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Abstract—In this paper we present some results on detection and 

classification of low metal content anti personnel (AP) landmines 

using a modified version of the Auto Regressive (AR) modeling 

algorithm presented in [1,2]. A statistical distance is computed 

between the AR coefficients of the measured GPR time signal and 

the AR coefficients of a reference database (containing the AR 

models of the mines of interest) and a detection is declared if this 

distance is below a given threshold.  
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I.  INTRODUCTION  

 AR modeling algorithms have been used in GPR, amongst 
others, for clutter reduction [3,4] and target detection [5]. In 
this paper we present some developments on detection and 
classification of low metal content antipersonnel landmines 
using the AR modeling algorithm presented in [1,2]. This 
algorithm is used for generating an AR model (i.e. AR 
coefficients) for each A-scan [6] of a B-scan obtained from a 
Ground Penetrating Radar (GPR).  

The AR modeling algorithm computes a similarity measure 
between the AR coefficients of a reference database and the 
measured GPR trace. A GPR time signal varies with the 
electromagnetic properties of the terrain, with the depth and the 
orientation of the target. This means that the same landmine 
will be modeled with different poles depending on the 
circumstances. With this research we want to study the 
sensitivity of the AR model, i.e. how different the AR model 
coefficients will be if we measure the same mine in a different 
soil type, or in the same soil but with a different moisture, or 
when the mine is buried at a different depth, or the mine is 
tilted with respect to the database values. For this purpose we 
have simulated a number of mines, with both very low metal 
content (SIM6, SIM12, SIM20) and with a metal case 
(SIM20Al) using the GPRmax software tool [7] and we varied 
the burial depths and the mine orientations.  

The paper is organized as follows. Section II describes the 
process of creating a dataset of simulant mines (SIMs) with the 
software GPRMax and the relative Bscans. In section III the 
AR model for mine detection and classification is described. 
The results for the SIMs are shown in section IV, while section 
V presents the preliminary results obtained from real data. 
Discussion of the results and conclusions are the subject of 
section VI. 

II. GPRMAX 

GPRMax is an electromagnetic wave simulator for GPR 
modelling in 2D and in 3D, based on the Finite-Difference 
Time-Domain (FDTD) numerical method.  

For the purposes of this research the two-dimensional 
GPRMax simulator has been used. The modeled GPR is a 
bistatic pulsed radar with central frequency at 900 MHz. The 
transmitter emits a Ricker wavelet, with a time window of 10 
ns. The antenna has been placed 5 cm above the ground. The 
radar scans a line 1 meter long with a step of 1 cm.  

The targets are three low metal content SIMs of diameter 6 
cm (SIM6), 12 cm (SIM12) and 20 cm (SIM20) respectively, 
and an aluminium SIM with a diameter of 20 cm (SIM20Al). 
The plastic mines contain a small aluminium tube with a length 
of 1.27 cm and a diameter of 0.475 cm.  

The electromagnetic properties of the SIMs are those 
described by the ITOP guidelines [8]. The properties of the 
SIMs components (the cover (abs), the explosive (RTV) and 
the aluminium tube), as well as those of the sand are reported  
in table I. 

TABLE I.  ELECTROMAGNETIC PROPERTIES OF THE MATERIALS 

Material 
Relative 

Permittivity 
Conductivity[S/m] 

Dry Sand 5.0 0.001  

Wet Sand 20.0 0.01 

Aluminium 8.6 2.3·107 

RTV 3.1 0.0 

abs 2.81 0.0 

 

The SIM6 and SIM12 are placed at a shallow depth of 2, 4 
and 5 cm, and at each depth a simulation is performed for tilt 
angles of 0º, 5º and 20º respectively. SIM20 and SIM20Al are 
placed at a depth of 15cm and tilted of 0º, 5º and 20º. 
Simulations were carried out in both dry and wet sand. Figure 3 
(top) shows a representative geometry of the simulations. 
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III. AR-MODELING 

The detection algorithm used in this work is based on 
autoregressive (AR) modeling of time series. This technique 
has already been successfully used in speech processing and a 
Matlab package (ARFIT) [9] is available for AR model 
parameters estimation. 

The autoregressive model of order p of a time series ny  

can be written as  
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where 
ia  (i = 1,…,p) are the autoregressive coefficients, 

obtained by minimizing the mean-squared difference between 

the modeled time series md

ny and the observed one 
ny .  

nx  is 

the input signal.  

The comparison of two Ascan patterns is performed using 
the Itakura-Saito distortion measurement [10]. It is a likelihood 
distortion algorithm that calculates the statistical distance 
between two AR models. Given the residual mean square error 
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where R is the residual autocorrelation matrix, the Itakura-

Saito (IS) statistical distance is calculated as: 
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where ma is the vector of the AR coefficients of the 

measured Ascan, while ra is the vector of the AR coefficients 

of the database. Two AR models are considered similar when 
the IS distance is small. When they are equal, the distance is 
equal to zero.            

In the Matlab package ARFIT a stepwise least squares 
algorithm is used for estimating the coefficients of the AR 
model of a given time serie.  

The determination of the order of the model is a complex 
and very important step in AR modeling. A high order means a 
better representation of the signal, but also large computation 
time of the coefficients. On the other hand, a too small order 
does not correctly represent the signal. In the area of speech 
recognition the optimum order is calculated with an 
information based criterion (i.e. Akaike Information Criterion 
or Schwarz Bayesian Criterion). For GPR time signals 
conventional criteria seem not to estimate the order correctly 
and therefore the order has been determined with an iterative IS 
distance based method. Given a predetermined range of orders, 
the optimal order of the AR model of a target is that one for 
which the IS distance of the target model with the background 
model is maximum. 

 

This selection of the optimal order of the AR model of each 
Ascan is explained in the following steps: 

1. The Bscan data is pre-processed in order to remove 
direct coupling and ground reflection ; 

2. An Ascan representative for the background is 
obtained by averaging the Ascans of the Bscan with 
an energy threshold (i.e. Ascans containing the target  
are not used in the average); 

3. An AR model of the estimated mean background 
Ascan is calculated; 

4. The Itakura-Saito distance between the AR models of 
all Ascans in the Bscan and the AR model of the 
estimated mean background is computed for a specific 
range of orders (i.e. from order 5 to order 20). When a 
Ascan relative to the target is compared to the Ascan 
of the background, this distance should be maximum. 
For example, given the Bscan of figure 1 (top) and 
selected an initial order for the AR model (i.e. 5), each 
Ascan is compared with the background Ascan and 
the distance is calculated. The procedure is repeated 
until the maximum predefined order is reached (i.e. 
20). All the distances relative to the orders are plotted 
in figure 1 (bottom). The optimal order corresponds 
thus to the maximum distance. 

        

Figure 1  Bscan of a target and distances of the target with the background. 
Each red curve in the bottom plot corresponds to an order. 

 
Target Detection 

The AR model of each Ascan of a Bscan is compared to the 
database AR models. The minima of the IS distances 
correspond to targets. The algorithm automatically classifies 
the targets. 

IV. RESULTS OF THE SIMULATIONS 

The GPRMax tool has been used to simulate Bscans of the 
reference SIMs used to build up the database and Bscans of the 
SIMs at various positions and orientations. The dataset of the 
reference SIMs is given in table II. 
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TABLE II.  DATABASE SIMS 

SIM Type Depth [cm] Tilt angle [deg] 

SIM6 4 0 

SIM12 5 0 

SIM20 15 0 

SIM20Al 15 0 

 

For each SIM one Ascan AR model is taken. The 
representative Ascan is the one containing the apex of the 
hyperbola. 

Per each simulated Bscan, an AR model is calculated for 
every Ascan and it is compared with the database AR models.   
Figure 2 shows the distribution of the poles of three 
simulations of the SIM6 at different depths and tilt angles and 
buried in dry and wet sand. Some of the poles have 
significantly changed their positions and it does not seem 
possible to determine by visual inspection whether the poles 
are relative to the same SIM or not. We are trying to establish 
whether the AR algorithm is able to correctly classify the SIM6 
even if the poles have changed respect to the database model. 
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SIM6 4cm 0deg wet sand

SIM6 2cm 0deg dry sand

SIM6 4cm 5deg dry sand

 

Figure 2 Poles of the AR model of three Ascans of the SIM6 

 
Figure 3, 4 and 5 show the results of the classification of a 

SIM6 at different depths and orientations by using the database 
of table II. The top figure shows the geometry. The simulated 
Bscan is plotted at the middle and the distances are plotted at 
the bottom of the figure. The SIM6 is always correctly 
classified. It is interesting to notice that when the SIM6 is tilted 
20º, the algorithm shows a relative minimum of -12 dB for the 
SIM12 at point 38 in the x axis, only 2 dB less than for the 
SIM6. The two mines are made of the same material, they 
differ only in their size. A SIM6 tilted 20º has a thicker cross 
section, thus its Ascan is more similar to that one of the SIM12.   

 

Figure 3 SIM6 buried at 2 cm, tilt angle 0º 
 

 

Figure 4 SIM6 buried at 4 cm, tilt angle 5º 

 

 
 

Figure 5 SIM6 buried at 5 cm, tilt angle 20º 

 
Table III summarizes the results of all the simulations in 

dry sand. All the simulated Bscans are compared to the 
reference SIMs, denoted with the asterisk. Next to each 
classification the minimum distance in log scale is shown. The 
leftmost classification result is the best one (smallest minimum 
distance). The asterisk denotes the reference SIM. All the 
SIM6 and SIM12 are correctly detected and classified, while 
the SIM20 and the SIM20Al are classified correctly only once.  
So we conclude that the performance of the algorithm is good 
even with a limited database. 
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TABLE III.  CLASSIFICATION OF SIMS 

SIM Type Target Classification 

SIM6 2cm 0deg  
SIM6 2cm 5deg  
SIM6 2cm 20deg  
SIM6 4cm 0deg *  
SIM6 4cm 5deg  
SIM6 4cm 20deg  
SIM6 5cm 0deg  
SIM6 5cm 5deg  
SIM6 5cm 20deg 

SIM6 (-20), SIM12 (-15) 
SIM6 (-15), SIM12 (-15) equal distance 
SIM6 (-15), SIM12 (-13) 
 
SIM6 (-20), SIM12 (-12) 
SIM6 (-15) 
SIM6 (-15), SIM12 (-11) 
SIM6 (-15) 
SIM6 (-14), SIM12 (-12) 

SIM12 2cm 0deg 
SIM12 2cm 5deg 
SIM12 2cm 20deg 
SIM12 4cm 0deg 
SIM12 5cm 0deg * 

SIM12 (-12), SIM6 (-11) 
SIM12 (-15), SIM6 (-12) 
SIM12 (-15) 
SIM12 (-15) 
 

SIM20 15cm 0deg 
SIM20 15cm 5deg 
SIM20 15cm 20deg 

 
SIM20Al (-20), SIM20 (-15) 
SIM20 (-15), SIM20Al (-12) 

SIM20Al 15cm 0deg * 
SIM20Al 15cm 5deg 
SIM20Al 15cm 20deg 

 
SIM20 (-15),SIM6 (-13), SIM20Al (-12) 
SIM20Al (-21), SIM20 (-18) 

 

V. RESULTS OF THE REAL DATA 

The measurements have been done at the land-mine test 
facility at TNO-FEL. The radar used is the PulseEKKO 900 
MHz GPR, placed 5 cm above the ground. Firstly the database 
has to be created. Four reference SIMs have been used. SIM9 
and SIM12 have been buried at a depth of 5 cm, while the 
depth of SIM20 and SIM25 was 7 cm. All SIMs were not tilted 
and the tests were done in dry sand. Again, the representative 
Ascan of each SIM is that one containing the apex of the 
hyperbola. The AR model of each Ascan has been recorded in 
the database.  

Once the database is complete, the measurements can take 
place. 5 SIMs, a ferromagnetic rock and a "Hero" can have 
been buried in dry sand along 3 lanes. The revealed SIMs are 
shown in figure 6.  

 

Figure 6 Measurement setup 

 
The preliminary results are shown in figures 7, 8 and 9. At 

the top of each figures the Bscan is plotted (after background 
removal and alignment), while at the bottom are shown the IS 
distances of the Ascans with the database records. 

The algorithm is not able to classify the objects correctly: 
the relative minima are only at -4 dB from the average value.  
 

 
 

Figure 7 (top) Bscan of Lane 1: SIM25 (x=91cm), Hero can (x=210cm). 
(bottom) IS distances 

  

 
 

Figure 8  (top) Bscan of Lane 2: SIM12 (x=44 cm), SIM9 (x=124cm), 
ferromagnetic rock(x=205cm). (bottom) IS distances. 

 

 
 

Figure 9  (top) Bscan of Lane 3: SIM20 (x=64 cm), SIM12 (x = 160cm), 
SIM6 (x=190 cm). (bottom) IS distances. 

 
Please note that the database was built taking only one Ascan 
per each reference SIM, which seemed good enough for 
classification when used with simulated data. An explanation 
could be that a homogeneous terrain was used and no losses 
were considered. For real data, the results alone are not 
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sufficient to judge the performance of the algorithm. It is 
necessary to make more simulations where the losses and 
inhomogeneities are taken into account and verify whether it is 
necessary to increase the number of records in the database, as 
explained in the next section.  

VI. DISCUSSION AND CONCLUSIONS 

In this paper we proposed a modified version of the AR 
model algorithm for landmine classification. The algorithm is 
based on comparison of measured data with the database and 
we have studied how the classification is affected by mismatch 
between the training set and the measured data, i.e. the same 
mine has a different depth in the database and in the measured 
data. We tried to establish this sensitivity with both simulated 
and real data. Firstly the algorithm has been applied to Bscans 
obtained with the software tool GPRMax. For each Ascan an 
AR model is computed and the classification is been 
performed by minimizing the Itakura-Saito statistical distance 
with the Ascans in the database. With simulated data the 
algorithm performs well and the results are satisfactory. In 
80% of the cases the classification was correct.     
Preliminary results on real data show that the algorithm is very 
sensitive to discrepancies between the database and the 
measured data. Nevertheless the database for the real data 
contained only one Ascan per SIM.  

The difference between the simulation and the 
measurements could be explained by the fact that in the 
simulated data the losses and the inhomogeneities of the 
medium have not been taken into account. The next step 
would be to include these variables in the simulations and 
check whether the results are still good or if it is necessary to 
add records into the database. On the other hand, a high 
number of records can bring to misclassification. 

An analysis of the behavior of the AR models of the 
database should be done, in order to understand their variation 
with respect to different positions, orientations and depths of 
the SIMs and with different soil properties.  

Moreover, although we have collected two dimensional 
data, we have only used the one dimensional time (depth) 

signal for matching the measured data to the database. A 
second improvement to the algorithm could be building a 
database with all the consecutive Ascans containing the 
signature of the SIM. The statistical distance would then be 
calculated for an Ascan-block instead of for a single Ascan.  

VII. FUTURE WORK 

Next to the AR model, we are studying other techniques for 
the classification of landmines. In particular we are working 
with 3D GPR data. Migration techniques and geometrical and 
statistical feature extraction will be used for target detection 
and classification. 
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