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ABSTRACT 

Potential asymmetric threats at short range in complex environments need to be identified quickly during coastal opera-
tions. Laser range profiling is a technology that has the potential to shorten the OODA loop (Orient, Observe, Detect, 
Act) by performing automatic characterisation of targets at large distance. The advantages of non-cooperative target 
recognition with range profiles are: (a) a relatively short time on target is required, (b) the detection range is longer than 
in the case of passive observation technologies such as IRST, and (c) characterisation of range profiles is possible at any 
aspect angle. However, the shape of a range profile depends strongly on aspect angle. This means that a large data set is 
necessary of all expected targets with reference profiles on a very dense aspect angle grid. Analysis of laser range pro-
files can be done by comparing the measured profile with a database of laser range profiles obtained from 3D models of 
possible targets. An alternative is the use of a profile database from one or several measurement campaigns. A prerequi-
site for this is the availability of enough measured profiles of the appropriate targets, for many aspect angles. Compari-
son of measured laser range profiles with a reference database can be performed using, e.g., formal statistical correlation 
techniques or histogram dissimilarity techniques. 

In this work, a field trial has been conducted to validate the concept of identification by using a laser range profiling 
system with a high bandwidth receiver and short laser pulses. The field trial aimed at characterization of sea-surface 
targets in a coastal/harbour environment. The targets ranged from pleasure boats like sailing boats, jet skis, and speed 
boats to professional vessels like barges, cabin boats, and military vessels, all ranging from 3 to 30 meters in length. We 
focus on (a) the use of a reference database generated via 3D target models, and (b) the use of a reference database of 
measured laser range profiles. A variety of histogram dissimilarity measures was examined in order to enable fast and 
reliable classification algorithms.     

Keywords: Laser range profiling, target characterisation, small maritime targets. 

1. INTRODUCTION 
The basis for acquiring target knowledge with sensors is the detection and characterisation of persons and objects in an 
observation sector. After detection of the target, the characterisation levels, which run hierarchically through discrimina-
tion, categorisation, recognition, and identification, depend on the amount of available information in the sensed data and 
the information requirements for the different levels. Hardware, software, and the environment in which the sensor/target 
combination operates, determine the achievable level (Figure 2.1). Furthermore, characterisation methods of the meas-
ured laser range profiles were investigated. 

In this paper ‘target characterisation’ is used as a general term for achieving the best target knowledge with active imag-
ing techniques. A laser system operating with extremely short wavelength EM transmissions has the potential to end up 
in the recognition and identification phase.  

Laser range profiling (LRP) is a measurement technique to characterise an object by the shape of laser pulses that reflect 
off the object’s surface. The setup consists of a laser that emits short pulses, and a fast detector to detect the reflected 
energy. Features of the object that turn up in the reflection signal can be compared with a priori information stored in a 
database, or can be analysed on uniqueness using artificial neural networks. As the wavelength of the laser light is ex-
tremely small, high-resolution details can be distinguished at great distance.  
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Figure 2.2: Upper panel: Example of a simulated laser range profile of an F16 Fighter Falcon with a range-resolution of 10 
cm. The 3D computer model was targeted from the front (left to right) in a measurement simulation. Bottom panel: 
Photograph of an F16 on the same scale. 

3. LASER RANGE PROFILING: MEASUREMENTS 
 
3.1 Laser, detector, optics and operation 

The present TNO laser range profiler (Figure 3.1) puts 60 mJ in one laser pulse of 5 ns. The pulse repetition frequency 
(PRF) is 10 Hz. The divergence is approx. 1 mrad at full width at half maximum (FWHM). The eye-safe output wave-
length of 1.5 µm exits from an Optical Parametric Oscillator crystal (OPO) pumped with a 1.06 μm YAG-based laser. In 
general, a higher pulse energy has the disadvantage that it goes hand in hand with a lower PRF.  

    
 

Figure 3.1: The TNO laser range profiler. 

In case of a range profiler assembly, a low PRF of 10 Hz is acceptable because no fast scanning of a large field-of-view 
(FOV) is required. In case of fast scanning devices, a much higher PRF is necessary in order to fill a wide FOV with 
overlapping laser pulses. 

Commercial-of-the-shelf  (COTS) laser systems with multi-mJ laser pulse energies are available, with a typical PRF of 
10 Hz and pulse length of order 10 ns (for example offered by Spectra-Physics/Newport or Quantel). Pump lasers are 
also available with COTS OPO systems. The output pulse energy of these systems at 1.5 μm is of the order of the TNO 
LRP assembly, i.e. up to several tens of mJ. Examples of such systems are the Scan Series nanosecond OPO of Spectra-
Physics/Newport and the Rainbow OPO of Quantel. State-of-the-art semi-conductor lasers are available for pulse ener-
gies up to 400 mJ, and pulse lengths of a few ns. 

The present TNO LRP assembly is equipped with a Perkin Elmer InGaAs APD (Ava-lanche Photo Diode) detector, 
sensitive at 1.5 μm, with a diameter of 80 μm and a bandwidth of 200 MHz. This bandwidth is sufficient to record 10 ns 
laser pulses. The receiver FOV is determined by the diameter d of the detector and the focal length f of the accompany-
ing optics, according to FOV = 2 arctan(d/2f). 

At present, two different lenses are available. The first has a diameter of 18 mm and a focal length of 15 mm, the second 
has a diameter of 50.8 mm and a focal length of 50 mm. FOVs for the two lenses in combination with the detector are 
5.3 mrad and 1.6 mrad, respectively. Note that the lens diameter (or aperture) is relevant for the collected amount of 
light, but not for the FOV magnitude. The receiver setup may be improved by a higher bandwidth, a larger aperture, 
and/or a larger detector area. 

For the discussed LRP application, however, not all alterations are useful, i.e. a higher detector bandwidth allows for 
faster measurements, but in the present case a faster detector has no added value. Indeed, since the laser pulse of an aver-
age laser system is not shorter than 5 ns, a 200 MHz bandwidth is already sufficient. For faster detectors, the depth reso-
lution is limited by the laser pulse duration. Faster detectors have the additional disadvantage of a higher optical power 
threshold value. 

A larger aperture leads to the collection of more light and therefore to a higher signal-to-noise ratio. However, a larger 
aperture also implies a larger focal distance (assuming a similar f-number). This means that the FOV becomes smaller. 
As mentioned before, in the present system two different lenses are available.  
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        Figure 3.5: The crude-modelled targets according to Figure 3.5. Although the two fishing boats  are very similar to each 
other (middle and right panel), low-resolution features can still be distinguished, providing a LRP characterisation op-
portunity.   

4. CHARACTERISATION OF SMALL TARGETS 
Target characterisation with range profiling techniques – be it categorisation, recognition or identification – can in gen-
eral be separated into two groups: template-based characterisation, and feature-based characterisation. Template-based 
target characterisation is based on the comparison of the sample of interest (including all its features) with a database 
containing a (large) number of reference samples, each belonging to a certain class. A similarity measure is then used in 
order to decide to which class the given sample belongs. The database consists of range profiles for e.g. 72 aspect angles 
of the 3D modelled target, i.e. 5º stepwise for 360º. This is for one plane only, and in case of sea targets this suffices, yet 
for air-to-air target characterisation the manoeuvrability requires a relatively huge database for every solid angle.  

An alternative is feature-based target characterisation that uses low-dimensional features of the samples. The selected 
features should be maximally discriminative between different classes. A prominent part of feature-based target dis-
crimination is the use of artificial neural networks. 

4.1 Characterisation methods 

LRPs are datasets which can be interpreted as histograms. The dissimilarity between two given histograms can be meas-
ured through bin-by-bin comparison or by cross-bin comparison. A combination of all pair wise comparisons can then be 
used as a measure of the distance between the two distributions. Target characterisation can then be performed by using, 
e.g., the Nearest Neighbour (NN) rule. In any case, in order to perform such a computation, a suitable distance has to be 
defined first. Several expressions for this distance or dissimilarity between histograms have been proposed. Eleven dis-
tances have been described in [5]. For this paper however we take three adequate methods: 

• The Match Distance method, a promising candidate for efficient profiling. It is a cross-bin method that deter-
mines the distance between cumulative histograms with equal areas: ∑ −=

i
iiM yxYXd ˆˆ),(  in which 

∑
≤

=
ij

ji xx̂ .  

X = {xi} and Y = {yi} represent the histograms of interest and their elements. According to these definitions, the 
match distance is the distance between two cumulative histograms. Therefore, the weights of adjacent or rather 
preceding bins are taken into account in the comparison. However, the match distance cannot handle partial 
matches. 

• The closely related Kolmogorov-Smirnov distance cross-bin method is also suited for LRP:  
( )iiiKS yxYXd ˆˆmax),( −= , which is again defined using cumulative histograms. The dKS distance measure is 

commonly used in statistics for defining distances between non-binned distributions. In particular, the related 
Kolmogorov-Smirnov test is used to determine whether a given sample is drawn from a reference sample with a 
certain statistical distribution [6]. 
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5. CONCLUSIONS 
The projected surface area of the targets in this paper lies between 10 and 15 m2, which is too small for proper laser 
range profiling identification using a range resolution of 60 cm as per the outcomes in Subsection 4.3. The targets were 
at  > 1 km range, but range is not leading, contrary to the ratio between a) the laser range resolution and b) the size of the 
targets and the size of distinguishable features of the targets. This ratio, prescribing a successful profiling, seems too high 
in the analysis.   

Next to the discussions on the outcomes in Subsections 4.2 and 4.3, the questions posed in Section 1, the introduction, 
which define a kind of basis of the paper, can now be answered as follows: 

• Which numerical methods are suitable for target identification?  

In Subsection 4.1, where an analysis of range profiling techniques is presented, three one-dimensional distance methods 
have been identified that are efficient, accurate, and promising enough for future operational characterisation efforts. 
These methods are the Match Distance Method, the Kolmogorov – Smirnov Distance Method, and the Minkowski L2 
Distance Method, and were used in efforts to characterise small targets from experimental data as presented in this paper.    

• Are 3D models convenient to generate a database for laser range profiling?  

The use of low-resolution 3D models for template-based characterisation of laser range profiling targets happens to be an 
adequate and efficient way. Low-resolution 3D models can be quickly made, which is convenient when new targets are 
required for an operational database. High-resolution 3D models obviously take longer time to construct, but also come 
with similar or better results than low-resolution models. Low-resolution boat model tests are presented in Subsection 3.2 
where the measurement is shortly discussed. The reasons to use the low-resolution model in this research are twofold. 
Firstly, the range resolution of the used laser range profiler is relatively low (0.6 m), and secondly, it is less labour inten-
sive to construct 3D models at lower resolution. Unfortunately, this approach delivers suboptimal characterisation results 
if the database is too sparse and the quality of the data suffers from external influences. This is presented and discussed 
in Subsection 4.3.   

• Which range resolution is feasible for target characterisation and which targets are identifiable for a certain res-
olution? 

While the range resolution of TNO’s LRP system is 60 cm, which could be halved using deconvolution techniques, state-
of-the-art systems however should be able to achieve a 5 – 10 cm range resolution. In another work [5], two feasibility 
studies were performed considering the range performance of current and state-of-the-art LRP systems, resulting in sev-
eral findings. The atmosphere (visibility) between laser and target and the size of the target play an important role for 
range performance. Large targets of approx. 1000 m2 (e.g. sea cargo vessels) can be accurately characterised at approx. 
17 km with TNO’s LRP system under perfect weather conditions. With a state-of-the-art system this range is extended to 
100 – 120 km. For small targets of 50 m2 (e.g. airplanes), the characterisation range is 8 – 10 km for TNO’s system, 
while for a state-of-the-art system the range runs from 75 to 160 km, where 75 km applies to a visibility of 30 km and 
160 km represents free space with no attenuation due to molecules and aerosols. For targets of 50 m2 and bigger, a range 
resolution of 30 – 60 cm is in principle sufficient for target identification (see e.g. Figure 3.2). 

Next to these answers, some additional remarks are put forward.  

In Subsections 4.1 and 4.2 the confusion matrix and its function was shortly discussed within the context of the small 
sea-surface target characterisation experiment. With the results and the knowledge gained so far, the importance of a 
confusion matrix of good quality is noticed. The confusion matrix must be a reliable source of information if an opera-
tional LRP system is to be used in a scenario with unknown targets. The characterisation method must be validated on its 
accuracy and reliability. An a priori database consists of a certain class or classes of targets and is used to characterise 
these targets in a scenario. Unknown targets are to be categorised as ‘other’. In the confusion matrix this ‘known – other’ 
discrimination plus the correct prediction for all (a priori) known targets should be performed with a preferred accuracy 
of 100%. Depending on the user requirements, however, 95% is mostly seen as the lower limit for operational applica-
tions. Besides, the more extensive the database is the fewer unknowns have to be characterised. The confusion matrix 
thus is essential as a reliability test for software to be developed for operational use. 

Targets are usually not of the same size in operational settings. Laser range profiling measurements were performed on 
large targets in previous projects, while in this report the only actors were small targets. For laser range profiling the 
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target size, the range, and the detector FOV are all of importance. Future operational laser range profiler systems could, 
however, be equipped with discriminative lens/FOV systems or with a system that is flexible enough for switching be-
tween small and large targets at different ranges. The latter option is feasible with the current technology at hand. 
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