
PRELIMINARY VERSION 22-Feb 2011

Development of a Distributed Simulation Environment for Crisis

Management Training

Erik Vullings - TNO, The Netherlands
Simone De Kleermaeker – Deltares, The Netherlands

Cor-Jan Vermeulen – HKV, The Netherlands

Erik.Vullings@tno.nl, Simone.DeKleermaeker@deltares.nl, CorJan.Vermeulen@hkv.nl

Keywords:

Team training, exercise management, simulation engine, scenario editor, distributed environment, scenario

editor, public safety and security, flood control

ABSTRACT: Disasters happen; you simply cannot prevent them. So you need to be adequately trained for

managing a crisis when it occurs. Most crisis management professionals, however, do not have sufficient time to
train regularly, as they often have demanding regular jobs too. In addition, most current-day trainings are

inflexible and only employ linear scenario lines, i.e. you have to follow the stipulated path as presented by the

trainer, and there is little room for divergence. Every time you do not follow the "yellow brick road", you are

corrected and put on the right path again. Furthermore, these scenarios take a lot of time and manpower to

develop, and the tooling is not great. To make matters worse, you often need many people to simulate the

external environment, feeding simulated email and telephone messages to the trainees.

In order to train efficiently and effectively, we present a solution to train crisis management professionals in a

distributed environment. The solution was developed as part of the Flood Control 2015 program in a consortium

of four parties: IBM, HKV, Deltares and TNO. It uses Windows Workflow Foundation for creating training

scenarios in a user-friendly environment, in combination with an HLA-like Service Bus for sending control and

data messages to distributed software modules. The environment was used to train crisis management

professionals in safety regions and for water management. This paper will describe the developed environment,

the training setup and the results of the training.

1 Introduction

Training a group of persons to act as a team during

a crisis situation is a big challenge. On the one

hand, you always need to bring the whole team

together, and on the other hand, you need to

simulate the environment as well. Compare this, for

example, to training a soccer team. They can train

every day, and have matches regularly. And if they

want to have a match, they just need to divide the

team up. Also, the environment is fixed, and needs

no further preparation.

Training a crisis team might require many trainers:

for example, during a recent training in a small city,

about 40 persons of the city council were trained by

12 trainers. 2 to observe the two teams, and 10 to

act as external stimuli. Dedicated exercise

management tools exist, such as JEMM, developed

by NATO's NC3A, or the commercial EXONAUT.

Typically, they still require several trainers, but the

scenario can be better tuned to the learning goals:

during the scenario, at predefined time intervals,

they instruct the trainers about what to do or how to

act. An advantage of this kind of training is the high

level of realism that can be attained, since we are

dealing with actual people. However, the costs are

high too, and this often means that people are not

trained very often.

The approach we present here strives to achieve a

sufficient level of realism at a low cost, with only

one trainer who acts as an observer. In Section 2,

we present the training framework. In particular, we

will focus on the interoperability requirements for

the different components, and comparison to

standard frameworks like HLA and DIS. In Section

3, we describe a training session with three teams,

and the results achieved. Section 4 will present

some preliminary conclusions and future work.

2 Framework for Urban Safety &

Security (FUSS)

Our Framework for Urban Safety & Security

(FUSS) is based on the distributed High Level

Architecture (HLA, see ref. [1]). The main reason

why we did not use HLA was that it had proven

difficult to connect non-C++ clients written in

programming languages like C# or Delphi. And

although current HLA implementations may have

resolved these limitations, our current framework

excels in simplicity and speed, and any competent

programmer can apply it in less than an hour.

2.1 Overview of the technical environment

Figure 1 depicts the exercise setup: at the top are

the three teams: LCO a.k.a. Landelijke Coördi-

natiecommissie Overstromingsdreiging (National

Commission Flooding), and two operational teams,

WOT, a.k.a. Waterschappen Operational Team

(Water Board Coordination Commission) and ROT,

a.k.a. Regionaal Operationeel Team (Regional

Coordination Commission), each with several

professionals. These teams all have email, and

optionally a GIS module and an evacuation model

at their disposal. At the left, you see two shared

tools, i.e. the simulation time and a virtual news

channel. At the bottom, you see the Facilitator, who

has access to the log, including all sent and

received emails, the evaluation module and the

Scenario Editor and Exercise Manager (SEEM).

Email GISEmail GIS
LCO

game

ROTLCO

Evaluation

module

Log & replay

WOT

Evac.

Facilitator

Virtual

News

Sim.

Time
SEEM

Content
Feedback

Publish/Subscribe Communication Bus

Figure 1. Training setup, with the three teams at the

top and the facilitator at the bottom.

We briefly discuss two alternative exercise

managers: the commercial Exonaut (see below,

www.exonaut.com), which has an online version as

well, and the freely available Joint Exercise

Management Module (JEMM, free for NATO

countries). Both are mainly aimed at briefing the

role players during an exercise, and not the players,

so from a training perspective, the training will be

very labor intensive and therefore expensive. The

presented solution, however, could also facilitate

this, but as this is precisely the aspect we want to

tackle (efficiency)

Exonaut
Exonaut Exercise Manager is a Java-based exercise

management software that allows directing staff to

conduct distributed and simultaneous joint

planning, irrespective of geographical location.

Through a comprehensive timeline and map

function, the software visualizes the exercise

scenario in detail, allowing the directing staff to

obtain a comprehensive overview of the exercise as

it is being planned, executed and evaluated.

Exonaut stores exercise scenarios in a database,

thereby allowing recycling and continuous

improvement of exercise scenarios while saving

hours in exercise planning. Comprehensive

evaluation data allows exercise planners to evaluate

and reuse successful aspects of an exercise

scenario, while the training audience can receive

instant feedback on its performance. Exonaut also

allows for dynamic scripting, thereby allowing

directing staff to increase the realism and efficiency

of the exercise in the execution phase.

Exonaut has several filtering functions, thus

ensuring that different functions within the

directing staff can focus on information relevant to

their tasks. As a result, coordination of complex

scenarios involving a number of functions and

training objectives is achieved.

Exonaut's open interface makes it easily integrated

with other systems in the Exonaut suite; Calendar,

Intelligence, Training Progression Matrix as well as

external systems, thereby allowing Exonaut to be

used in a range of areas such as Live Exercise

Management, Virtual Exercise Management and

Constructive Simulation Exercise Management.

Exonaut has been used in a number of complex

computer assisted exercises involving a large

directing staff and integration with constructive

simulators, most recently the Viking 2011 exercise

at the Swedish Command & Control regiment and

distributed sites.

2.2 The communication bus

The communication service bus is a command line

executable (see also [2]), which connects publishers

and subscribers in a distributed environment. This

means that a client that wishes to publish

information, the publisher, needs to connect to the

service bus, join a federation, and create a channel.

From then on, it can send messages across.

Although we chose to use XML-messages, arbitrary

byte messages can be used too.

A client that wishes to receive messages, the

subscriber, follows a similar procedure, but instead

of publishing a channel, it subscribes to one, and

listens to incoming events.

imbClient = new IMBClient();
imbClient.InitializeConnection();
imbClient.Publish(”TestChannel”,
 new XmlSerializer(typeof(TestMessage)));

For interoperability purposes, although not required

by the service bus, we chose to send XML

messages across and publisher and subscriber only

need to format and parse those messages,

respectively.

…

Rich

Internet

App.

…

…Sensor

Apps

Sensors

Actuator

Apps

Actuators

3D

Visuals

Web services

Models2D Editor

Publish/Subscribe Communication Bus

Public Internet (+ authN/authZ)

Figure 2. Overall system architecture showing

different connection options.

2.3 The Scenario Editor & Exercise Engine

(SEEM)

At the heart of our framework is the Scenario

Editor and Exercise Engine (SEEM). It allows end

users (typically the trainer) to create team-training

scenarios by dragging-and-dropping basic building

blocks into the scenario. Examples of the building

blocks are email messages, SMS messages or news

bulletins, which are presented by a virtual

character, but also blocks for managing the timeline

and flow (branching). With these building blocks,

the end user (trainer) can create a training scenario

from scratch, sending different messages at

different times or under specific conditions.

SEEM is built on top of Windows Workflow

Foundation 4 (WF4, see [3]), which provides the

drag-and-drop user experience, and has default

building blocks to implement simple logic as you

would typically define in a flowchart or if/then/else

branching.

Using the WF4 bookmarking system, we could

easily extend it and make it aware of the simulation

time, so it not only allows us to edit a scenario, but

also to execute it. Consequently, the simulation

time is wrapped inside a message, and

communicated across the bus to all clients, so they

are aware of the simulation time and state (running,

pause, stop) too.

2.4 Other components

The training environment is further enriched with

several other components, which we will describe

briefly.

imbClient = new IMBClient();

imbClient.InitializeConnection();

imbClient.IncomingEventObject += IncomingEventObject;

imbClient.Subscribe(”TestChannel”,

 new XmlSerializer(typeof(TestMessage)));

…

private static void IncomingEventObject(string eventName,

 object pObject) {

 if (pObject is TestMessage)

 DisplayMessage((TestMessage)pObject);

}

Default building

blocks

Simulation

speed & state

Scenario output

Waiting to

execute

At 8:30h, send

two emails…

Figure 3. Detailed view of SEEM, where a running scenario is depicted. At the left, you see a partial list of building

blocks. At the top, you see the exercise control (start, stop, pause, and speed), and at the bottom, the scenario output.

Email
To offer email to trainees, we combined a freeware

email server (SmarterMail, www.smartertools.com)

with integrated web clients with a small

SMTP/IMAP service that is connected to the bus.

The email server is configured with a training

domain and accounts of the trainees. In addition,

the email server can be configured to add a BCC

(Blind Carbon Copy) to each email, so the

trainer/facilitator can inspect the messages during

the training. In addition, we use this feature for

logging, as explained below.

The SMTP service listens to email messages on the

bus. Upon receiving an email message, it uses the

SMTP protocol to send it via the email server to the

trainees, who can read it in their web client.

The IMAP listens to a specific logging account,

filled with BCC messages (as explained under

bullet 1). Every message that is received is

published on the bus for logging purposes.

Logging
The logging is done for evaluation and analysis

purposes. All messages and actions are logged for

later analyses. In addition, it filters out certain types

of messages for automatic evaluation (see

evaluation module). The logging is built on top of

the GRACE database (see also [4])

Virtual news reader
Often when performing training, a video with the

news is shown. Since the news needs to be a good

representation of the scenario, these newscasts are

done with real anchor women. Unfortunately, this

also makes it hard to change the scenario and re-use

them, and instead, we opted to have a virtual

character read the news aloud, prompted by the

scenario.

Evacuation model
Based on the current (simulation) time and

situation, the status of the road density was shown.

Using the map, trainees could close roads and

thereby influence the (potential) evacuation

operation.

External game
Since one of the teams in the training originated

from a newly erected organisation, they used

another serious game as the main interface to play

the scenario.

GIS (Geographical Information System)
Map interface to show incidents and discover new

information.

Simulation clock
Shows the relative time to the trainees, since we

played faster than real-time (one hour of actual time

represented one day in the scenario).

Evaluation module

Using a commercial Business Intelligence

product, it evaluates and scores the logged

data along the OODA (Observe, Orient,

Decide, and Act) methodology. The scoring

is based on predefined criteria formulated in

the workflow procedures of the trainees.

NTP service

The Network Time Protocol service listens

to the simulation time, and updates the PC’s

system time, and acts as an NTP service for

NTP clients.

3 Early Experiment

Our first experiment was conducted mid November

2010 as part of the project Flood Control 2015 –

Serious Gaming (see www.floodcontrol2015.com).

There were three teams, from three different

organisations, each team with approximately 4

persons. The training took 3 hours (excluding

briefing, breaks, and debriefing) and the scenario

comprised three days of a crisis (flooding scenario).

Each team was provided with their own interface,

typically an email web client Joint Exercise

Management Module, and specific tools, such as

the GIS map or evacuation model. Since they were

co-located, each team could watch the news and

simulation clock on a large screen. Directly after

the experiment the performance report for each

team was available.

4 Early Conclusions and Road Ahead

One of our main goals with the developed

environment was to improve training efficiency and

effectiveness. From the early evaluation, we

conclude that this training environment is much

more efficient. All you need is one facilitator to

start and manage the exercise, and optionally,

observers to observe each team. Effectiveness, on

the other hand, is much harder to prove. From the

feedback that we’ve received from the participants,

we know that our setup was similar to the one they

had experienced before, but which required many

more people to run. So presumably, since the

experience was quite similar, the potential for

learning is similar too. New addition was the instant

generated performance report for direct feedback

and for the after action review.

We noticed that the familiarity with the provided

tooling was an issue and in the future, we need to

reserve more time for introducing them properly.

For example, one team experienced some difficulty

in using a regular web client for email. During the

preparation, when we mentioned that there would

be a GIS/map tool available, they immediately felt

the need to include someone else in their team, one

who would be familiar with using a map.

Due to development time constraints, we did not

develop a telephone service, so the players could

not use the phone. This was something that they

really missed, and we are currently developing such

a service.

It’s also worth mentioning that the news presence,

although appreciated, was not of primary

importance. There were even players that were

slightly annoyed by its presence, as it disrupted the

meeting.

Finally, it’s important to mention that most time

was spent in setting up the room, including all

equipment. We are currently investigating whether

it is economically feasible to host all services, so

there is no more the need to bring in equipment.

References

[1] IEEE: "IEEE 1516, High Level Architecture

(HLA)", www.ieee.org, March 2001.

[2] The Reality Check: Evacuation Planning

done by Mixed Reality and Simulation, D.

Keus et.al., SIW 2011, 11E-SIW-009

[3] A Developer’s Introduction to Windows

Workflow Foundation (WF) in .NET 4, M.

Milner, November 2009,

http://msdn.microsoft.com/en-

us/library/ee342461.aspx

[4] Generic Reconstruction and Analysis for

Simulations or Live Exercises, R. Witberg,

E. van Veldhoven, D. Keus, SIW 2011

Author Biographies

ERIK VULLINGS received his Masters in

Mechanical Engineering and his PhD in Electrical

Engineering from Delft University of Technology.

In 1999, he joined Philips as a Systems Architect,

and finally became Program Manager of an

Integrated Project in the area of Mechatronics

(FP6). In 2004, he went to Australia as the Program

Manager of an IT project in the field of Identity and

Access Management, thereby laying the foundation

for the Australian Access Federation. In 2007, he

returned to The Netherlands, and currently works as

Senior Project Manager at the Dutch Research

Organisation TNO. He is the author of multiple

articles and papers, and holds several patents.

SIMONE DE KLEERMAEKER has studied

Applied Mathematics at the University of

Groningen and received her masters in 2001. She

then joined WL|Delft Hydraulics and currently

works as senior advisor for Marine and Coastal

Systems at Deltares. She has extended knowledge

of hydrodynamic modelling of both Marine and

Coastal as well as Industrial systems. She

complements this knowledge with the application

of such models in projects such as Serious Gaming,

FEWS installations and calibration using tools such

as OpenDA. She has extended experience as

teacher and trainer.

COR-JAN VERMEULEN graduated in 1987 in

Applied Mathematics (systems and control theory)

from the University of Twente. After graduating he

joined WL|Delft Hydraulics as a project engineer

mathematical modelling. He participated in long

and short term assignments as mathematical

modelling specialist, researcher and

lecturer/instructor. Since 2005 he specialized in

disaster management with special attention to water

safety, i.e. prepare for water related incidents like

floods, and draughts. He specialised in operational

water management and disaster management and

has been a consultant with over 20 years of

experience.

