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ABSTRACT  

The structural image similarity index (SSIM), introduced by Wang and Bovik (IEEE Signal Processing Letters 9-3, pp. 
81-84, 2002) measures the similarity between images in terms of luminance, contrast en structure. It has successfully 
been deployed to model human visual perception of image distortions and modifications in a wide range of different 
imaging applications. Chang and Zhang (Infrared Physics & Technology 51-2, pp. 83-90, 2007) recently introduced the 
target structural similarity (TSSIM) clutter metric, which deploys the SSIM to quantify the similarity of a target to its 
background in terms of luminance, contrast en structure. They showed that the TSSIM correlates significantly with mean 
search time and detection probability. However, it is not immediately obvious to what extent each of the three TSSIM 
components contributes to this correlation. Here we evaluate the TSSIM by deploying it to a set of natural images for 
which human visual search data are available: the Search_2 dataset. By analyzing the predictive performance of each of 
the three TSSIM components, we find that it is predominantly the structural similarity component which determines 
human visual search performance, whereas the luminance and contrast components of the TSSIM show no relation with 
human performance. Since the structural similarity component of the TSSIM is equivalent to a matched filter, it appears 
that matched filtering predicts human visual performance when searching for a known target. 
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1. INTRODUCTION 
It is well known that visual targets that are similar to their local background or to details in other parts of the scene are 
harder to find than targets which are highly distinct. This obscuring effect, which is generally known as clutter, 
determines human visual search and detection performance to a large extent. Many attempts have been made to quantify 
the effects of clutter by means of digital clutter metrics. However, since the concept of clutter is inherently elusive, 
attempts to model it have only been partly successful 1-3,6,8,17-20,20,24-27,29,30. 
 
Visual search experiments have shown that detection performance depends mainly on the energy contrast between a 
target and its local background, whereas recognition depends mainly on the structural dissimilarity between a target and 
its surround 5,7. For complex scenes, the spatial relationships (shape and relative location) of features in an image can 
have a greater effect on detection than the relative luminance of the features 8. Higher overall contrast may even reduce 
the amount of perceived clutter because confusing details are more readily recognized for what they are -- nontarget 
scene elements. An effective clutter metric should account for this type of cognitive screening. 
 
Wang and Bovik introduced the structural image similarity index (SSIM) which measures the similarity  between images 
in terms of  luminance, contrast en structure 31-33,35,36. The SSIM has successfully been deployed to model human visual 
perception of image distortions and modifications in a wide range of different imaging applications (for an overview see 
32). Chang and Zhang 9,10 recently introduced the TSSIM clutter metric, which deploys the SSIM to quantify the 
similarity of a target to its background in terms luminance, contrast en structure. They showed that the TSSIM correlates 
significantly with mean search time and detection probability 9,10. However, it is not immediately obvious to what extent 
each of the three TSSIM components contributes to this correlation. 
 
Here we analyze the predictive performance of each of the three TSSIM components, and we show that it is 
predominantly the structural similarity component which determines human visual search performance, whereas the 
luminance and contrast components of the TSSIM do not correlate with human performance. The rest of this paper is 
organized as follows. In Section 2 we show how rewriting the TSSIM in its full form allows the assessment of the 
contribution of the luminance, contrast and structural similarity components to the overall clutter metric. In Section 3 we 
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describe how the performance of the TSSIM was evaluated by deployment to a set of natural images for which human 
observer data are available. The results of this experiment are presented in Section 4. Finally, the conclusions of this 
study are presented in Section 5. 
 

2. CLUTTER METRICS 
 
2.1 The structural similarity (SSIM) metric 

Let { }= = L1,2, ,x x i Ni  and { }= = L1,2, ,y y i Ni  represent two discretely sampled grayscale image patches that 

need to be compared. Let μ μ σ σ σ, , , ,x y x y xy  respectively be the mean of x , the mean of y , the standard deviation 
of x , the standard deviation of y , and the covariance of x  and y , defined as: 
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The mean signal intensity and its standard deviation (the square root of variance) can be regarded as rough estimates of 
respectively local image luminance and contrast. The covariance of x  and y   (normalized by their respective variances) 
reflects the tendency of the two signals to vary together, and can therefore be adopted as a measure of the structural 
similarity between the two signals.  
The similarity of the local patch luminances is then defined as  
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where 1C  is a small constant given by ( )=
2

1 1C K L , which is introduced to stabilize the computation of (4) when the 
denominator becomes small, L  is the dynamic range of the pixel values ( = 255L  for 8 bits/pixel grayscale images), and 

<< 1K  is a scalar constant (typically 0.01). The dynamic range of l  is 0,1 . The maximum value 1 is approached 
when both image patches have the same luminance: μ μ=x y . 
The similarity of the local patch contrasts is defined as 
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where 2C  is a small constant given by ( )= <<
2

2 2 2, 1C K L K  (typically 0.03). The dynamic range of σ  is 0,1 . The 
maximum value 1 is approached when both image patches have the same contrast: σ σ=x y . 
The structural similarity between the image patches is defined as  
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with =3 2 2C C . The dynamic range of s  is −1,1 . The maximum value 1 is approached when 
= + = Lfor all 1,2, ,i iy a x b i N , where a  and b  are constants and > 0a . 
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The overall structural similarity index SSIM between signals x  and y  is defined as: 

 α β γ= ⋅ ⋅SSIM( , ) ( , ) ( , ) ( , )x y l x y c x y s x y   (7) 
where α β γ, and  are parameters that define the relative importance of the three components. 
Setting α β γ= = = 1  and substitution of Equations (4),(5) and (6) in Equation (7) results in  
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which is the form in which the SSIM is typically used in the literature 32-36. 
 
When comparing two images, the SSIM index is computed locally within a sliding window that moves pixel-by-pixel 
across the image, resulting in a SSIM map. The SSIM score of the entire image is then computed by pooling the SSIM 
map, e.g., by simply averaging the SSIM values across the image. SSIM has successfully been applied in a large number 
of different applications (for an overview see 32). 
 
2.2 The target structural similarity (TSSIM) clutter metric 

Chang and Zhang 9,10 adapted the SSIM for use as a clutter metric, and introduced  the target structure similarity metric 
(TSSIM). Their approach is as follows: 
 
The image for which the clutter metric has to be calculated is divided into N blocks. The blocks are twice the apparent 
size of the typical search target in each dimension. 
 

Let { }= = L1,2, ,TT i Ni  and { }= = L1,2, ,B B i Nj ji  represent respectively the discretely sampled grayscale 

target block (i.e. the part of the images which contains the target support area and a local background area around the 
target) and the jth background image block.  
 
Substitution of T and B  for x  and y  in Equations (4)-(6) and neglecting the stabilizing constants yields 
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Substituting Equations (9), (10) and (11) in (7), with α β γ= = = 1 , and adopting a single constant C  to avoid 
instabilities, yields the TSSIM metric 9,10: 
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Chang and Zhang used both = 0.2C  9 or = 0C  10. Here we also adopt = 0C  since we observed no instabilities for the 
image set used in our experiments. 
 
The overall image TSSIM is then calculated in two ways: both as the root mean square of TSSIMj (TSSIMrms) and the 
arithmetic mean of TSSIMj (TSSIMam) . 
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where TSSIMj  is the structure similarity measure in the jth image block, and N is the total number of image blocks. The 
rationale of this metric is the fact that observers will need more time to inspect the image when it contains more details 
similar to the target. Details similar to the search target can also distract and confuse the observer, and may result in false 
alarms, thus degrading the detection probability. Thus, a higher TSSIM value corresponds to more clutter in the image, 
leading to longer search (inspection) times and lower detection probability.  
 
 

2.3 The full form TSSIM  

Using Equations (9), (10) and (11), and setting all stabilization constants to zero, we rewrite Equation (12) in its original 
full form (Equation (7)), which allows the assessment of the individual contributions of luminance, contrast and 
structural similarity to the overall TSSIM clutter metric: 
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In the next section we will use Equations (9), (10), (11), and (15) to investigate the contribution of each of the 
perceptually relevant factors (i.e. the luminance component ( , )jl T B , the contrast component ( , )jc T B , and structural 

similarity component ( , )js T B ) to the overall TSSIM clutter measure. 
 
 

3. EXPERIMENT 
Similar to Chang and Zhang 9,10, we use the Search_2 image dataset 28 to assess the performance of the TSSIM (Equation 
(15)) and each of its three components (9), (10) and (11). The Search_2 dataset consists of a set of 44 high-resolution 
digital color images of different complex natural scenes including a search target (a military vehicle), together with the 
detection times and detection probability obtained from a visual search and detection experiment in which 62 observers 
participated. The Search_2 dataset, which is described in detail elsewhere 28, has been extensively used in different 
studies in the literature, ranging from studies evaluating target detectability and clutter metrics, to eye movement studies 
and attempts to model the human visual system 4,10-16,37. Similar to Chang and Zhang 9,10, we converted the original 
Search_2 images to grayscale and reduced their resolution with a factor 2, resulting in an image size of 3072x2048 
pixels. We used the same target blocks as Chang and Zhang 9,10. In addition to the TSSIM, we also computed its 
luminance component l (Equation (9)), its contrast component c (Equation (10)), and its structure component s (Equation 
(11)), for all 44  Search_2 images.   
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(a) 

 
(b) 

Fig. 1 Two images from the Search_2 database, divided into blocks (white rectangles) with twice the apparent size   
           of the search target. The target blocks are represented by the red rectangles. 
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4. RESULTS 
 
Table 1 and Table 2 show respectively the correlation between the TSSIM and each of its three components l, c and s on 
the one hand, and the logarithm of the mean search time and the detection probabilities for the images in the Search_2 
dataset on the other hand, quantified by respectively the Pearson and the Spearman rank order correlation coefficients. 
The correlations were computed using SPSS 18.0. These results show that the TSSIM and its structural similarity 
component s correlate significantly at the 0.01 level (1-tailed) with the logarithm of the mean search time and the 
detection probability, whereas the luminance and contrast similarity components show no significant correlation. TSSIM 
and s both correlate most strongly with the logarithm of the mean search time. The structure component s shows a 
stronger correlation with both Pd and logST than TSSIM. The largest correlation values are obtained for the arithmetic 
mean of s. The overall largest correlation is obtained between the arithmetic mean of s and logST (Pearson correlation = 
.812, Spearman rank order correlation =  .826).  
 
Note that the structural similarity component s is in fact a correlation measure, similar to a matched filter. The TTSIM 
parses the image into non-overlapping blocks, performs "matched filtering" on each block, and computes the overall 
clutter metric as the (arithmetic or root mean square) average over all blocks. The rationale for this approach is that the 
mean search time will be longer, and the detection probability will be smaller, if there are more image blocks that 
"match" (are similar to) the search target. To investigate the effects of the use of discrete blocks, we computed the 
TTSIM for blocks with different degrees of overlap, ranging from zero overlap (non-overlapping image tessellation, as 
used by the TTSIM) to maximal overlap (corresponding to full matched filtering). We found that all (Pearson and 
Spearman) correlations thus obtained vary less than 7%.  
 

Table 1.  The correlation between TSSIM and each of its three components l, c and s, and the logarithm of the 
mean search time and the detection probabilities for the images in the Search_2 dataset, quantified by the Pearson 
correlation coefficient. Bold values indicate that the correlation is significant at the 0.01 level (1-tailed).   

 
 lrms lam crms cam srms sam TSSIMrms TSSIMam
logST -.046 -.048 -.187 -.177 .807 .812 .789 .781 
Pd .049 .050 .087 .081 -.641 -.647 -.639 -.636 

 
Table 2.  The correlation between TSSIM and each of its three components l, c and s, and the logarithm of the 
mean search time and the detection probabilities for the images in the Search_2 dataset, quantified by the 
Spearman rank order correlation coefficient. Bold values indicate that the correlation is significant at the 0.01 
level (1-tailed).   

 lrms lam crms cam srms sam TSSIMrms TSSIMam
logST .005 .012 -.239 -.213 .816 .826 .767 .755 
Pd -.047 -.058 .137 .112 -.759 -.764 -.744 -.760 
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5. CONCLUSIONS 
In this study we first replicated the results of Chang and Zhang 9,10, who showed that the newly introduced target 
structural similarity clutter metric TSSIM correlates significantly with human visual search performance, and 
outperforms other clutter metrics. Then we showed that it is the structural similarity component of the TSSIM that 
predicts both mean search time and detection probability, while the luminance and contrast similarity components do not 
correlate with human observer performance. This result agrees with the related observations that the cross-correlation 
component of the SSIM predicts visual image quality 23, and that human observers mainly rely on structural features to 
recognize image content 5,7,8,21,22. Furthermore, it should be noted that the structural similarity component of the TSSIM 
is equivalent to a matched filter. Hence, it appears that matched filtering predicts human visual performance when 
searching for a known target. However, since the image dataset used in this study is limited, further experiments on a 
wide variety of images (preferably of different modalities) are required to establish the general validity of the structural 
similarity component as a clutter metric. 
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