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Abstract

In this paper we present the language modeling approach to information retrieval as
a toolbox to systematically combine information from different sources. Four TREC sub-
tasks (Ad Hoc, Entry Page, Adaptive Filtering and Cross-language) are used to illustrate
the application of language models to different information retrieval problems.

1 Introduction

The EU-funded project “Twenty-One” started in 1996 originally with the objective to build a
prototype cross-language information retrieval system. This led to a number of fruitful TREC
participations, in which we evaluated the use of a probabilistic modeling approach known as
language modeling. This chapter describes the Twenty-One language modeling experiments
on a variety of TREC tasks.

The term ”language models” originates from probabilistic models of language generation
developed for automatic speech recognition systems in the early 1980’s (see e.g. Rabiner
1990). Language models assign a probability to a piece of text. For instance, “how are you
today” would be assigned a higher probability than “cow barks moo soufflé”, because the
words in the former phrase (or word pairs or word triples if so-called n-grams are used) occur
much more frequently in English than the words in the latter phrase. Automatic speech
recognizers use language model probabilities to improve recognition performance. Language
models were applied to information retrieval by a number of research groups in the late 1990’s
(Ponte and Croft 1998; Hiemstra and Kraaij 1999; Miller et al. 1999; Berger and Lafferty
1999; Ng 2000). For information retrieval, language models are built for each document. By
following this approach, the language model of the book you are reading now would assign
an exceptionally high probability to the word “TREC” indicating that this book would be a
good candidate for retrieval if the query contains this word.

1.1 Probabilistic models and IR: an overview

Interestingly, probabilistic modeling has been around in information retrieval for much longer
than the late 1990’s, or even the 1980’s, and – in a way – the language modeling approach
builds directly on many of the ideas of the more traditional probabilistic models for informa-
tion retrieval.

∗Published as Chapter 16 of E.M. Voorhees and D. Harman (eds.), TREC: Experimentation and Evaluation
in Information Retrieval, MIT Press, 2005
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It is fair to say that the approach to information retrieval presented in this chapter was
originally introduced by Maron and Kuhns (1960). In a time when manual indexing was
still guiding the field, they suggested that an indexer, which runs through the various index
terms q that possibly apply to a document D, might assign a probability P (q|D) to a term
given a document instead of making a yes/no decision. Using Bayes’ rule and a document
prior P (D), they then suggest to rank the documents by the probability that the document
is relevant P (D|q). Maron and Kuhns described how P (D) could be inferred automatically,
but they were not really looking for automatic ways to infer P (q|D), or if they were, they did
not know how the probabilities P (q|D) could be defined.

Van Rijsbergen (1986) introduced an idea quite similar to that of Maron and Kuhns: mod-
eling information retrieval as documents “implying” the query terms with some probability
P (q|D). Again, the definition of the probabilities P (q|D) was not easily found, hampering
its application to practical retrieval problems. In lack of such a definition, the INQUERY

system (Turtle and Croft 1992) used some ad-hoc combination of tf.idf weights to define the
probabilities P (q|D).

But there are alternatives to tf.idf weighting. The well-known probabilistic model by
Robertson and Sparck-Jones (1976) is built around the probability of relevance. The model
can be seen as a discriminative model, i.e. it tries to separate the relevant documents from
the non-relevant documents by following the well-known “naive Bayes” assumption (Duda
and Hart 1973): The terms in the document (usually restricted by some query terms) are
conditionally independent given relevance (or non-relevance). We might look at this as a
mechanism to generate an unseen relevant, or non-relevant, document. A substantial set of
relevant documents is needed however to estimate the probabilities for a single query, which
makes it hard to apply the model to practical retrieval situations like the TREC Ad hoc task.

Another interesting probabilistic modeling approach is suggested by Bookstein and Swan-
son (1974) and Harter (1975). They assume that documents are created by a random stream
of term occurrences. For each term, the collection can be divided into two subsets, where one
subset treats a subject represented by a term to a greater extent than the other. The number
of term occurrences tf may then be modeled by a mixture of two Poisson distributions, one for
each subset. Unfortunately, as with relevance, it is unknown to which subset each document
belongs, making it hard to apply the model to practical situations. The “two Poisson” model
did however inspire the Okapi BM25 weighting algorithm (Robertson and Walker 1994).

Knowing what we know now from the language modeling approach, and looking back at
the history of probabilistic modeling for information retrieval, we might observe that we are
actually using many of the early ideas. We will use different TREC tasks to illustrate different
aspects of the language modeling approach. Where appropriate, we will refer to the classics
of probabilistic modeling for information retrieval.

1.2 A language model for every task

Different tracks in TREC call for different approaches to information retrieval. Some tasks,
like the Ad Hoc topic search task, might already be served quite well by a basic retrieval
approach, but many other TREC tasks call for including some special “non-content” in-
formation. Cross-language information retrieval obviously needs to deal with some form of
automatic translation, Adaptive Filtering needs to deal with the user’s feedback on the se-
lected documents; and the Web Entry Page search task might benefit from e.g. counting the
number of in-links to a document.
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This chapter will introduce a language modeling approach for four TREC subtasks. Every
model is built around the basic query generation language model, but each model has its own
little twist. In Section 2, we introduce the basic model and show how document priors can
improve performance on the TREC Ad Hoc task. Section 3 elaborates on the use of document
priors by applying them to the TREC Web Entry Page task. Section 4 extends the model by
including a statistical translation model for application to the TREC Cross-language retrieval
task. Finally, Section 5 presents a relevance feedback method, which is applied to the TREC
Adaptive Filtering task.

2 The basic language model and the TREC Ad Hoc task

We believe that many of the early probabilistic models failed as general models for diverse
retrieval tasks, because they failed to answer a few quite fundamental questions about the use
of probabilistic models in general: What justifies the use of probabilistic models? What prob-
ability mechanisms are involved? And, how do these mechanisms fit the reality of information
retrieval?

The use of probability theory might be justified by modeling the process of a user formu-
lating a query Q while he/she has a relevant document D in mind. Imagine picking a word at
random from this page by pointing at the page with closed eyes. Such a process would define
a probability P (Q|D) which might be used as Van Rijsbergen’s (1986) “logical implication”.
Is this really how users formulate queries? A pragmatic answer to that question would be: If
such a model achieves good performance on a real retrieval task, then the model fits reality
well. Test collections, like those developed in the TREC conferences can be used to measure
a model’s performance on realistic retrieval tasks in a controlled setting.

Actually, the answer to the above question is “no”, such a model does not work very well
in practice because of the so-called sparse data problem (Manning and Schütze 1999). The
mechanism above suggests that terms that do not occur in a document are assigned zero
probability, but the fact that a term is never observed in a document does not mean this term
is never entered in a query for which the document is relevant. The reality of information
retrieval is that users are not very good in formulating queries. Many query terms do not seem
to come from relevant documents at all, they seem to come from some general vocabulary.
These might be words like “Find documents about” (which are often found in TREC topic
descriptions, see Harman 2005), but it might be any other query term that seems plausible
but that does not contribute to retrieval performance.

We will call query terms that presumably were generated from the relevant document
the important terms, and the terms that presumably were generated from the user’s general
vocabulary the unimportant terms. Given a document collection C and a relevant document
D, the process of generating a query term qi might be modeled by a mixture of two probability
measures: P (qi|D) for the important terms, and P (qi|C) for the unimportant terms. Of
course, just from looking at the query it is unknown which terms are the important terms and
which are the unimportant terms. Therefore, the mixture parameter λ defines the unknown
probability of term importance. Equation 1 defines our basic language model if we assume
that each term is generated independently from previous terms given the relevant document.

P (q1, q2, · · · , qn|D) =

n
∏

i=1

(

λP (qi|D) + (1−λ)P (qi|C)
)

(1)
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The basic language model addresses both the sparse data problem – all terms are generated
with a non-zero probability – and the fact that queries consist of content words and query
jargon (Zhai and Lafferty 2001). Interestingly, like Maron and Kuhns (1960), we take the
document / query (term) implication P (Q|D) as the basis of our model. Like Harter (1975),
we assume an explicit probability mechanism that defines a mixture model.

Ideally, we would like to train the probability of an unimportant term on a large corpus
of queries. In practice however, we will use the document collection C to define these proba-
bilities, hence the notation P (qi|C). Whenever we use the TREC topic descriptions, a small
number of words like “Find documents about” will be removed from the query to compensate
for the lack of a query corpus. We use Bayes’ rule as shown in Equation 2 to define the
posterior probability of the document D being relevant given the query Q = q1, · · · , qn.

P (D|q1, q2, · · · , qn) =
P (q1, q2, · · · , qn|D)P (D)

P (q1, q2, · · · , qn)
(2)

Note that the denominator on the right hand side does not depend on the document. It
might therefore be ignored when a document ranking is needed. The prior P (D) however,
should only be ignored if we assume a uniform prior, that is, if we assume that all documents
are equally likely to be relevant in absence of a query. Some non-content information, like
the source of a document, its age, etc. might contain some hints on whether it is likely to
be relevant or not. Robertson and Walker (1994) and Singhal et al. (1995) argued that
on the Ad Hoc task, the length of a document already contains some clues. The longer the
document, the more likely it is to be relevant.
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Figure 1: Prior probability of relevance P (D) given document length on the Ad Hoc task

Figure 1 shows the probability of relevance given the document length for the TREC Ad
Hoc task. We divided the document length, which varies from documents containing only one
or two words to documents containing over 10,000 words, into 16 bins on a log scale. Each
point on the plot marks the probability of relevance of the documents in one of these bins.
The 16 bins and the corresponding probabilities define a discrete probability measure P (D)
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which takes one of 16 different values based on the bin in which D falls. As such, it can be
used directly in Equation 2. Alternatively, looking at the plot, one could make the general
modeling assumption that the a-priori probability of relevance is taken as a linear function of
the document length, so:

Pdoclen(D) = c · doclen(D) (3)

where doclen(D) is the total number of words in document D, and c is a constant that can
be ignored in the ranking formula.

runname description avg. prec.
tno7cbm25 BM25 weighting 0.232
tno7tw3 language model 0.241
tno7tw4 language model with doclen prior 0.251

Table 1: Results of TREC-7 Ad Hoc runs

Table 1 lists the results of TREC-7 Ad Hoc experiments using title, description and
narrative of the topics1 (Harman 2005b), one run using the BM25 algorithm (implemented
as in Singhal et al. 1995), and one using the language modeling algorithm with a document
length prior. As mentioned above, the language model has an unknown parameter λ that
defines the mixture of local and global frequency information. We used λ = 0.15 based on
experiments on the TREC-6 Ad Hoc collection (Hiemstra and Kraaij 1999).

3 Prior probabilities and the TREC Entry Page task

An application where the prior information component of the basic model (cf. Equation 2) is
even more important is the TREC Entry Page task, which was run as a new task of the Web
track of TREC-10 in 2001. Earlier issues of the Web track had already targeted the issue of
integrating information about link-structure with traditional IR models for Ad Hoc retrieval.
Since these attempts had shown no significant benefit for link based approaches and it was
realized that links played an important role in commercial search engines like Google (Brin
and Page 1998), a special task was created investigating the important subclass of searching
for the entry page of an organization. This decision readjusted TREC’s focus to “real-life”
search tasks, which were no longer limited to the classical information seeking queries modeled
by the initial Ad Hoc and Routing tasks.

For an elaborate description of the Entry Page task we refer to Hawking (2005) and
Kraaij, Westerveld, and Hiemstra (2002). The basic idea is that each organization has an
entry page on the web, functioning as a portal to its information. Entry page search differs in
several aspects from Ad Hoc search: i) there is only one (sometimes a few) entry page(s) for
a particular organization, so high precision is important, ii) web data is different from news
data, the main difference being link structure. We could thus formulate the challenge of the
Entry Page task as follows: integrate knowledge about external properties and context of a
document with our basic model in order to improve high precision.

We will show that the generative probabilistic approach we have presented in Section 2
can easily accommodate information derived from these knowledge sources. In Formula 4,
l refers to the event a user likes a document, given a certain task. In the context of entry
page search, a user is interested in an entry page as specified by the query Q. Formula 4

1The runs were redone based on the official Twenty-One experiments.
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decomposes the posterior probability that a document is being liked given the query and a
specific document by applying Bayes’ rule.

P (l|D,Q) =
P (Q|l,D)P (l|D)

P (Q|D)
(4)

We include l here to relate the language modeling approach to the Robertson/Sparck-Jones
model (Lafferty and Zhai 2003), and to show that estimating priors is not really different from
estimating the probability of relevance (i.e., the probability that the user ‘likes’ the document)
as done by Robertson and Sparck-Jones (1976). Since our aim is to rank documents by their
posterior probability, we can apply any convenient order preserving transformation. It is
customary to work with the log-odds of being liked instead of the pure probability, since it
is difficult to estimate the normalizing probability P (Q|D) = P (Q, l|D) + P (Q, l̄|D). We
further approximate the probability of the query given a document which is not relevant by
generating it from the background collection.

log
P (l|D,Q)

P (l̄|D,Q)
= log

P (Q|l,D)

P (Q|l̄, D)
+ log

P (l|D)

P (l̄|D)
= log

P (Q|l,D)

P (Q|C)
+ log

P (l|D)

P (l̄|D)
(5)

Assuming term independence and applying smoothing by linear interpolation with a back-
ground model leads to:

log
P (l|D,Q)

P (l̄|D,Q)
=

∑

qi∈Q

(

log
λP (qi|l,D) + (1−λ)P (qi|C)

P (qi|C)

)

+ log
P (l|D)

P (l̄|D)
(6)

This model can be interpreted as a Bayesian update process. The prior log-odds of being liked
is initially purely determined by the document properties itself and subsequently updated with
the additional knowledge of the likelihood of the query given the fact that the document is
liked versus the likelihood of the query given a background model. We will see that unlike
the Ad Hoc task, prior knowledge is of utmost importance for entry page search.

We investigated three properties of web pages in order to provide an initial estimate of
the prior probability of a web page: document length, the number of documents pointing to
the document via a hyperlink (inlinks) and the form of the URL. It is well known that longer
documents have a higher probability of relevance for Ad Hoc search, but it is not clear whether
long documents have a higher probability of being an entry page. The conjecture that a high
number of incoming links indicates that the page pointed to is an entry page is already much
more intuitive. Finally, most web users, even with very little search experience know that
entry pages usually have short URL’s. There are probably some very simple explanations for
this fact i) entry pages benefit from being short, since they can be memorized more easily
ii) since information on the web is often stored in a hierarchical file system, entry pages are
usually located in the top or at least high in the directory hierarchy.

We measured the informativeness of each of the three features in the following way: for
each feature xi, we divided the document set in disjunct classes vij and directly estimated
P (l|xi = vij) on a training set. This set consisted of 100 training topics and corresponding
entry pages of the TREC-2001 Web track Entry Page task. The probability of being an entry
page given the information that a document belongs to a certain bin is defined by:

P (l|xi = vij) =
c(EP , vij)

c(vij)
, (7)
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where c(vij) is the cardinality of class vij and c(EP, vij) is the number of entry pages in class
vij . The training set is small, but probably sufficient to estimate probabilities for a small
number of classes. Size and number of classes are chosen such that a class contains at least
5 home pages of the training set, while trying to maximize the number of classes in order
to reduce variance. The goal of this procedure is to define a partitioning of the data set, by
means of feature restrictions, which correlates well with being an entry page.

3.1 Document Length

For the document length feature, we created classes by quantization into 16 bins on a log scale.
Section 2 showed that document length priors are useful in an Ad Hoc search task. Here we
investigate whether the length of a document is also a useful indicator of the probability that
a document is an entry page. Figure 2 shows a plot of the probability of relevance versus page
length, calculated on the training data provided for the Entry Page task of TREC-2001’s Web
track. Note that the probability of relevance is also plotted on a log scale; therefore bins with
zero probability of relevance do not appear.
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Figure 2: Prior probability of relevance given document length on the Entry Page task
(P (entry page|doclen))

Indeed document length can predict the relevance of a page, since the distribution is not
uniform. Pages with a medium length (60-1000 words) have a higher probability, with a
maximum around 100-200 words. However, the differences are much less marked than for Ad
Hoc search.

3.2 Number of inlinks

For the inlinks feature, we created classes by quantization into 9 bins on a log scale. The
number of inlinks is a much better predictor of being an entry page as is shown in Figure 3
(which is based on 18 bins). The prior could probably also be modeled as a linear function.
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Figure 3: Prior probability of relevance given number of inlinks on the Entry Page task
(P (entry page|#inlinks))

3.3 URL depth

For the URL attribute of the web pages we defined four classes in the following way:

root: a domain name, optionally followed by ‘index.html’
(e.g. http://trec.nist.gov)

subroot: a domain name, followed by a single directory, optionally followed by ‘index.html’
(e.g. http://trec.nist.gov/publications/)

path: a domain name, followed by an arbitrarily deep path, but not ending in a file name
other than ‘index.html’
(e.g. http://trec.nist.gov/publications/trec8/system-descriptions/)

file: anything ending in a filename other than ‘index.html’
(e.g. http://trec.nist.gov/resources.html)

The resulting probabilities for the different URL-types are listed in Table 2. Note that the
prior probabilities differ several orders of magnitude; a root page has an almost 2000 times
larger probability of being an entry page than any other page.

Document type P (EP)

root 6.44 · 10−3

subroot 3.95 · 10−4

path 9.55 · 10−5

file 3.85 · 10−6

Table 2: Prior probabilities for different URL-types, estimated on the training data
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3.4 Generalizing to a combination of features

We have identified several non-content features that seem promising in discriminating between
relevant and non-relevant web pages. To estimate the prior on a combination of these features,
we investigated the following. Let’s assume each document D is described by a number of
features x1, x2, . . . , xn, where x1 represents URL depth, x2 represents the number of inlinks,
etc. The problem can be formalized as follows, we want to estimate:

log
P (l|D)

P (l̄|D)
= log

P (l|x1, x2, . . . , xn)

P (l̄|x1, x2, . . . , xn)
(8)

A combined inlinks/URL-depth prior would already need 9 × 4 = 36 model parameters. Be-
cause the training set of 100 entry pages is too small to reliably estimate this many parameters,
we assume conditional independence of the features given relevance, giving:

log
P (l|D)

P (l̄|D)
=

n
∑

i=1

log
P (xi|l)

P (xi|l̄)
+ log

P (l)

P (l̄)
(9)

Some readers might recognize the above definition as the probabilistic model of informa-
tion retrieval by Robertson and Sparck-Jones (1976). An important difference with the
Robertson/Sparck-Jones model is the fact that the features are not the index terms, but
some non-content information about the document. As a consequence, we are able to use
relevance information over 100 entry page queries of our training set, and reliably estimate
the probability of relevance. In practice, the training set did not contain labeled non entry
pages, which made it difficult to estimate P (xj |l̄). Instead we used P (xj) which might be a
good approximation as there are many more web pages than entry pages in the training data.

Instead of assuming conditional independence between inlinks and URL-depth we might
also merge some of the 36 classes. We only partitioned the root URL class by number of
inlinks, since most entry pages have root URL’s, so a further division based on inlinks can
still yield reasonably reliable parameter estimates. Table 3 shows the statistics of the 12
classes.

Document type ti #entry pages #WT10g P (EP)

root with 0-1 inlinks 11 (10.1%) 1484 (0.0%) 0.0074
root with 2-4 inlinks 14 (12.9%) 3431 (0.2%) 0.0041
root with 5-9 inlinks 14 (12.9%) 2446 (0.1%) 0.0057
root with 10-19 inlinks 8 (7.4%) 1404 (0.0%) 0.0057
root with 20-49 inlinks 12 (11.1%) 1110 (0.0%) 0.011
root with 50-99 inlinks 5 (4.6%) 412 (0.0%) 0.012
root with 100-199 inlinks 6 (5.5%) 205 (0.0%) 0.029
root with 200-999 inlinks 5 (4.6%) 175 (0.0%) 0.028
root with 1000+ inlinks 4 (3.7%) 38 (0.0%) 0.11
subroot 15 (13.9%) 37959 (2.2%) 0.00043
path 8 (7.4%) 83734 (4.9%) 0.00010
file 6 (5.6%) 1557719 (92.0%) 0.000038

Table 3: Distribution of entry pages and WT10g over different document types
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Table 4 shows the mean reciprocal rank (MRR) for runs on the TREC-2001 test collection
in combination with different priors. Both inlinks and URL-depth help to increase search
effectiveness, especially the URL prior is highly effective. The combination of the inlinks prior
and the URL prior based on a conditional independence assumption shows somewhat lower
performance than the run based on only the URL. This might indicate that the independence
assumption does not hold. The set-up based on 12 disjoint classes as defined in Table 3
yielded a MRR of 0.7832, which is a small improvement with respect to the run based on just
the content and URL depth information. We think results could be even more improved, with
a larger training set and a more principled way to define classes, e.g. using methods proposed
by (Dougherty et al. 1995).

Ranking method MRR Description

P (Q|D) 0.3375 no prior
P (Q|D)Pinlinks(D) 0.5064 inlinks prior (analytical)
P (Q|D)PURL(D) 0.7705 URL-depth prior (4 bins)
P (Q|D)Pinlinks+URL(D) 0.7504 combined inlinks/URL-depth prior

assuming conditional independence
P (Q|D)Pinlinks+URL(D) 0.7832 combined inlinks/URL-depth prior

using direct estimation (12 classes)

Table 4: Results for different priors

4 The translation model and the TREC Cross-language task

Our work on Cross Language Information Retrieval (CLIR) in TREC and the closely related
CLEF evaluation is another good example that the basic language model can be easily ex-
tended for a new task. The CLIR problem deals with the retrieval situation where the query
is formulated in a different language than the documents (Harman, Braschler and Sheridan
2005). A simple approach is to use a Machine Translation (MT) system to translate either the
query or all of the documents, such that the problem is reduced to a monolingual problem.
There are several caveats and disadvantages to this approach. Firstly, full MT is not available
for all language pairs, secondly there are reasons to believe that an MT based approach is not
optimal, since it provides just one translation. The fact that multiple translations could be
helpful to find relevant documents (we assume a query translation approach, since it is more
efficient) is very similar to a monolingual situation, where the searcher tries to enhance recall
by providing synonyms for salient terms. Professional searchers use faceted queries (Pirkola
et al. 1999) for this purpose, where alternatives for each concept are specified as a disjunction
and these disjunctions themselves are connected by a conjunction operator. The idea to use
some kind of Boolean structure for CLIR was first proposed by Hull (1997). For TREC-7 and
TREC-8, we designed a probabilistic version of this idea, by realizing that a conjunction can
be modeled by summing over probabilities of translation alternatives

We reformulate our basic model here to show the derivation of the extended model. Sup-
pose we have an English document DE , and a French query QF consisting of n different words
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(types) fi, each occurring tfq(fi) times in QF , then we can reformulate Formula 1 as follows:

log P (QF |DE) =

n
∑

i=1

tfq(fi) log(λP (fi|DE) + (1−λ)P (fi)) (10)

Estimation of P (fi|DE) i.e. a word in the source language given a document in the target
language is of course more difficult than its monolingual counterpart. By introducing a
variable for a word in the target language, we can reduce P (fi|DE) to two simpler estimation
problems:

P (fi|DE) =

NE
∑

j=1

P (fi, ej |DE) =

NE
∑

j=1

P (fi|ej , DE)P (ej |DE) ≈

NE
∑

j=1

P (fi|ej)P (ej |DE) (11)

where NE is the size of the English target vocabulary. The approximation P (fi|ej , DE) ≈
P (fi|ej) assumes that translation is independent of the document context. P (fi) can either
be directly estimated on a corpus in the source language, but also – by the same derivation –
on a corpus in the target language. The latter has the advantage that both estimates stem
from corpora from the same size and domain, which makes the estimates better comparable.
After substitution, Formula 10 can be rewritten as:

log P (QF |DE) =
n

∑

i=1

tfq(fi) log

NE
∑

j=1

[

P (fi|ej)(λP (ej |DE) + (1−λ)P (ej |CE))
]

(12)

where n is the number of different terms in the query. Although often referred to as query
translation, we think that this is actually a model for document (model) translation, since
the language model representing the document is first “mapped” to the source language,
before the actual matching process takes place. The approach is different though from what
is usually referred to as document translation in CLIR, since in that case a document model
is estimated on a translated document, instead of translating the document model. We will
refer to this model as “document model translation” (dmt).

An alternative approach is to match in the target language and to use the reverse trans-
lation model P (ej |fi). We actually first normalized the basic ranking Formula 1 by taking
the geometric mean of P (Q|D) yielding:

log P (Q|D)
1

ql = log
P (Q|D)

ql
=

n
∑

i=1

tfq(qi)
∑n

k=1 tfq(qk)
log(λP (qi|D) + (1−λ)P (qi|C))

=
n

∑

i=1

P (qi|Q) log(λP (qi|D) + (1−λ)P (qi|C))

(13)

Note that the query length ql is defined as follows: ql =
∑n

k=1 tfq(qk). We can restate this as
a CLIR model where the event space is defined over the vocabulary in the target language:

log P (QF |DE)
1

ql =

n
∑

i=1

P (ei|QF ) log(λP (ei|DE) + (1−λ)P (ei|CE)) (14)

In this case, P (ei|QF ) can be estimated with the aid of a reverse translation model and a
derivation similar to (11):

log P (QF |DE)
1

ql =

n
∑

i=1

NE
∑

j=1

P (ej |fi)P (fi|QF ) log(λP (ej |DE) + (1−λ)P (ej |CE)) (15)
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In formula (15) the query is first mapped to a probability distribution in the target language,
by assuming word by word context insensitive translation. We will refer to this model as
“query model translation” (qmt). Since P (ej |fi) is zero for all English words ej which are
not translations of a query term fi, the model is just as efficient as the dmt model.

4.1 Related work

A similar model has been developed for the Chinese and Arabic track by BBN (Xu et al.
2001). Our model is also quite similar to the IR model proposed by Berger and Lafferty
(1999), who view monolingual IR as a translation process. These models have a different
approach to smoothing, since P (fi) is estimated on a source language corpus. Another related
approach is the use of structured queries, as advocated by Pirkola (1998). Here, translations
of a term form an equivalence class by using INQUERY’s synonym operator. This approach is
similar to a special instantiation of the translation probability matrix, namely the case where
P (fi|ej) = 1 for each translation of a source term fi. We will refer to this model by syn.

Our model assumes context independent word-by-word translation, which is clearly too
simplistic to reflect real-world translation problems. Recently, new language model based
approaches for CLIR have been proposed, which start from weaker assumptions. In particular,
immediate context is taken into account by using a bigram model (Federico and Bertoldi
2002) or document aligned corpora are exploited to estimate cross-lingual relevance models
(Lavrenko et al. 2002). However, the gain in effectiveness of these models is relatively small
and their efficiency is unfortunately much lower.

4.2 Comparison of different CLIR model variants

We will illustrate the relative performance of the models on the CLEF 2000 dataset, for 40
English queries on the French subcollection (Le Monde 87,191 docs) and 40 French queries on
the English subcollection (LA times, 113,005 docs). Documents and queries were lemmatized
using the Xelda morphological toolkit from Xerox Grenoble.

We will compare the three discussed systems (qmt, dmt, syn, complemented with mono-
lingual runs, a run based on query model translation with equal probabilities qmt-eq, a run
where we took just the best translation in a query model translation setting (qmt-bt) and a
run where the queries were translated using the web based MT service Babelfish MT.

We estimated the translation models P (fi|ej) and P (ej |fi) on a parallel web corpus con-
structed at RALI (Nie et al. 1999; Kraaij et al. 2003). The translation models were pruned
by taking the 100,000 best translation relations according to an entropy criterion.

As an illustration, we present the French translation of the word “drugs” taken from query
C003 about drug policy, tuned for several CLIR models in Table 5. It is clear that the dmt has
a query expansion potential. However, it expands both the medical and the narcotic sense.
We will see that the dmt model is able to take advantage of this query expansion effect, even
if the expansion set is noisy.

Table 6 lists the results for the different CLIR models. The bottom of the table shows
a few statistics about the translation models: #fw is the average number of translations in
the forward translation model (source language to target language), which is used for all the
qmt-based runs. #rev is the average number of translations of the model used for the dmt

run. The %missed statistic refers to the percentage of query terms, for which no translations
were found.
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run id translation

MT drogues
qmt <drogue,0.44, medicament,0.36; consommation, 0.06; relier, 0.01; consommer,

0.02; drug; 0.01; usage, 0.01; toxicomanie, 0.01; substance, 0.01; antidrogue,
0.01; utilisation, 0.01; lier, 0.01; therapeutique, 0.01; actif, 0.01; pharmaceu-
tique, 0.01>

qmt-eq <drogue,0.06, medicament,0.06; consommation, 0.06; relier, 0.06; consommer,
0.06; drug; 0.06; usage, 0.06; toxicomanie, 0.06; substance, 0.06; antidrogue,
0.06; utilisation, 0.06; lier, 0.06; therapeutique, 0.06; actif, 0.06; pharmaceu-
tique, 0.06>

qmt-bt <drogue,1.0>
dmt <médicament,0.79; drogue,1.0; toxicomane,0.23; drug,1.0; alcoolisme,0.24;

drugs,0.70; stupéfiant,0.34; antidrogue,1.0; médicamenteux,0.36; droguer,1.0;
pharmacorésistance,0.47; pharmacothérapie,0.25; assurance-médicaments,0.33;
relargage,0.53; pharmacorésistants,0.28; anti-inflammatoire,0.17; surdose 0.28;
stéröıdiens,0.35, drogué 0.61; pharmacodépendance,0.27 narcotrafiquants,0.57;
anticancéreux,0.22; escherichia,0.14; pharmacovigilance,0.49; selby,0.16; home-
lessness,0.14; bounce,0.23; anti-drogues,0.14; antidiarrhéique,0.12; imod-
ium,0.12; surprescription,0.10>

syn <drogue; medicament; consommation; relier; consommer; drug; usage;
toxicomanie; substance; antidrogue; utilisation; lier; therapeutique; actif;
pharmaceutique>

Table 5: Example translations of the word ’drugs’. The numbers in the top part of the table
are the translation probabilities P (fi|ej) and the numbers in the bottom part of the table are
the reverse translation probabilities P (ej |fi).

There are several effects that can be observed from this table. First of all, translations
based on a noisy parallel web corpus outperform the high quality lexicons used by Babelfish.
We think that this is due to the fact that our model is able to exploit multiple translations.
Secondly, we see that both the qmt and dmt models are very well able to deal with many
translations: the translation models provide around 10 translations per term on average. It
is clear that a lot of those “translations” are probably highly related terms, so one could
argue that we actually do some form of query expansion on a parallel corpus. Comparing the
several variant qmt runs show that using the translation weighting is very important. If we
replace the corpus based estimates by a uniform probability (1/n), the retrieval effectiveness
is significantly reduced. Using the best translation only is even better, which also bears
evidence that weighting translations is crucial. The importance of weighting translations (or
proper embedding of translation into the model) is also illustrated in a direct comparison of
the (unweighted) synonym run following Pirkola (syn) and the run based on document model
translation. The approach based on unweighted synonyms is clearly not able to handle the
noisy translations from the web corpus in a robust way.

Finally, there is no single best CLIR model for the two CLIR tasks: for the EN-FR task
the dmt model has the best retrieval effectiveness and for the FR-EN model it is the qmt
model. This actually correlates well with the percentage of terms for which a translation is
found in the respective models. In other words the P (e|f) model is better than the P (f |e)
model. Since the models were trained on exactly the same sentenced aligned dataset, using
the same techniques this asymmetry is surprising. Perhaps it could be due to the differences
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run id EN-FR FR-EN

mono 0.4489 (100.0%) 0.4323 (100.0%)
MT 0.3141 (69.9%) 0.3908 (90.4%)
qmt 0.3525 (78.5%) 0.4207 (97.3%)
qmt-eq 0.2698 (60.1%) 0.3777 (87.4%)
qmt-bt 0.3336 (74.3%) 0.3834 (88.7%)
dmt 0.3732 (83.1%) 0.3693 (85.4%)
syn 0.2445 (54.5%) 0.2352 (54.4%)

%missed fw 11.43 13.42
#fw 8.82 8.39
%missed rev 10.74 15.45
#rev 12.16 14.59

Table 6: Mean Average Precision and translation statistics (best 100k parameters)

in verbosity of the French and English language. A French translation of an English text is
approximately 10% longer. This means that it is more difficult to align an English word to a
French word than a French word to an English word in a sentence aligned corpus.

5 Relevance feedback and the TREC Adaptive Filtering task

The TREC Adaptive Filtering task evaluates systems that actively disseminate personalized
information to the user. A filtering system receives a constant stream of news, e.g. from
USENET, and alerts the user only if a news item matches the user’s profile. The user is able
to control the system by giving feedback, either yes, I like this item, or no, I do not like this
item (Robertson and Hull 2005).

In this section, our special interest lies in the development of a relevance feedback algo-
rithm for the language modeling approach. In principle, reasoning about relevance feedback
for a query generation language model is problematic, although some rather ad-hoc solutions
have been proposed by Miller et al. (1999) and Ponte (2000). The problem is the following:
We assumed in Section 2 that queries have been generated from one (and only one) relevant
document. So, it is easy to reason about multiple queries (one might argue that we reasoned
about multiple queries when we used the translation models in Section 4), but it is not as
easy to reason about multiple relevant documents (Sparck-Jones, Robertson, Hiemstra, and
Zaragoza 2003). A possible solution is to ‘reverse’ the language model by assuming that
documents are generated by a profile or a ‘relevance model’ as done by Jin et al. (1999) and
Spitters and Kraaij (2000). The query generation model and the document generation model
might be combined as well to model two-staged retrieval (or pseudo relevance feedback) as
suggested by (Lavrenko and Croft 2001).

In this section we present a relevance feedback approach for the query generation language
models by introducing a term-specific smoothing parameter λi for each term qi in the query.
Term-specific smoothing models some characteristics of practical retrieval systems that are
often left ‘outside’ the retrieval model, like stop words and mandatory terms (Hiemstra 2002):
From Equation 16, it is easy to verify that if λi = 0, then the term does not affect the ranking
(like a stop word), and that if λi = 1, then the term is mandatory: All documents that do
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not contain the term are assigned zero probability.

P (q1, q2, · · · , qn|D) =

n
∏

i=1

(

λiP (qi|D) + (1−λi)P (qi|C)
)

(16)

What is the probability mechanism behind such a model? Query generation is much like
coin tossing. For each query term, imagine one first throws a coin. If the coin comes up heads,
then we take the general model. If it comes up tails then we take the relevant document’s
model. We might think of a mechanism for which there is a different (unfair) coin for each
query term. Each document that is relevant for a query gives some independent evidence on
which coin is used on each draw.

E-step: mi =

r
∑

j=1

λ
(p)
i · P (qi|Dj)

λ
(p)
i P (qi|Dj) + (1−λ

(p)
i )P (qi|C)

M-step: λ
(p+1)
i =

mi + 1.5

r + 3

Figure 4: relevance feedback algorithm: EM-algorithm

The EM-algorithm (Dempster, Laird, and Rubin 1977) of Figure 4 iteratively maximizes
the probability of the query q1, q2, · · · , qn given r independently observed relevant documents
D1, D2, · · · , Dr. Before the iteration process starts, the importance weights λi are initialized

to their default values λ
(0)
i , where i is the position in the query. Each iteration p estimates a

new λ
(p+1)
i by first doing the E-step and then the M-step until the value of the weight does

not change significantly anymore. We added a little constant, equivalent to three documents,
to the M-step, because a small number of relevant documents should not radically change the
initial weights.

Initially, when no information on relevant documents is available, each term in the profile
will get the same importance weight λi = 0.5. So, initially we assume that the profile is best
explained if on average half of the profile terms is sampled from relevant documents and the
other half is sampled from the general model. If a relevant document is available, it might
be possible to explain the profile better. The EM-algorithm for re-estimation of importance
weights λi will make sure that terms that occur often in the relevant documents that are
selected so far, get a high importance weight λi. Profile terms that do not occur (often) in
the relevant documents are more likely to be sampled from the background model and get a
low importance weight λi.

Six strategies were tried on the TREC-8 Adaptive Filtering tasks, three optimized for LF1

and three optimized for LF2

LF1 = 3 r − 2 (n−r) r : number of relevant documents selected
LF2 = 3 r − (n−r) n : number of documents selected
LF3 = 2 r − (n−r) R : total number of relevant documents

The utility measures LF1, LF2 and LF3 assign a value or cost to each document, based on
whether it is relevant or not. The measures do not use the total number of relevant documents
R, representing the fact that users are not especially interested in recall, as long as they do
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not get too much irrelevant items. The first measure represents a user for which a relevant
selected document has a value of 3, and a non-relevant selected document has a cost of 2.
This user needs to see at least 2 relevant documents in each 5 selected. So, the system should
select the document if its probability of relevance is greater than 2/5 = 0.4. The second
measure represents a user whose costs of reading a non-relevant document are twice as low.
Two versions of the prototype system will be tested, one optimized for LF1 and one optimized
for LF2. The systems are evaluated by the measures for which they are optimized. The higher
the utility score of a system for a user profile, the better the system is performing. (The LF3

measure was used in TREC-9 and 10). For both utility functions the same three experiments
were done.

1. A baseline run that only uses the initial threshold setting and threshold adaptation
routines;

2. the same run as 1, but with relevance weighting of profile terms;

3. the same run as 1, but using a very high initial threshold.

The high initial threshold experiments were done to check whether a very conservative thresh-
old algorithm could possibly be more beneficial than a query reweighting technique. The
threshold adaption algorithm is described by Kraaij et al. (2000).

run LF1 LF2 precision recall

LF1 optimized -9.30 4.86 0.242 0.240
LF1 optimized; profile reweighting -7.28 7.10 0.243 0.251
LF1 optimized; high initial threshold -1.20 2.46 0.216 0.105
LF2 optimized -12.96 4.80 0.232 0.254
LF2 optimized; profile reweighting -9.12 6.60 0.237 0.254
LF2 optimized; high initial threshold -5.54 1.34 0.199 0.127

Table 7: Adaptive Filtering results averaged over topics

Table 7 lists the evaluation results of the runs using four evaluation measures: LF1, LF2,
precision and recall averaged over topics. The utility scores reported are averaged over the
50 test profiles. Precision and recall were averaged over the profiles by assigning 0 % recall to
topics with no relevant documents and assigning 0 % precision to topics with empty retrieved
sets.

Both baseline runs show a consistent improvement in the average utility, average precision
and average recall when applying the relevance feedback algorithm. Interestingly, relevance
feedback has a different impact on the two systems. It causes improved recall for the LF1

system and improved precision for the LF2 system: The LF1 system selected 5 % more
documents after query reweighting, but the LF2 system selected 8 % fewer documents. Note
however that it is better to ignore the LF1 altogether, because it did not beat the base line
of not selecting any document at all (which would result in zero utility).

6 Conclusions and future work

In this chapter we approached the TREC Ad Hoc, Entry Page, Cross-language and Adaptive
Filtering tasks by using language models for information retrieval. Each TREC task illustrates
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a different aspect of the language modeling approach. The Ad Hoc task illustrates the need for
a basic retrieval model; the Entry Page tasks illustrates the possibility to integrate non-content
information with the basic model; the Cross-language task illustrates the use of structured
queries; and finally, the Adaptive Filtering task illustrates the possibility to optimize the basic
model using relevance feedback.

Looking back at more than 40 years of probabilistic modeling for information retrieval, it
is interesting to see that many of the ideas that we presented in this paper under the term
“language models” have been out there for at least 25 years now. Maron and Kuhns (1960)
presented the basis for the models presented in this chapter: Adding a linear combination of
two probability models, as in Harter’s 2-Poisson model, is enough to make their model work.
Robertson’s probability of relevance estimation might be seen as the basis for estimating
document priors.

But maybe there are different ways to give the language modeling approach a place in
information retrieval history. There are still major challenges for the language modeling ap-
proach to information retrieval: For instance, how to include document structure, like author
name, title, year, etc. into the model; or how to model multiple relevant documents generating
one query. The evaluation of new models and ideas will be of the utmost importance, and
evaluation conferences like TREC are invaluable for the progress of the field.
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