
 

 

 
A Semantic Scene Description Language for  

Procedural Layout Solving Problems 

Tim Tutenel*, Ruben M. Smelik†, Rafael Bidarra* and Klaas Jan de Kraker† 
 

* Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands 
† TNO Defence, Security and Safety, Oude Waalsdorperweg 63, 2509 JG The Hague, The Netherlands 

t.tutenel@tudelft.nl, ruben.smelik@tno.nl, r.bidarra@tudelft.nl, klaas_jan.dekraker@tno.nl 
 
 

Abstract 
Procedural content generation is becoming more and more 
relevant to solve the problem of content creation for the ever 
growing virtual worlds of games, simulations and other 
applications. However, these procedures are often 
unintuitive or use vague parameters, making it somewhat 
difficult for a designer to express his or her creative intent. 
Even worse, most of these techniques lack an accessible and 
easy to use interface. 
We have developed a generic layout solving approach to 
automatically create sensible content for virtual worlds. In 
that context, this paper proposes a high-level scene 
description language that allows designers to specify 
particular types of scenes. This description language allows 
designers to easily specify which objects need to be present 
in a scene, their attributes, and possible interrelationships. 
Application of the language, based on the rich vocabulary 
taken from a semantic library, is illustrated with several 
examples, showing its flexibility, intuitiveness and ease of 
use. 

Introduction   
Procedural techniques have proven to be a valuable 
solution to the problems of ever increasing virtual worlds. 
However, most of these techniques offer quite obscure 
parameterizations, making it unintuitive to understand how 
each parameter influences their output. Moreover, both 
procedurally generated and hand-crafted models are 
typically restricted to the mere geometric representation, 
failing to capture most designer’s intent in a virtual world. 

In our previous work (Tutenel et al. 2009) we focused on 
a sub domain within procedural generation: automatic 
layout solving. We developed a layout solving approach 
that, given a procedure, a set of objects and their 
interrelationships, incrementally generates a logical and 
realistic scene layout for these objects. For this, all objects 
are instantiated from a semantic class library, which 

                                      
Copyright © 2010, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

classes already contain many relationships used in the 
layout solving process.  

The next question arising is then: how to create that 
procedure? Designers typically do not start by thinking of 
how to build something, but rather on describing what that 
something is. So, again: how can we provide them with an 
intuitive way to describe the scenes they devise? 

In this paper we answer these questions introducing a 
visual description language aimed at defining generic 
scene types. This language profitably builds on the rich 
semantics of the semantic library mentioned above. We 
explain in some detail how this language is built up and 
how it can be used. For example, to describe a kitchen you 
would basically specify (possibly with some qualifiers) 
which objects should be present in it, and maybe which 
other objects might also be found in a kitchen. Naturally, 
more indications and requirements may be given, further 
guiding the generation. 

We first give a brief overview of related work, including 
our semantic layout solving approach. Subsequently, the 
semantic scene description language is introduced, and the 
main challenges of its conversion to the procedures that 
feed the semantic layout solver are dealt with. 

Related Work 
One of the key factors for our approach is the availability 
of knowledge, or semantics, about the entities and objects 
in the virtual world. Semantic data is scarcely used in 
entertainment game worlds, except possibly for manual 
annotations. In the research arena, however, there are 
several notable examples of how semantics can improve 
the creation of virtual worlds as well as the experience of 
interacting with them (Tutenel et al. 2008). 

Research towards the semantic web yielded many 
ontology languages for semantics in web documents. The 
structures and relationships used by these languages, such 
as RDF (Hayes and McBride 2004) or OWL (Smith et al. 
2009), are, in principle, suitable to express semantics about 
virtual worlds as well.  

Early work on introducing more intelligence and 
knowledge to virtual worlds was done by Aylett and Luck 



 

 

(2000), who discuss several issues on combining artificial 
intelligence and virtual environments. On a smaller scale, 
adding intelligence to individual objects, for example in 
the form of so-called smart objects, has been proposed by 
several authors. Kallmann and Thalmann (1998), for 
example, define smart objects as objects in virtual 
environments that contain knowledge on how a user can 
interact with them, e.g. the pulling motion required to open 
a desk drawer. 

The WordsEye system (Coyne and Sproat 2001) 
generates specific scenes based upon a natural language 
description input by the user; e.g. the user can ask for a 
scene with a chair to the left of the table next to the door. It 
shows that using natural language to describe a scene is a 
valuable technique, although still far from the generic 
descriptions we need in a declarative modeling framework. 

Germer and Schwarz (2009), inspired by Akazawa et al. 
(2005), use an agent-based approach to create furniture 
layouts. However, their system is restricted to furniture 
layouts and they only use a single parent-child relationship 
for every object in the scene. 

There are some successful commercial systems using 
procedural modeling to speed up virtual world generation. 
CityScape, by PixelActive, and CityEngine, by Procedural 
Inc., are two packages that focus on urban environments. 
They include basic landscaping possibilities as well as 
several ways to procedurally add roads, districts and 
buildings to a virtual world. The interface and general 
workflow of such systems already guard you from many 
details behind their procedural techniques; however the 
scope of the generated worlds is limited to the elements 
shipped with these packages. Our approach is targeted to 
more generic layout solving problems, managing the 
generation of any virtual world elements that can be 
reduced to a layout solving problem. 

Another commercial system that allows for procedural 
generation is Houdini, by Side Effects. However, despite 
its potential to procedurally create objects within a much 
larger scope, it also requires designers to specify most of 
the procedures and technical detail themselves, which is 
exactly what we want to avoid with our approach. 

Semantic Layout Solving Approach 
As explained above, our layout solving approach uses the 
relationships between classes defined in the semantic 

library. Using a procedure, instances of these classes are 
added one by one to the scene by the solver in a realistic 
and logical layout. The layout solver can also be used for 
manual scene editing, by which the user, instead of the 
procedure, will fetch each new object (see Figure 1). The 
solver then gets the object’s relationships from the library 
and uses them to determine all its candidate locations. In 
this section, we briefly discuss the layout solving approach, 
particularly the semantic library and the procedures. 

 
The semantic library is a hierarchic class library of which 
the concepts and the parent-child relationships between the 
classes are based on the WordNet database (Miller 1995). 
Every class can contain attributes, predicates, services, 
materials and relationships. Attributes describe the basic 
features of the class, e.g. the genre and number of pages of 
a book. Predicates are adjectives that can be associated to 
an object, e.g. an antique closet or a comfortable bed. 
Services represent the capacity of an object to perform a 
particular action. Materials encapsulate a number of 
common object properties, e.g. its density, boiling 
temperature or flammability. Relationships mainly consist 
of geometric relationships between classes, used by the 
layout solver to find sensible, valid locations for objects 
when generating a scene layout. All elements from the 
library can be used to create queries in the description 
language. We can, for example, declare that all flammable 
objects should be placed in a separate, locked area or that a 
kitchen needs at least one object that can heat up food. 

Next to these elements, classes also contain features, 
defined as generic shapes associating semantics to an 
object’s model. For example, most physical object classes 
have a front, back or a top feature defined, and a bookcase 
has storage features defined on every shelf. These can be 
used in the relationships that are contained in the semantic 
classes. For example, we want a coat rack to be placed 
with its back at 5 cm of a wall and within 1 m of a door. 
And in a desk setup, we want to place a computer on the 
top of a desk, with the front feature of the screen facing the 
office chair. Feature types can have embedded layout 
semantics, e.g. off limits features cannot overlap any other 
features and clearance features can only overlap other 
clearance features (which are used to guarantee free space, 
e.g. in front of a cupboard or a vending machine). 
 
For every new object added to a scene, the layout solver 
will find possible locations based on the new object’s 
relationships and features, and on those already present in 
the scene. The output is a list of candidate, possibly 
weighted, locations. For manual editing, this output can be 
used as a guide, e.g. by snapping to the nearest valid 
location or by visualizing all valid locations, showing their 
weights. For procedural generation, a random valid 
location is picked, taking the weights into account, and the 
object and its features are inserted into the scene. A more 
detailed explanation of the layout solving approach can be 
found in (Tutenel et al. 2009). 
 

 
Figure 1: Layout solving approach 

 



 

 

Procedures serve to create particular classes of scenes (e.g. 
a street or a living room) or parts thereof (e.g. an office 
workspace, consisting of a desk, a chair, a computer and 
some other stuff on the desk). In this way, scenes can be 
described and created in a hierarchic way. 

The two main operations of a procedure are picking an 
object, by performing a query on the semantic library, and 
handing it on to the layout solver to be placed in the scene. 
Queries are made using the vocabulary of the semantic 
class library, for example requesting ‘an antique armoire’, 
‘some object that provides (the service) heating’, ‘a desk 
made of wood’ or ‘a tall building with at least 10 floors’.  

Object placing is typically performed without further 
parameters, according to the relationships defined in its 
class, but can also be extended with scene specific 
relationships. Procedures can also contain conditional 
elements and loops to yield context-specific behavior or to 
place multiple instances of the same object. For example, 
we can specify to place office workspace elements for 
every employee in a given office, or to use antique, 
expensive furniture when generating the boss’ office. This 
can also be used to add some variation, e.g. add between 2 
and 4 plants in a room. 

Given a procedure, which is an ordered set of the 
discussed operations, and a random seed a complete and 
valid scene layout can be generated. Based on the 
procedure operations and the relationships defined in the 
semantic library, the solver makes sure every object in the 
scene is placed in a valid and logical way. 

Procedure-based layout solving used as described above 
generates satisfactory results, but is still restrictive and 
rigid, as evidenced for example by the ordered structure of 
procedures. We want to provide designers with all its 
power, while allowing them more descriptive freedom. 
Semantic scene descriptions, introduced in the next 
section, offer designers a more natural and less formal way 
of expressing their intent when describing a scene class.  

Semantic Scene Description Language 
Our proposed semantic scene description language is a 
visual language that allows a designer to define the 
different elements of which scenes of a particular type 
consist. 

The main goals of our language are: 
1. describing which objects or components can or 

should be present in a given scene class; 
2. describing the relationships between the available 

objects; and  
3. discerning variations depending on time and 

context. 
In other words, it allows designers to specify which and 
how objects should occur in every scene instance of a 
given type. And, provided we manage to automatically 
convert descriptions into procedures, the latter can then 
automatically generate various instances of the described 
class scene. That conversion will be dealt with in the next 
section, here we discuss the main features of the language. 

We will also explain how context-dependent changes 
can be made to the descriptions to adjust to varying 
circumstances and conditions between different instances 
(i.e. specific scenes) of a class of scenes. 

The main building block to achieve the goals above 
consists of description entities, defining which objects 
need to be present and how they should be placed, possibly 
using some scene specific placement relationships.  

An entity can contain one or more objects to be placed 
under the same conditions. The number of instances to be 
placed can be precisely defined (e.g. add '3 pens' or 
'between 5 and 10 paperclips' on a desk), or it can be more 
loosely defined (e.g. 'enough shelves to fit at least 200 
books', or 'approximately one tree per ten square meters'). 

A description entity consists of two components: a 
description of the objects that need to be placed (what), 
and some additional relationships that need to be satisfied 
when placing the objects (how). These two components are 
analogous to the 'pick' and 'place' operations of the 
procedures. 

In the semantic description editor, to describe which 
objects need to be placed designers can simply drag and 
drop elements from the semantic library on the description 
entities. Additionally, the editor also provides a textual 
input method, with which an entity can be 'picked' using a 
simple natural-language like description grammar. 

The second component of a description entity deals with 
the placement of its objects, and consists of the scene 
specific relationships between them.  Most relationships 
are inherent to the objects' classes in the semantic library, 
but relationships specific to their role in the scene need to 
be described here. For example, when describing a storage 
facility where many desks are stored, we want to discard 
the common geometric relationships between desks: the 
desks can be placed back to back or maybe even stacked 
on top of each other to save space in the store. 
Relationships in the scene description language are defined 
with the same vocabulary used in the semantic library. 

Every scene can have a main shape constraint: this can 
be an area, a path or just a point that defines the general 
shape of the scene. For example, a kitchen or forest is 
constrained by the outline of the room or forest area and a 
street is constrained by the path it runs on. The descriptions 
allow selecting feature shapes from the scene as shape 
constraints of child objects and some basic transformations 
on these shapes. This allows us, for example, to select the 
border of a scene, split it up in points and lines two meters 
apart and place fence poles on the points and barbed wire 
constrained by the lines, to generate a fenced area. 
 
A collection of description entities makes up a scene class 
semantic description, i.e. a generic, high-level definition of 
a specific class of scenes. In other words, it describes not 
one particular scene but all scenes of a certain class, e.g. a 
dining area, an office, a street, a dungeon, a space ship 
interior, a forest or an industrial zone. 

To discern more specific cases in a scene class, we 
introduce the notion of context, which is a set of conditions 



 

 

that together define a specific scene variant. Designers can 
define context-specific behavior by changing the basic 
description for each particular context. A context can be 
defined by means of (i) conditions on the scene or on the 
class attributes of the scene, (ii) the presence or lack of a 
particular predicate, or (iii) global semantic data (e.g. 
safety conditions of the neighborhood). For example, when 
creating the description of a home class, we might want to 
create a context called large house based on the total 
available area for the house. In this context, we will want 
to place more bedrooms and bathrooms, we need a larger 
dining room, perhaps two garages instead of one, etc. Once 
defined the conditions for which the context holds, the 
designer can adjust the description to fit that context. 
Depending on the context, entities can be added, removed 
or altered in any way: e.g. adding relationships, changing 
the number of objects needed or adding or removing 
predicates in the description entity. 

Since every description in itself defines a new class in 
the semantic library, descriptions can follow a hierarchic 
scene composition, e.g. we can create a description for an 
office building, which includes instances of an office room 
class, which in turn includes multiple instances of a desk 
setup. This allows designers to focus on the core elements 
of every scene, while incrementally specifying the 
structuring of each child element in a separate description. 
This makes the entire approach more scalable and reusable. 

 
The semantic description language is aimed at providing 
designers with an intuitive way to specify particular types 
of scenes that can be regarded as a layout solving problem, 
e.g. placing furniture in a room or trees and plants in a 
forest, laying out objects on a desk or creating the layout of 
an industrial zone. Designers merely have to focus on the 
different elements that make up a particular type of scene: 
the ordering of the different objects is handled by the 
conversion to procedures and the common object 
relationships are found in the semantic class library. 

In informal interviews with designers regularly using 
procedural modeling, it became clear that especially our 
hierarchic approach to the generic definition of scenes is 
well suited to their way of thinking. They tend to break up 
every element to its key components and then, in turn, 
design these different components as separate elements. 
Also the ability to create scenes constrained by a base 
shape fits very well in their normal working methods. 

Converting a Description to a Procedure 
We need to convert the semantic scene descriptions to 
procedures to be usable in our layout solving approach. For 
this, we first need to order the description entities to add 
them in an ordered procedure. Then we need to encompass 
procedure operations with loops to handle amounts defined 
in the entities and with conditional statements to handle 
context-specific operations. A final step is an optimization 
phase where we add some operations (e.g. additional 
checks) to ease the workload of the solver when executing 
the procedure. 

We first need to derive a global ordering for all objects 
in the description. For this, we use the partial ordering in a 
dependency graph, in which the objects are represented as 
the nodes, and every relationship between two objects as a 
directed edge: outgoing edges point to objects on which a 
node's placement will depend. 

Next, we sort the list of objects according to the 
following criteria: 

First:  least outgoing edges to objects not yet picked; 
Second:  most incoming edges; 
Third:  most outgoing edges to already picked objects; 
Fourth:  largest object. 

Notice that in the first criterion, we only consider the 
edges to object nodes that are not picked yet. When an 
object depends on an already picked object, there will be 
no problem in the generation phase (i.e. when a scene is 
being generated based on the created procedure) since the 
object on which it depends will already be placed in the 
scene. In the second criterion we pick the object with the 
most incoming edges, since most other objects depend on 
its placement. In the third criterion, we pick the object with 
the most outgoing edges to already picked objects, because 
the more dependencies an object has, the more restricted 
the choice for possible locations is. For example, if a PC 
should be placed on a desk, in front of the chair 
(2 dependencies) and a phone should just be placed on a 
desk (1 dependency), you do not want the phone to be 
placed first since it might end up in front of the chair, 
possibly hindering the placement of the PC. The last 
criterion, based on the size, prevents small objects from 
hindering the placement of bigger object. When the size 
difference is significant, we give this criterion a higher 
importance. Since a description and a procedure work with 
object queries, and the actual objects are picked only at 
procedure execution-time, we do not have an exact size for 
each object at the conversion step. Therefore the average 
size of all possible objects that match the query is used as 
an estimate. 

For example, suppose we want to create a scene with a 
desk, a chair in front of the desk, a PC on the desk and 
facing the chair, and a pen on the desk. In Figure 2a, the 
starting graph is shown. The desk is the only independent 
object (i.e. without any outgoing edges), so this is picked 
first. Both the chair and the pen now only have outgoing 
edges to already picked objects (see Figure 2b). But since 
the chair has one incoming edge and the pen has none, we 
pick the chair first. In Figure 2c, both the PC and the pen 

 
Figure 2: Creating an order for objects based on the dependency 

graph. 
 
 



 

 

have no outgoing edges to objects that are not yet picked 
and no incoming edges, but since the PC has the most 
outgoing edges to already picked objects, and is also the 
biggest, it is picked first. Finally we pick the pen. 

In the ordering process we could run into conflicts when 
circular dependencies are found in the graph, e.g. a scene 
with a cupboard next to a standing clock, which should be 
placed next to a couch, which in turn should be placed next 
to the first cupboard, all along the same wall. In this 
circular reference, none of the objects can be placed. To 
solve this, we will pick one of the objects in the circular 
reference based on the criteria mentioned before. We now 
remove the relationship connected to the outgoing edge of 
the picked object that creates the circle reference. The 
object will be placed without maintaining that relationship, 
and since the circle is now broken in the graph, all other 
objects can be ordered without any problems. 

Once object sorting is finished, a procedure is created 
with pick and place operations (see previous section) for 
every object in the list. 

The amount defined in each description entity (this can 
be an exact amount, a range or a distribution) is handled by 
a repeat loop in the procedure. The context-dependent 
elements of a description are encompassed by a conditional 
statement in the procedure, based on the conditions defined 
for the corresponding context.  

These two steps result in a procedure that adequately 
reflects the scene description. However, we also want 
additional rules to improve the solving process for that 
procedure. An object query can return objects of varying 
sizes. It would be useless to pick the largest of objects from 
the query, when trying to fill a small scene. Therefore we 
would want to add some additional procedure steps to 
handle these situations appropriately: when trying to fill a 
small kitchen, we don’t want the solver to pick a giant 
refrigerator, since it will be impossible to fill the entire 
scene. The same idea could be applied to entities with a 
ranged amount, e.g. between three and six kitchen cabinets. 
In small scenes, the lower end of the range could be used, 
and in bigger scenes the higher end. That way, we are also 
less likely to end up with a giant kitchen with only a few 
cabinets and a small refrigerator. 

Results 
The scenes in Figure 3 are created based on example 
descriptions for a factory floor, an office and a road 
running through a forest. 

The factory (Figure 3 top) is built up of an area for the 
pallet racks, a vehicle area and a fenced area for dangerous 
goods. The fence and pallet racks are created using shape-
constraints as explained in the section on the description 
language. For example, the area shape for the pallet racks 
is subdivided in a number of rows, using a feature 
transformation, and on each row an empty pallet rack is 
created that contains pallet storage features. The factory 
description contains an entity that ensures the placement of 
some pallets within these pallet storage features. 

The road geometry is created using a separate system 
that works based on a path and profile. The profile 
definitions can contain features such as roadside or bicycle 
path that can be used to place roadside objects in the 
descriptions. For example, in the bottom example of Figure 
3 a lamppost is placed every 20 meters on the roadside 
feature, facing the center of the road. Trees in this example 
are placed using a description entity with a distribution. 

The next paragraphs describe the building of an office 
scene (Figure 3 center) from the user perspective. Every 
model used in the scenes is first added to the semantic 
library and linked to a class. The basic building block for 
the office scene is a description for a single desk setup. 
This setup includes entities for a desk, a desktop computer 
and a comfortable office chair, for which common 
relationships are available in the semantic library. A fourth 
entity adds some objects on the desk: some pens, a mug 
and a binder. The main relationships for these objects’ 
classes are overridden and an additional relationship 
defines that they should be placed on the top feature of the 

 
Figure 3: Some example scenes built with descriptions (top: 
factory floor, middle: office, bottom: a road through a forest) 

 
 
 



 

 

desk. This description, which is shown in Figure 4, is now 
exported to a procedure. 

Now a desk setup class is added to the semantic library, 
to which the procedure is linked. In this class some 
relationships are defined: the desk setups should be placed 
next to other desks or opposed to other setups. In the office 
description, this class is used in an entity containing either 
a fixed amount of desk setup instances or e.g. a distribution 
based on the room size. Finally entities for some cupboards 
and a coat rack are included. Again, the relationships for 
these last two classes are already contained in the semantic 
library. Using our semantic description language, linked 
with our layout solving approach, we can create a 
description usable for any office space we need in our 
virtual world in mere minutes. 

Conclusions 
Due to their highly technical nature, fine-tuning the output 
of procedural generation techniques comes down to 
tweaking some vague parameters, often resulting in a trial-
and-error approach. In this paper we present a high-level 
semantic description language that makes the specification 
of scene layouts easier and more intuitive. This method 
adds an extra layer of usability to a traditional layout 
solving approach. With our visual language, a designer can 
easily build a scene description by defining the basic 
entities of which that scene consists. Using both the 
common relationships defined in a semantic class library 
and other scene-specific relationships added to the 
description entities, a suitable layout can be generated for 
each instance of the described scene. 

Furthermore, the ability to create context-specific 
behavior allows a description to adjust to specific 
conditions or circumstances, making it usable for a range 
of different instances of the same scene class. 

By creating an automatic conversion of these high-level 
descriptions to our procedures, we combined the power of 
our semantic layout solving approach with the ease of use 
of a clear and simple scene description. 

Currently we are working on ways to enhance both the 
visual quality and realism of the generated scenes by 
applying a finishing pass of effects that change the look of 
the scene, e.g. adding dust and dirt to age objects or snow 

to the rooftops during winter. Another important aspect of 
our ongoing work is maintaining semantic consistency 
while  editing: maintaining relationships and designer’s 
intent of the descriptions after manual changes to a scene. 

Acknowledgments 
This research has been supported by the GATE project, 
funded by the Netherlands Organization for Scientific 
Research (NWO) and the Netherlands ICT Research and 
Innovation Authority (ICT Regie). 

References 
Akazawa, Y., Okada, Y. and Niijima, K. 2005. Automatic 
3D Scene Generation Based on Contact Constraints. In 
Proceedings of the 8th International Conference on 
Computer Graphics and Artificial Intelligence (3IA'2005), 
51-62. Limoges, France.  
Aylett, R. and Luck, M. 2000. Applying Artificial 
Intelligence to Virtual Reality: Intelligent Virtual 
Environments. Applied Artificial Intelligence 14(1): 3-32. 
Coyne, B. and Sproat, R. 2001. WordsEye: an Automatic 
Text-to-Scene Conversion System. In Proceedings of 
International Conference on Computer Graphics and 
Interactive Technologies (SIGGRAPH 2001), 487-496. 
Los Angeles, California, USA. 
Germer, T. and Schwarz, M. 2009. Procedural 
Arrangement of Furniture for Real-Time Walkthroughs. 
Computer Graphics Forum 28(8): 2068-2078. 
Hayes, P. and McBride, B. 2004. RDF Semantics. 
http://www.w3.org/TR/rdf-mt/. Last visited May 7, 2010. 
Kallmann, M. and Thalmann, D. 1998. Modeling Objects 
for Interaction Tasks. In Proceedings of the 9th 
Eurographics Workshop on Animation and Simulation 
(EGCAS), 73-86. Lisbon, Portugal. 
Miller, G. 1995. WordNet: A Lexical Database for English. 
Communications of the ACM 38(11): 39-41. 
PixelActive CityScape. http://pixelactive3d.com/ Last 
visited May 7, 2010. 
Procedural inc. CityEngine. http://www.procedural.com/ 
Last visited May 7, 2010. 
Side effects Houdini. http://www.sidefx.com/ Last visited 
May 7, 2010. 
Smith, M. K., Welty, C. and McGuinness, D. L. 2004. 
OWL Web Ontology Language Guide. 
http://www.w3.org/TR/owl-guide/. Last visited May 7, 
2009. 
Tutenel T., Smelik R.M., Bidarra R. and de Kraker K.J. 
2008. The Role of Semantics in Games and Simulations. 
Computers in Entertainment 6(4): a57. 
Tutenel T., Smelik R.M., Bidarra R. and de Kraker K.J. 
2009. Rule-based Layout Solving and its Application to 
Procedural Interior Generation. In Proceedings of the 
CASA workshop on 3D Advanced Media In Gaming And 
Simulation (3AMIGAS), 15-24. Amsterdam, The 
Netherlands. 

 
 
 
 
 

 
Figure 4: A description for a single desk setup with four entities. 

Arrows show the common relationships between entities. 
 
 
 
 


