%. To compute

the STFT we use a sliding Hamming window of length

M = 128 samples = 4 ms with overlapping of L = 90
corresponding to 0.9 ∗ 4 = 3.6 ms. Once the features are

extracted the radar signal is down-sampled to 3 kHz and

features are extracted again. Finally, the features extracted

for the two different sample rates are concatenated to one

feature vector. The number of Fourier coefficients in (9) is

set to I = 20.

Examples of micro-Doppler signatures of the considered

classes are illustrated in Fig. 1. The classes can be separated

TABLE I
UAVS USED FOR EXPERIMENTAL VERIFICATION OF THE PROPOSED ATR

SYSTEM. TYPE ‘P’ IS FOR PLANE, ‘H’ IS FOR HELICOPTER, ‘Q’ FOR

QUADROCOPTER, ‘B’ FOR BIRDS, ‘S’ FOR STATIONARY ROTORS.

Class Name Type # of rotors Rotor, mm

1 YAK54 vliegtuig P 1 100

2 EasyStar El-Sailor P 1 108

3 Birds B - -

4 Parrot AR.Drone Q 4 200

5 1 rotor S 1 203

6 2 rotor S 2 203

7 3 rotor S 3 203

8 4 rotor S 4 203

9 Mikado Logo 700 H 2 (main, tail) 750 (main)

10 Mikado Logo 400 H 2 (main, tail) 1040 (main)

11 Align T-REX 450 H 2 (main, tail) 715 (main)

TABLE II
PROBABILITY OF CORRECT CLASSIFICATION OBTAINED FOR 11 CLASS

PROBLEM USING 10-FOLD CROSS VALIDATION.

SVM linear SVM nonlinear Naive Bayes

94.91% 95.39% 93.6%

even visually. The features we extract are based on eigenvec-

tors of the signature and the first two of them are shown in

Fig. 1.

To classify the type of UAV we will use the machine

learning approach. All available segments are divided into

training and testing sets without overlapping. The decision

about class membership is made by a predefined system of

rules. The process of defining the system of rules is called

learning; it is performed on the training set. The number

of correctly classified segments determines the probability of

correct classification as ratio to the total number of segments

from the testing set. The K=10 cross-validation technique is

applied to obtain robust classification rates.

Computed probabilities of correct classification for different

classifiers are shown in Table II. The best results are obtained

for nonlinear SVM, such 95% of data are classified correctly.

We can notice that all of the classifiers provide similar clas-

sification results of the order of 95% showing the robustness

of the extracted features to type of classifier.

Confusion matrix for linear SVM with applied 10-fold

cross-validation is shown in Table III to estimate the intra

class distribution of classification rates. It can be seen that

all targets, except classes 1,2 and 7,8, are classified with

probability of correct classification higher than 97%. The first

two classes have more errors due to the fact that blades are

small and their micro-Doppler signatures are similar. The

results for classes 5 to 8 show the capability to distinguish

different number of rotors with errors at level of 19% for

distinguishing three from four rotors.

To show the flexibility of the proposed ATR scheme to

classify different types of the UAVs, the following classes

were removed from the training set: 1, 5, 6, 7, 9, 10. In this
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Fig. 1. Examples of filtered and aligned micro-Doppler signatures of 5 classes (first row); Eigenvectors corresponding to the largest eigenvalue (second row)
and the second largest eigenvalue (third row) of Ψ for corresponding signatures. These eigenvectors are basis functions of the micro-Doppler signatures.

TABLE III
CONFUSION MATRIX (IN PERCENTAGES) FOR LINEAR SVM CLASSIFIER

class 1 2 3 4 5 6 7 8 9 10 11

1 86 13 0 1 0 0 0 0 0 0 0

2 11 89 0 0 0 0 0 0 0 0 0

3 1 0 97 2 0 0 0 0 0 0 0

4 0 0 1 99 0 0 0 0 0 0 0

5 0 0 0 0 100 0 0 0 0 0 0

6 0 0 0 0 2 98 0 0 0 0 0

7 0 0 0 0 0 0 81 19 0 0 0

8 0 0 0 0 0 0 6 94 0 0 0

9 0 0 0 0 0 0 0 0 100 0 0

10 0 0 0 0 0 0 0 0 0 100 0

11 0 0 0 0 0 0 0 0 1 0 99

way for each type of the UAVs (plane, birds, stationery rotors,

quadrocopter and helicopter) only a single class is used for

training. The removed classes are then used to test the system.

The results of classification by linear SVM classifier are listed

in the Table IV. We can claim that proposed ATR scheme is

robust to variations inside the class, and therefore with high

probability, other UAVs with similar flying concept will be

classified correctly.

CONCLUSIONS

A new automatic target recognition system has been pro-

posed for classification of unmanned aerial targets by their

micro-Doppler signatures. The preprocessing steps of the

TABLE IV
CLASSIFICATION OF UAVS HIDDEN FROM TRAINING PROCEDURE

Class P B Q S H

1 87 8 5 0 0

5 0 0 0 100 0

6 0 0 0 100 0

7 0 0 0 100 0

9 0 0 0 0 100

10 0 0 0 0 100

signature such as filtering and Doppler alignment have been

discussed. New, robust features for target classification based

on extraction of bases of the micro-Doppler signature have

been proposed. The probability of correct classification of the

order of 95% has been achieved. It has been shown that the

type of the UAV can be determined correctly even if it was

hidden from the training set.
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