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ABSTRACT
Moving object detection in urban scenes is important for the guidance of autonomous vehicles, robot navigation, and

monitoring. In this paper moving objects are automatically detected using three sequential frames and tracked over a longer

period. To this extend we modify the plane+parallax, fundamental matrix, and trifocal tensor algorithms to operate on three

sequential frames automatically, and test their ability to detect moving objects in challenging urban scenes. Frame-to-frame

correspondences are established with the use of SIFT keys. The keys that are consistently matched over three frames are

used by the algorithms to distinguish between static objects and moving objects. The tracking of keys for the detected

moving objects increases their reliability over time, which is quantified by our results. To evaluate the three different

algorithms, we manually segment the moving objects in real world data and report the fraction of true positives versus

false positives. Results show that the plane+parallax method performs very well on our datasets and we prove that our

modification to this method outperforms the original method. The proposed combination of the advanced plane+parallax

method with the trifocal tensor method improves on the moving object detection and their tracking for one of the four video

sequences.
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1. INTRODUCTION
Moving object detection in video sequences has evolved over the past years from stationary video sequences, to dynamic

video sequences with one or two 2D layers, and on to more general 3D scenes. This paper addresses the detection of

moving objects in urban scenes from dynamic video sequences. The detection of moving objects, such as cars, bicycles,

and pedestrians, increases the situational awareness in urban scenes. Knowing where moving objects are and where they

are going helps to predict their position over time, which is useful for the guidance of autonomous vehicles, the monitoring

of vehicles and people, and alerting drivers when cars are approaching. The challenge in driving through urban scenes is

that all objects in the video sequence appear to move (including parked cars, light poles, and houses), and that static objects

close to the camera may even appear to move faster (3D parallax) than the truly moving objects at a larger distance. Being

able to distinguish between the static and the moving objects is important to reduce the number of false alarms in case of a

surveillance system.

Moving object detection can be performed by estimating the motion model between two or more frames in order to

compensate for the camera induced motion. Features that do not fit the motion model must have been subdue to individual

motion. The required motion model may differ in complexity, and depends on the acquired video data. In case of a

stationary video surveillance, all features with motion are independently moving objects. In case of a moving camera

looking at a distant 3D scene (aerial surveillance), the static features can be considered planar which allows either a

translation, or a affine or projective transformation to compensate for the camera motion and to directly detect the moving

objects.1 In case of a camera moving through a 3D scene these motion models do not suffice as illustrated in Fig. 1, and

more general models or algorithms are required. One option is to estimate the epipolar geometry using the fundamental
matrix (bifocal tensor) and to classify the model outliers as moving objects.2 This two-frame geometry cannot detect

objects moving along the epipolar lines, for which the three-frame geometry should be computed using the trifocal tensor2

instead. These models impose either epipolar or trilinear constraints to separate parallax from moving objects.

An alternative is the Plane+Parallax approach in which the 2D projective transformation of a dominant plane is deter-

mined and additional geometric constraints are used to distinguish between the moving objects and the 3D parallax.1, 3, 4

Many variants of the Plane+Parallax framework have been proposed. Irani et al.1 detect the planar homography between
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(a) none (b) translation (c) affine (d) projective

Figure 1. Subtraction of two images of the “frontal car seq.” (a) directly, (b) after XY-translation, (c) after an affine transformation, (d)

after a projective transformation. In all images the static car on the right appears to be moving faster than the moving car in the center.

This is due to the parallax.

pairs of frames and apply a parallax rigidity constraint. In their method, the on-plane features are labeled as static features

and for the off-plane features a rigidity constraint separates static features (showing parallax) from the moving features. To

do so, the off-plane features are warped according to the 2D projective transformations (plane alignment) to the next frames

imposing a non-rigid transformation for the moving features, in comparison to a static reference point. The advantage of

their approach is that the epipole estimation is not required. However, they manually select the static reference point, which

makes it difficult to apply in practical applications.

Sawhney et al.3 also start with detecting the planar homography to compensate for the camera motion. If there is

sufficient remaining motion, they apply the epipolar constraint between one pair of frames by estimating the fundamental
matrix within the RANSAC framework.5 Then the constancy of parallax is imposed for the second pair of frames (trifocal

constraint), and the image regions that remain misaligned are the moving objects. The assumption in this shape constraint

is that the planar homography is stable for three frames and the epipoles are correctly estimated.

Yuan et al.4 present another Plane+Parallax approach. First they compute the planar homography to eliminate planar

pixels as potential moving objects and the epipolar constraint is applied to detect some of the moving objects pixels (similar

to3). To relax the assumption of a consistent planar homography for three frames, they apply a three-view geometric

constraint that allows a different dominant plane in the sequential pairs of frames.

Yamaguchi et al.6 proposed a feature based approach for moving object detection and tracking in urban scenes. They

detect corresponding features between pairs of frames, estimate the essential matrix using 8-point RANSAC, detect moving

objects using the epipolar constraint, and track the features.

The main difficulty is to estimate the true camera motion from two or three frames while the pixel or feature correspon-

dences are inaccurate and can belong to moving objects. To deal with these outliers, a common approach is to select the

model in a RANSAC scheme that for instance maximizes the number of model inliers5, 7 or the least median squares error.4

The former would require a careful threshold selection to separate the model’s outliers into parallax features and moving

object features, while the latter assumes that less than half of the evaluated features are moving.

Contributions In this paper we perform moving object detection while the camera moves through challenging urban

scenes. We modify the plane+parallax, the fundamental matrix, and trifocal tensor algorithms to operate on three sequential

frames automatically, and test their ability to detect moving objects in two different video sequences. Our results quantify

that (1) SIFT tracking improves on the reliability of the moving object detection, (2) the modified rigidity constraint of the

plane+parallax method outperforms the original rigidity constraint, and (3) the combination of the modified plane+parallax

method with the trifocal tensor method improves the moving object detection in one of the four scenes.

2. DATASETS
In this work we use frames from two different video sequences captured with different cameras mounted to a moving

vehicle. The first set is our local dataset that consists of 2409 consecutive frames at 30fps and with a resolution of 640×480

pixels. From this set, we extracted three interesting sequences of 45, 80, and 80 frames at 30fps, the “frontal car”, “side car”,

and the “left turn”. In these sequences the camera moves (1) towards an approaching car, (2) towards a car driving from

right to left, and (3) turns towards the left while passing a ‘static’ car, respectively. The latter is interesting for evaluating the

number of false moving object detections. Each of these frames is corrected for the radial distortion imposed by the camera,
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and cropped to 600×440 pixels to remove unknown pixels. The second set is the CamSeq01 Dataset8 with multiple moving

objects (“multiple objects”). It consists of 101 consecutive frames at 15fps and with a resolution of 960×720 pixels. To

acquire frames with the same resolution as our local set, each frame is downsampled to 640×480 pixels and cropped to

600×440 pixels. Because moving objects captured at 30fps are only captured in a small number of frames, we do not

reduce the frame rate of our local dataset.

3. FEATURE EXTRACTION
The adapted algorithms that we apply for moving object detection require only three consecutive frames (f1-f2-f3) to

detect the moving objects. From each of the frames, we extract SIFT keys9, 10 and search for the best match in its previous

frame. The SIFT matches (p1,p2 and p2,p3) that exist for three consecutive frames are selected as SIFT triplets (p1,p2,p3).

The selected triplets are used for the detection and tracking of the moving objects in our video sequences. The advantage

of SIFT keys over pixel classification, is the reduction of 600×440 pixels to approximately 1500 SIFT keys in our frames.

This makes the estimation of the motion model much more efficient and pixel classification can still be done afterwards

guided by the labeled features. To select reliable SIFT matches, a SIFT key in the current frame is matched against SIFT

keys in the other frame on the same location within a 50 pixel window. The best match is only valid when it is significantly

better (factor 5
3 ) than the second best match. This is to avoid SIFT matches on less reliable lines and to focus on corners.

These SIFT matches can be effectively used for tracking as we do in Sect. 5.

In order to compensate for the translation part of the camera motion, the frames are aligned using the average XY-

translation of the SIFT matches. This translation is also applied to the features p1 and p2, such that their global position

corresponds to that of p3 in the current frame f3. After this global 2D alignment, we can easily remove incorrect SIFT

triplets using an angle rule and a relative displacement rule. We remove a triplet if,

• d(p1, p2) + d(p2, p3) > 5 ,

• cos−1( (p1−p2)
||p1||||p2|| ·

(p3−p2)
||p3||||p2|| ) < 2

3π ,

• max(d(p1,p2)
d(p2,p3)

, d(p2,p3)
d(p1,p2)

) > 3 ,

where d is the Euclidean distance in pixels. The highly convex displacement of a SIFT key in three consecutive frame

indicates an incorrect match and so does a sudden increase in the SIFT key displacement. Fig. 2 shows the SIFT triplets

within the current frame by two lines, and some of these triplets are removed (as indicated with a circle) according to the

angle and relative displacement rules.

4. MOVING OBJECT DETECTION
In this section we adjust three algorithms and apply them to the SIFT triplets for moving object detection (MOD), namely

the plane+parallax decomposition, the fundamental matrix, and the trifocal tensor, which are described in detail below.

Each of these algorithms estimates a model of the scene, for which we employ the RANSAC scheme to find the model

with the maximum inlier support.

4.1 Plane + Parallax decomposition
Irani et al.1 assume a dominant planar surface in frame pair f1-f2 that corresponds to the dominant planar surface in frame

pair f2-f3. With this planar homography, previous frames f1 and f2 are warped to the current frame f3. Features on the

planar surface are assumed to be static, and the off-plane features are either static features or moving features depending

on their rigidity. A static off-plane triplet is used as a reference to determine these rigidities. Each feature, including the

reference, is warped to the current frame according to the estimated projective transformation. Because of the 3D parallax

and independent motion, the features are not warped to the exact position in the current frame. The vectors μ between

the current locations and these warped locations, are used for the rigidity constraint. This rigidity constraint is illustrated

in Fig. 3. In this figure, pi and pj are two different off-plane triplets in the current frame, pwi and pwj are their warped

locations from the previous frame to the current frame. Due to parallax or independent motion, the vectors μi and μj are

not null vectors. C is the projection of pi on the line through pwi perpendicular to Δpw, and B the projection of pj on

the same line. Despite the unreliable epipole estimation, the relative structure AB
AC can be reliably computed.1 A similar

drawing can be made for the warp from the pre-previous frame to the current frame, obtaining the relative structure AB′
AC′ .

The rigidity constraint is as follows: if we assume pi to be a static feature (with parallax), then pj is static if and only if
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P

(a) side car (b) side car

(c) left turn (d) left turn

Figure 2. SIFT keys in the current frame are consistently matched over the past two frames (lines in a and c), the global XY-translation

compensates for the camera translation (b and d) and most incorrect SIFT triplets are removed (circles) using the angle and displacement

rules. Notice the parallax on the static cars and trees.

AB
AC = AB′

AC′ . In other words, the relative rigidity of two static features remains the same over consecutive frames, and the

absolute difference can be used to detect moving objects as Irani did.

However, for the automatic detection of moving objects, there are two problems: (1) the reference feature has to be

selected manually and (2) the relative structures can be less precise due to inaccuracies in the triplet extraction and the

dominant plane selection, which both cause less accurate warp locations (especially those far from the selected planar

surface). To adapt this method to be applicable in urban scenes, we assume that the majority of the off-plane features

belong to static objects and relate the rigidity error to the residual error after the warp. The later is to compensate for the

residual error that is usually higher for features with a larger frame-to-frame displacement.

In our implementation, we use the RANSAC scheme to estimate the planar homography between frames f2 and f3. In

this scheme, four random triplets are selected to instantiate a plane and the inlier support is computed using the on-plane

threshold tH . The plane with the maximum support after m iterations is selected, and the supported on-plane features are

used to find the same plane in frames f1 and f3 using the RANSAC scheme. This ensures the selection of the same plane

in all three frames. All n off-plane SIFT triplets are warped according to the found planar homography from the frames f1

and f2 to the current frame f3, and the parallax rigidity error (RE) is computed for each pair of off-plane triplets (n × n)
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Figure 3. The relative structure AB
AC

for features pi and pj in two frames (f2-f3) provides one part of the rigidity constraint, when this

structure corresponds to the relative structure AB′
AC′ of the other frame pair, then pj is considered static if pi is static too (image taken

from1).

and divided by the averaged warp error 1
2 ||μj

1||2 + 1
2 ||μj

2||2:

REi = medj

∣
∣
∣
AB
AC − AB′

AC′

∣
∣
∣

1
2 ||μj

1||2 + 1
2 ||μj

2||2
.

So, each feature i is assumed to be static once, and the rigidity of each other feature j is computed and divided by the

distance to its warped feature. The median of row i in the rigidity matrix is determined and used as the final rigidity

error of feature i. In case feature i is static and the majority of the other off-plane features are static too, then the median

rigidity error of feature i is low. Otherwise if feature i moved, it is a bad reference point for all other static features,

and the majority of rigidity errors are high and so is the final (median) rigidity error of feature i. A disadvantage of this

Plane+Parallax decomposition method is that the rigidity errors are not related to the absolute pixel distances, which makes

it hard to select a threshold. Instead, we use a dynamic rigidity threshold tHmod to select the moving object features.

4.2 Fundamental matrix (bifocal tensor)
The fundamental matrix relates the selected features between pairs of frames (f1-f2 and f2-f3).2 We apply the RANSAC

scheme using eight randomly selected triplets, instantiate the fundamental matrix from the feature pairs, compute the

Sampson error, and determine the inlier support based on a threshold tF . When a feature lies within the distance tF (in

pixels) from its expected epipolar line, it is considered to be an inlier of the model. The fundamental matrix with the

highest inlier support is selected. Afterwards, we have selected two fundamental matrices for frames f1-f2 and f2-f3. We

sum for each feature its two residual Sampson errors and label it as a moving feature when the error is above threshold

tFmod = 2.5 × tF . This simple modification of the two-view fundamental matrix to three views increases its robustness.

A known problem of the fundamental matrix for moving object detection is that movement along an expected epipolar

line cannot be detected. Nevertheless, it is important to evaluate this method for our urban scenes, as it can be used as an

additional MOD method for non-epipolar movement.

4.3 Trifocal tensor
The trifocal tensor is the generalization of the fundamental matrix to three views (f1-f2-f3).2 It describes the projective

geometric relationships between these views using three 3 × 3 matrices T1, T2, and T3. Whereas a point corresponds to

a line in the bifocal case, the trifocal tensor recovers the point-to-point relation, which enables the detection of moving

objects along the epipolar lines. We apply the RANSAC scheme using seven randomly selected triplets, instantiate the

trifocal tensor, compute the trifocal transfer error, and determine the inlier support based on a threshold tT . The trifocal

tensor with the highest inlier support is selected. To compute the trifocal tensor error robustly, we determine the error of

each triplet (p1,p2,p3) by projecting p1 via a line through p3 towards p2 using the trifocal tensor and compute the Euclidean

distance between p2 and the projected p2. Because a randomly chosen line through p3 that accidentally lies on the trifocal

plane does not result in a correctly transferred point, we transfer each point via seven differently oriented lines through p3

and keep the transferred point with the smallest Euclidean distance (as in Algorithm 1). In our experiments this modified

trifocal transfer error performed better than the Sampson error. The outliers of the trifocal tensor (pixel error > tTmod,

tTmod = tT ) are selected as moving objects.
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Algorithm 1 trifocal transfer error(tensor T , triplets)

for each triplet (p1,p2,p3) do
errtriplet ←∞
for φ ∈ [0, 1

8
π, 1

4
π, 3

8
π, 1

2
π, 5

8
π, 3

4
π, 7

8
π] do

define line l3 through p3 with orientation φ
H12 = [T1l

′
3; T2l

′
3; T3l

′
3]

pw2 = H12p1

errtriplet = min(d(pw2, p2), errtriplet)
if errtriplet < tT then triplet is an inlier of T

return all errtriplet

Figure 4. SIFT matches among pairs of frames results in longer tracks. The tracks over five frames (left) and over fifteen frames (right),

both without the XY-translation.

5. MOVING OBJECT TRACKING
The SIFT keys are reliably selected and matched from one frame to another, resulting in SIFT triplets and longer SIFT

tracks (Fig. 4). These tracks of triplets and their MOD results can be used to increase the confidence that a current model

outlier is truly a moving object. In Sect. 3, we selected only the reliable SIFT matches and triplets for the model estimation

and moving object detection. If an expected SIFT match is not established, then a SIFT track becomes disconnected and

its MOD-history useless. To this extend, we select for each SIFT key in the current frame the best possible match in the

previous frame and use those matches to bridge the gaps in the SIFT tracks. The additional points in history and the triplets

that did not satisfy the angle and displacement rules are labeled as undefined, since they are not evaluated by the MOD

algorithms. Otherwise each algorithm labels the triplet as either static or moving in its history. A triplet in the current

frame is assigned the label probably moving (value ‘+1’) iff its measured value is above 3
4 times threshold tHmod, tFmod or

tTmod, moving (value ‘+2’) iff above these thresholds, or static (value ‘-1’) otherwise. Based on a history of eight frames,

including the current frame, we check the SIFT track of a current feature for the following three cases:

• If the sum of the last three frames is larger than four (e.g. {-1,1,1,2}), then the current feature is moving.

• If the sum of the last four frames is larger than four (e.g. {0,1,1,2}), then the current feature is moving.

• If the sum of the last eight frames is larger than five (e.g. {0,1,2,1,-1,1,1,0}), then the current feature is moving and

if the current label is undefined or static it is set to probably moving.

The first rule ensures that a moving object can be detected after three evaluated triplets (i.e. five frames), the second rule is

to overcome false-negative detections, and the latter ensures the tracking of reliably detected moving objects.

6. EXPERIMENTS AND RESULTS
In this section we evaluate the three different methods for their ability to detect and track the moving objects. Based on

the manually segmented moving object(s) in each of the frames, each SIFT triplet can be easily labeled as truly moving or

static.
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For a fair comparison of the MOD algorithms, each method is allowed to use 60 iterations of the RANSAC scheme

to estimate the motion model over three frames and to detect the moving objects. For the plane+parallax algorithm we

use 50 iterations to find the dominant reference plane between frames f1 and f2, and use its on-plane features and another

10 iterations to find the same plane for frames f2 and f3. For the fundamental matrix algorithm we use 30 iterations to

estimate the model for frames f1 and f2, and 30 for frames f2 and f3. The trifocal tensor uses 60 iterations to find the most

plausible tensor. For each of the algorithms we have to set two thresholds, one to evaluate the estimated models (i.e. the

planar homography, fundamental matrices, and trifocal tensor) and one to separate the parallax from the moving objects.

The carefully selected thresholds tH=0.4, tF =0.5, tT =1.5, are all related to the image resolution and feature accuracy and

remain static during our experiments. For tHmod a different threshold is automatically selected in each of the frames, based

on the median rigidities of the off-plane triplets. This threshold is set based on the rigidity errors (RE) of the off-plane

features i (S) as:

tHmod = medi∈S(REi) + 3stddev i∈S(REi)

On each of the four video sequences, we apply each of the three algorithms to detect the moving features. Based

on the ground truth data, the output of the MOD algorithms, and the SIFT track history, we determine the amount of

true positives and false negatives both for the current frame data and the track history. To evaluate the performance of

each algorithm, we use the fraction of summed true positives and summed false negatives over all frames in a sequence.

Because each algorithm has a random component (RANSAC), we report the average result over three iterations. Note that

taking the summed values over all frames in a sequence already compensates for most of the randomness. To show that

the normalization of the rigidity error improves on the MOD results, we perform a run with (H+) and without (H) the

denominator 1
2 ||μj

1||2 + 1
2 ||μj

2||2 in the rigidity constraint.

The results of the plane+parallax method (H), the normalized plane+parallax method (H+), the fundamental matrix

(F ), and the trifocal tensor (T ) on the four sequences are shown in Tables 1, 2, 3, and 4. These results show the average

MOD results over five runs and the corresponding standard deviation in brackets. For the ‘left turn’ sequence, we only

report the false negatives because it has no positives. As an additional experiment, we have combined the MOD results of

the modified plane+parallax method and the trifocal tensor method. To combine the two, we simply sum the positive MOD

labels and divide it by two, or assign ‘-1’ in case both labels are ‘-1’. The tracking rules are applied to acquire the final

decision for this combined method (C). The seven possible cases (0,0), (-1,-1), (-1,1), (-1,2), (1,1), (1,2), and (2,2), result

in values 0, -1, 1
2 , 1, 1, 1 1

2 , and 2, respectively. Indeed different fusion techniques are possible.

From the results in Tables 1, 2, 3, and 4 we observe that: A significant increase of the true positive (TP) versus the false
positive (FP) rate is achieved when the tracking history is used, especially the number of FPs is lowered. This means that

many false alarms occur just once or twice at a certain location, whereas the truly moving features are consistently labeled

as moving. As expected, the randomness of the model selection within the RANSAC framework has some influence

on the number of TP and FP. Increasing the number of iterations increases the chance to select the model with most

inliers, but makes the algorithm less efficient for practical use. For most of the video sequences our modification to

the rigidity constraint improves on the TP/FP track rates (compare H+ to H). In fact, this method outperforms both

the fundamental matrix and trifocal tensor methods for all sequences. The combination of the trifocal tensor and the

normalized plane+parallax methods (C) performs best for the sequences with the frontal car and multiple objects, but for

the other sequences the normalized plane+parallax method (H+) performs better. Another advantage of the combined

method C is its high number of TPs, which makes it very well suited for additional techniques, such as MOD clustering

and segmentation.

To elaborate on the number of frames in which a single car is detected, we show in Fig. 5 for each of the methods

its number of tracked true positives per frame. In these sequences, the plane+parallax methods (H and H+) detect the car

in more frames than the fundamental matrix and trifocal tensor methods do. The graphs in Fig. 5 clearly show that it is

more challenging to detect a car moving in a parallel direction with respect to the moving camera, than a car moving in a

perpendicular direction.

Some of the MOD results are shown in Fig. 6. In these figures, the yellow and red squares are the H and H+ MODs,

the blue diamonds the F MODs, and the pink crosses the T MODs. The circles are the tracked MODs of the H (yellow),

the H+ (red), the F (blue), and the T (pink) methods. The SIFT outliers are shown with black circles. Note that some of

the false positives are cause by inaccurate SIFT features.
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frame frame

Table 1. MOD results of the frontal car video with 547 positives and 19744 negatives in 45 frames. The average (and std. dev.) number

of true positives and false positives over three runs is shown with and without tracking.

TP FP TP track FP track TP
FP

TP
FP

track

H 192 (20) 289 (25) 132 (15) 90 (31) 0,7 1,5

H+ 196 (11) 245 (19) 141 (6) 82 (18) 0,8 1,7

F 100 (12) 310 (25) 51 (7) 40 (8) 0,3 1,3

T 152 (13) 393 (10) 98 (24) 48 (10) 0,4 2,0

C 144 (12) 47 (10) 3,0

Table 2. MOD results of the side car video with 313 positives. and 38677 negatives. in 80 frames. The average (and std. dev.) number

of true positives and false positives over three runs is shown with and without tracking.

TP FP TP track FP track TP
FP

TP
FP

track

H 130 (8) 146 (28) 97 (5) 28 (7) 0,9 3,5

H+ 118 (8) 130 (9) 91 (10) 23 (3) 0,9 3,9

F 129 (6) 248 (17) 101 (4) 98 (5) 0,5 1,0

T 144 (5) 357 (15) 102 (4) 87 (5) 0,4 1,2

C 108 (6) 31 (9) 3,5

Table 3. MOD results of the left turn video with 0 positives. and 26677 negatives. in 80 frames. The average (and std. dev.) number of

true positives and false positives over three runs is shown with and without tracking.

FP FP track

H 272 (11) 65 (6)

H+ 291 (9) 55 (12)

F 258 (8) 96 (4)

T 265 (3) 44 (3)

C 45 (6)

Table 4. MOD results of the multiple objects video with 4104 positives. and 44783 negatives. in 101 frames. The average (and std. dev.)

number of true positives and false positives over three runs is shown with and without tracking.

TP FP TP track FP track TP
FP

TP
FP

track

H 536 (35) 377 (41) 182 (25) 55 (22) 1,4 3,3

H+ 485 (19) 381 (24) 155 (19) 50 (13) 1,3 3,1

F 679 (21) 471 (21) 350 (8) 149 (2) 1,4 2,4

T 757 (40) 656 (44) 331 (30) 126 (7) 1,2 2,6

C 257 (18) 66 (8) 3,9

Figure 5. The number of true positive car detections in the frontal car (left) and side car (right) sequences averaged over five runs. The

plane+parallax methods (H and H+) detect the car over a longer period.

7. CONCLUSION
In this paper we perform three-view moving object detection while the camera moves through challenging urban scenes.

Because the camera moves through the scene, both static and moving objects appear to move and simple image subtraction

fails in retrieving the moving objects. Because of the three-dimensionality of the scene, the assumption that the entire static

scene can be transformed from one frame to another with a 2D planar homography fails as well.

Instead, we modified and applied the fundamental matrix, plane+parallax, and trifocal tensor methods to these urban

scenes. We automated the plane+parallax algorithm and adjusted its rigidity constraint, we combined the results of two
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fundamental matrices to improve this method for three views, and we modified the transfer error of the trifocal tensor.

These modifications enable a more robust (and automatic) detection of moving objects in longer video sequences.

From the video sequences SIFT keys, SIFT matches, and SIFT triplets were extracted and used for the automatic detec-

tion and tracking of the moving objects. To quantitatively evaluate the performance of the three algorithms, we manually

segmented the moving objects and report the fraction of true positives versus false positives detections. The plane+parallax

method performs very well on our datasets and we prove that our modification outperforms the original method. Also the

combination of the modified plane+parallax and the trifocal tensor method performs well. The fundamental matrix method,

which was developed for two views and has some known flaws, has the lowest MOD performance.
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Figure 6. Moving object detection and tracking in the frontal car, side car, and multiple objects videos. Two examples are shown that are

five frames apart.
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