
FIT3D Toolbox: multiple view geometry and 3D reconstruction

for MATLAB

Isaac Esteban1,2 and Judith Dijk2 and Frans Groen1

Abstract— FIT3D is a Toolbox built for Matlab
that aims at unifying and distributing a set of tools
that will allow the researcher to obtain a complete
3D model from a set of calibrated images. In this
paper we motivate and present the structure of the
toolbox in a tutorial and example based approach.
Given its flexibility and scope we believe that FIT3D
represents an exciting opportunity for researchers
that want to apply one particular method with
real data without the need for extensive additional
programming.

I. INTRODUCTION

The process of reconstructing the scene de-

picted by a set of images is usually called Struc-

ture from Motion [2] (SFM). It is related to

the more traditional photogrametry field in which

artificial markers are used within the real scene

in order to obtain a high accurate reconstruction.

SFM on the contrary does not rely on unnatural

artifacts, rather it makes use of the geometry of

the camera and the scene itself in order to recon-

struct the imaged world. However, the number of

steps required to obtain a full 3D model and the

complexity and method variety in each of those

steps enforces a disjoint field. There are many

publications and variations of methodologies that

aim at solving a certain aspect of the process

of reconstructing a scene. We characterize the

complete process in 5 differentiable steps: cam-
era calibration, motion estimation, optimization,

reconstruction and modeling.

Each step is a subfield in its own, which to-

gether with the complexity of the problem trans-

lates into a lack of unification and integration

Intelligent Systems Laboratory Amsterdam1 (ISLA), Uni-
versity of Amsterdam

Electro-Optical Systems2, TNO Defence,
Security and Safety {isaac.esteban,
judith.dijk}@tno.nl and
groen@science.uva.nl

of the literature and more importantly of the

available tools. This lack of global framework

makes very difficult for researches to develop and

test their specific techniques in a global context.

For this reason we present the FIT3D Toolbox that

aims at bridging the gap between the five indepen-

dent subfields, providing a unifying framework.

FIT3D is a highly flexible Toolbox built for Mat-

lab. The functionality provided is either based on

well founded research or exciting and promising

novel approaches. The toolbox consist of a large

number of independent Matlab functions written

in an educative and clear fashion and contain

a large amount of inline comments. References

to the original methods are provided within the

code. In our spirit of integration and distribution,

we provide example scripts and data sets for

every of the five steps as well as the integration

with related projects. This article is written in

a tutorial form and assumes that the reader is

familiar with Matlab and understands the concept

of Structure from Motion and the geometry in-

volved. Section II relates and compares FIT3D to

similar frameworks. The integration with related

packages is also presented. In Section III we

discuss in more detail each of the five steps of the

FIT3D pipeline along with the conventions and

definitions. Section IV focusses on the first three

steps, camera calibration, motion estimation and

iterative refinement, while in Section V the 3D

modeling process is explained. Finally in Section

VI we draw some conclusions and point out future

work. FIT3D will be available from April 2010 at

the website (web not shown due to double blind

revision).

II. RELATED WORK

In recent years the literature on reconstructing

in a 3D model the scene recorded in images has

Electro-Optical Remote Sensing, Photonic Technologies, and Applications IV, edited by Gary W. Kamerman,
Ove Steinvall, Keith L. Lewis, Richard C. Hollins, Thomas J. Merlet, Gary J. Bishop, John D. Gonglewski,
Proc. of SPIE Vol. 7835, 78350J · © 2010 SPIE · CCC code: 0277-786X/10/$18 · doi: 10.1117/12.864112

Proc. of SPIE Vol. 7835 78350J-1

Downloaded from SPIE Digital Library on 20 Dec 2010 to 134.221.128.246. Terms of Use: http://spiedl.org/terms

grown considerably. Along with this growth, a

number of tools or software packages have been

made available to the research community, and

in some cases, to the general public. However,

these packages are either very specific to the

task at hand or are enclosed in a format that

makes integration with novel techniques virtually

impossible.

Photo Tourism is one of the most well known

programs available. It provides a sparse 3D recon-

struction from a set of unordered images of the

same scene. The techniques used for estimating

the relative motion between the images are well

known and are also available in a more scientific

package called Bundler [12]. Bundler is built

in C++ for efficiency and it takes a collection

of images, image features and image matches

as input and produces a sparse 3D pointcloud.

The optimization step is performed with a mod-

ified version of the Sparse Bundle Adjustment

of Lourakis and Argyros [9]. FIT3D presents a

number of advantages using novel motion estima-

tion techniques and refinement procedures. It also

provides a complete system where an ordered set

of images needs to be provided and a complete

model is obtained. Additionally, FIT3D is built as

a set of independent functions and example scripts

in Matlab, which makes the integration with novel

techniques an easy task.

Hartley and Zisserman [7] is one of the most

relevant references in the field of multiple view

geometry and SFM. With the second edition they

provide some Matlab code to perform a number

of operations. However the number of functions

is very limited with a scarce amount of inline

comments and only a handful of example scripts.

No full 3D models can be obtained from the raw

material they provide. FIT3D is similar to these in

that the functions perform very specific tasks and

are coded in Matlab. FIT3D however is different

in that we provide a larger amount of functions

with more comprehensive inline comments and

references. Data sets and example scripts are also

provided.

Peter Kovesi [8] provides a number of Mat-

lab functions for both image processing, multi-

ple view geometry and model fitting. The inline

code provided by Kovesi is very generous in

the input/output/example but somewhat short in

some of the inner workings of the functions. No

examples scripts are provided. FIT3D overlaps

with Kovesi’s work in the area of model fitting

and projective geometry. FIT3D extends Kovesi’s

work in that it is focussed on the full process of

3D reconstruction and provides full examples on

the use of the Toolbox.

With respect to the integration to other pack-

ages, FIT3D is fully compatible with the Camera

Calibration Toolbox of Bouguet [1]. We also

provide integration with the SIFT implementation

provided by Lowe [10] and the open source

VLFeat [14], the 5-point algorithm from Nister

[11] available online and provide interface tools

for PMVS2 [6].

III. PRELIMINARIES

Before we begin with each of the steps in

the process of building a 3D model we need to

understand the basic geometry of the problem at

hand. In this section we present the basic concepts

and for more advanced descriptions we refer the

reader to [7].

A. Conventions and Definitions

For the problem of reconstructing a scene de-

picted by two or more images we adopt the

pinhole camera model (PCM). In this model the

camera is considered a point in space towards

which all light rays are directed to. This point is

referred as camera center (CC). In this setup, the

image is the result of the projection of those light

rays intersecting a plane (the image plane) located

at a certain distance from the CC. We consider

3 different reference systems (see Figure 1). The

first one describes the positions of cameras and

objects in the 3D space and we call it the World

Coordinate frame (WCf). The second one is fixed

in the CC with a given orientation and is called

the Camera Coordinate Frame (CCf). The last

coordinate system is located at the image level and

is called Image Coordinate frame (ICf). Following

Lowe’s convention for image feature locations, we

set the ICf center to be at the TOP/LEFT corner

of a given image. This convention also follows

Matlab’s convention. For convenience, we set the

image plane perpendicular to the axis Z of the

CCf. The distance from the CC to the image plane

is called the focal distance (f).

Proc. of SPIE Vol. 7835 78350J-2

Downloaded from SPIE Digital Library on 20 Dec 2010 to 134.221.128.246. Terms of Use: http://spiedl.org/terms

Fig. 1. Coordinate systems and conventions on camera
motion.

Given that we need more than one image

to reconstruct the scene, we consider the case

where multiple cameras and images are present

(See Figure 1). In particular, we are interested in

the geometrical relation between different camera

centers. We define the displacement between two

CCs as a matrix P . This matrix consist of a rota-

tion R and a translation t in the form P = [R|t].
For convenience, we always set the first image at

the WCf. Therefore, the geometrical relation of

an arbitrary camera with the first camera is just a

rotation and a translation with respect to WCf.

In order to be able to project objects into the im-

age plane we need to know the distance between

the image plane and the CC. We need to consider

that the image plane is a finite element consisting

of pixels. Also, the origin of coordinates might

not coincide with the Z axis of the CCf. Even

further, the aspect ratio of the pixels might not be

square. This is encoded in the calibration matrix

K defined as:

K =

⎡
⎣

αx 0 x0

0 αy y0

0 0 1

⎤
⎦ (1)

Together with the relative displacement of an

arbitrary camera, they conform the Camera Matrix

(CM) P �:

P � = K[R|t] (2)

Considering these definitions we study the pro-

cess of building a 3D model from a set or ordered

images. During this process, a camera moves

through the environment recording images. We

assume that there is enough overlap between three

consecutive frames. The process of building a 3D

model out of the recorded images follows then

the five steps of calibration, motion estimation,

refinement, reconstruction and modeling.

B. The 3D reconstruction pipeline

In this section we briefly describe each of the

steps in the 3D modeling pipeline (see Figure 2).

We divide the steps in two mayor blocks. The

first one comprises the methods and techniques

required to obtain an accurate and consistent es-

timation of the relative position between the con-

secutive images. The second entitles the required

techniques for obtaining the final 3D model.

Fig. 2. 3D modeling pipeline. Some well known alternatives
for each step are pointed out.

• Calibration: calibration is the process of

obtaining the information, intrinsic parame-

ters, that describes the camera. This includes

parameters for radial distortion, focal length,

skew parameters and center of projection.

• Egomotion: is the process of estimating the

motion of the camera between frames based

on the information that is depicted in the

images (extrinsic parameters). In our work

we only consider motion estimation between

consecutive frames.

• Refinement: given that the images are

recorded with noise and this noise is propa-

gated to the motion estimation, an optimiza-

tion step is desirable when computationally

feasible in order to improve the estimates.

• Reconstruction: given a set of camera po-

sitions, calibration parameters and recorded

images, reconstruction is the process of ob-

taining the 3D representation of the scene as

a set of 3D points.

Proc. of SPIE Vol. 7835 78350J-3

Downloaded from SPIE Digital Library on 20 Dec 2010 to 134.221.128.246. Terms of Use: http://spiedl.org/terms

• Modeling: it is desirable and sometimes nec-

essary to obtain an economical description

of the scene. Modeling is the process of

converting a sparse 3D point cloud into a

set of higher order primitives such as planes,

surfaces or pre-calculated models.

IV. MOTION ESTIMATION AND SCALE

CONSISTENCY

Motion estimation is the process of estimating

the spatial geometrical relation between two or

more given images. This relation can be estimated

using image feature matches. For this to succeed,

the intrinsic parameters of the camera need to

be either known or estimated. We assume they

can be estimated before hand and refined later if

necessary. In this section we describe the basics of

camera calibration and the process of estimating

the motion between two images including the

scale ambiguity.

A. Camera Calibration and Radial Distortion

The process of estimating the intrinsic param-

eters is commonly referred as camera calibration.

The set of camera parameters that are relevant

for motion estimation are divided in two groups.

The first group is related to camera calibration

matrix K, where focal length, pixel aspect ratio

and center of projection are estimated. The sec-

ond group is the lens distortion parameters. This

distortion can be irregular or follow a pattern.

The most common type of distortion is the radial

distortion where the distortion follows a radial

pattern around the center of distortion.

A common method to estimate these parameters

is using a calibration pattern. Given the some

images of this pattern and knowing its dimensions

the parameters can be estimated. For an in depth

discussion of the calibration process we refer the

reader to [15].

It is important to note that the radial distortion

can be described with a mathematical model as

a transformation function from distorted pixels

to undistorted pixels or the other way around.

Zhang [15] describes the radial distortion model

as a function from correct image to the distorted

image. Hartley et. al. [7] however define the func-

tion from the distorted image to the undistorted

image. These two models are not the inverse of

each other and only when the distortion is small, a

taylor series approximation can be calculated with

a small error.

FIT3D employs the calibration as estimated

with [1] using Zhang method [15] . However,

since the inverse radial distortion model is also

useful, FIT3D provides the means to calculate the

radial distortion from the distorted image to the

undistorted image by means of selecting a set of

straight lines in an image. After these lines are

selected, the model up to fifth order is calculated

and the image is corrected.

1) EXAMPLE: obtain radial distortion based
on straight lines in the image: we employ a

distorted image of a street where 3 straight lines

consisting of 3 points are selected. From this in-

formation the distortion parameters are computed

and the image is corrected.

Fig. 3. LEFT: distorted image with selection of straight lines.
RIGHT: undistorted image.

>> [distParams,undistImg] =

getRadialDistortion(’street.jpg’,3,3);

B. Motion estimation

Having obtained the intrinsic calibration pa-

rameters and having compensated the images for

radial distortion, we are now ready to estimate the

spatial relation between a pair of images. There

are a number of algorithms and techniques to do

so [11] [7]. In FIT3D we focus on the use of the

normalized 8-point algorithm [7] given that it is

a linear method that yields up to 4 possible solu-

tions. The correct solution is obtained by a voting

mechanism where each image feature votes for the

solution in which the reconstructed 3D feature is

in front of both cameras. The 8-point algorithm

is however very sensitive to images where all

feature matches are projections of spatial points

that lay in the same plane. For this situation we

Proc. of SPIE Vol. 7835 78350J-4

Downloaded from SPIE Digital Library on 20 Dec 2010 to 134.221.128.246. Terms of Use: http://spiedl.org/terms

take advantage of the frame-to-frame refinement

(see Section IV-D).

Other well known alternatives can also be used

for motion estimation. FIT3D is integrated with

the Matlab version of the 5-point algorithm pro-

vided by Nister [11] and also provides meth-

ods for robust computation of the homography.

RANSAC [5] is used for robust outlier rejection, a

SIFT detector is used for selecting image features

and SIFT descriptors are used for the matching

process.

1) EXAMPLE: stitch two images using an
Homography: The stitchPano function will

stitch two images by selecting corresponding

SIFT features and calculating the homography.

>> [panoramic,H] =

stitchImages(’ind1.jpg’,’ind2.jpg’,0.4);

>> imshow(panoramic);

Fig. 4. TOP: two input images. BOTTOM: stitched images.

2) EXAMPLE: 8-point algorithm motion esti-
mation using RANSAC: we assume we have a set

of matching features X1 in image 1 and X2 in

image 2. We obtain the fundamental matrix using

RANSAC, then obtain the 4 possible solutions for

the camera motion and obtain the true solution

using a voting system.

Fig. 5. TOP: Three views of a street. BOTTOM: calculated
camera trajectory.

>> [F,inliers] = ransacF(X1,X2,K);

>> Pall = getCameraMatrix(F);

>> X1i = X1(inliers,:);

>> X2i = X2(inliers,:);

>> P = getCorrectCameraMatrix(X1i,X2i);

C. Linear scale estimation

Given the nature of the pinhole camera model,

there is a scale ambiguity in the estimation of

the motion and the reconstructed 3D scene. The

global scale cannot be recovered unless infor-

mation about the real world of the relation be-

tween the real world and the camera is estab-

lished. Additionally, if the motion is estimated

in a frame-to-frame basis considering only the

image features, there is a scale ambiguity be-

tween the estimated translations. In the literature,

this frame-to-frame scale ambiguity is solved by

computing the motion of a third camera given

the reconstructed structure from frames one and

two. This technique, commonly refered as the PnP

problem [3], is the common choice and there exist

algorithms for estimating the full motion with as

little as 3 points. Employing a PnP algorithm

for estimating the motion of the third camera

has some implications in terms of the error that

is propagated. When using a PnP algorithm, the

image error is first propagated to the reconstructed

3D structure, and then to the motion estimation.

Also, this requires 3-frame matches for the full

motion estimation.

FIT3D provides an alternative linear technique

[4] with the same computational complexity but

considerable improvement in terms of error prop-

agation. This method computes the motion of the

third camera given only image features between

images two and three. This yields a scale free

translation vector. Then the scale is computed

with a linear function. With this method, the error

in the rotation and translation direction is only

propagated from the image features, avoiding the

propagation on the 3D reconstruction. Only in the

computation of the scale, the error is propagated

through the 3D structure. FIT3D also provides an

implementation of the P6P solution for computing

the motion of the third camera.

1) EXAMPLE: calculate scale with linear:
For this example, we have 3 estimated camera

poses P1, P2 and P3 along with 3-frame image

feature correspondences X1, X2 and X3. The

first camera is at the origin (P1 = [I|0]) and

the other to cameras were calculated on a frame-

to-frame basis. We triangulate the image features

Proc. of SPIE Vol. 7835 78350J-5

Downloaded from SPIE Digital Library on 20 Dec 2010 to 134.221.128.246. Terms of Use: http://spiedl.org/terms

between cameras P1 and P2, resulting in the

set of space points X3D. The scale of the third

camera is computed linearly.

Fig. 6. Black: camera before scale adjustment. Grey: camera
after scale adjustment.

>> [x3d] = findTriangulationLM(X1, X2, P1,

P2, K1, K2);

>> [scale,P3scaled] =

findScaleLinear(P3,x3d,X2,X3);

D. Iterative refinement

The process of estimating the motion between

multiple cameras usually involves error propaga-

tion. In our setup, the error is propagated from the

sensor of the camera, to the feature localization

and matching and then to the motion estimation

algorithm and scale adjustment. Therefore it is

common to obtain a scale consistent motion es-

timate that is slightly deviated from the desired

result. The process of optimizing the estimate is

commonly known at Bundle Adjustment [13]. It

involves the refinement of the motion estimate us-

ing a numerical iterative approach. This procedure

is typically performed through the minimization

of a cost function.

Depending on the scope of the refinement pro-

cedure, this can be characterized as either local
refinement or global refinement. Local refinement

aims at optimizing the motion estimate at a local

level of only a few camera poses. Global refine-

ment on the other hand aims at taking advan-

tage of the complete set of constraints in order

to optimize the complete set of camera poses.

FIT3D provides method for both local and global

refinement with two very distinct flavors.

Local Refinement
We understand the local refinement as the op-

timization of both camera motion estimate P and

camera calibration matrix K using as little as two

cameras. The idea is to refine the motion estimate

locally as the number of parameters to refine is

very small and the procedure can be performed

very fast. This type of refinement is robust and

can usually cope with certain degeneracies where

the simple use of the 8-point algorithm will fail.

FIT3D provides the functionality to refine the

motion estimate of a camera and its camera cal-

ibration matrix given a set of matching features

and the previous camera motion estimate. For

this local refinement procedure we employ the

common technique of minimizing the reprojection

error of the triangulated 3D structure.

1) EXAMPLE: refine locally: in this example

we iteratively refine the second camera pose and

internal parameters to minimize the reprojection

error in both the first and second camera. P1 is

assumed to be at [I|0].

Fig. 7. Reprojection error during local refinement.

>> [P2refined,K2refined] =

bundleAdjust(P2,X1,X2,K2);

Global Refinement
For the global iterative refinement we employ

a different approach than the standard Bundle

Adjustment where the camera poses and/or the

3D structure is optimized minimizing the repro-

jeciton error. Instead, we take advantage of 3-

frame feature matches to define a technique [4]

that aims at optimizing both the camera poses

and the 3D structure with a single error distance

minimization.

Given that we can obtain 3-frame feature

matches and we have obtained a scale consistent

motion estimate, we can now obtain the trian-

gulated 3D structure between two consecutive

frames. For the sake of simplicity we only con-

sider the 3 frame case now. Given 3 frames we can

therefore obtain two different but corresponding

sets of 3D points in space if we obtain the spatial

triangulation of only the 3-frame feature matches.

Proc. of SPIE Vol. 7835 78350J-6

Downloaded from SPIE Digital Library on 20 Dec 2010 to 134.221.128.246. Terms of Use: http://spiedl.org/terms

As we know the point to point correspondence, we

devise a cost function that minimizes the squared

sum of the point-to-poin distance in space. This

technique presents computational advantages than

the standard Bundle Adjustment approach since

only the parameters of the camera poses are

explicitly optimized while the 3D structure is

implicitly optimized.

2) EXAMPLE: global refinement: given the

errors in the reconstructed structure, we apply

our global refinement scheme based on the min-

imization of the distance between corresponding

pointclouds.

Fig. 8. Top: Images used to obtain a scaled consistent
motion. Bottom-Left: resulting 3D structure before refinement.
Bottom-Right: resulting structure after refinement. Motion was
altered to produce a noisy pointcloud.

>> [Psrefined] = bundleAdjustNFrames3D(

threeFrameMatches, Ks, Ps, iterations,

maxDistance);

V. 3D MODEL RECONSTRUCTION

Up to this point we have shown how to use

FIT3D to obtain an accurate scale consistent mo-

tion estimation for a set of consecutive cameras.

This however is not enough since we would also

like to obtain a 3D representation of the depicted

scene. For this we need to first obtain a set of 3D

points in space that represent the key features in

the images and finally obtain a set of primitives

to represent those points.

A. 3D triangulation

Obtaining a set of 3D points from image feature

matches and camera poses is not a trivial problem

due to the error in image recording and the prop-

agation of the error through the motion estimate

and refinement. The straight forward method to

obtain the triangulation of an image feature is trac-

ing a ray from the camera centers to the features in

the image plane and calculating the intersection in

space. The error propagation however makes this

method unrealistic since most likely the rays will

not intersect. There are a number of solutions to

this problem [7] from which we choose a linear

method due to its simplicity and speed.
1) EXAMPLE: obtain 3D pointcloud: we use

a linear triangulation method to obtain the set of

3D points corresponding to the selected image

features (see Figure 8, bottom-left).

>> [P2refined,K2refined] =

findTriangulationLM(P2,X1,X2,K2);

B. Modeling

Having obtained a set of 3D points that rep-

resent the scene we need to simplify the set of

points to a set of textured primitives.

Primitive fitting
The first step is to find a set of primitives to

describe the point cloud. For this purpose we

choose a robust RANSAC approach with a novel

sampling technique. Having the complete set of

3D points, we sample the set and choose one

seed point and the closest n points. Then, using

RANSAC, we fit a plane through those points and

reject the outliers. If a plane is found, then the

points are discarded from the complete set and

the process continues. The method stops once a

certain number of planes are found or the set of

points is exhausted.
1) EXAMPLE: fit planes: in this example we

use the data set of the alley to find planar patches

in the 3D point cloud (see Figure 9). Each planar

patch is assigned a different color.

>> [planes] = fitPlanesRANSA(X3D,

minPoints, maxPlanes, ransacThreshold,

ransacIterations);

Fig. 9. Colored planar patches.

Texture generation
Having obtained a set of planes that describe

the reconstructed scene, we need to apply a re-

alistic texture and trim the borders of the planes.

Proc. of SPIE Vol. 7835 78350J-7

Downloaded from SPIE Digital Library on 20 Dec 2010 to 134.221.128.246. Terms of Use: http://spiedl.org/terms

For this purpose, we use the convex hull of the set

of points to define the limit of the planar patch.

For the texture generation, we project the texture

of the image that recorded this part of the scene

from the most orthogonal position. This method

helps in avoiding visual shadows and occlusions.

2) EXAMPLE: apply texture: having obtained

the set of planar patches, the most frontal view

among the recorded images is used to reproject

the texture (see Figure 10).

Fig. 10. Top: Textured planar patches. Bottom: colored point
cloud output using PMVS2.

VI. CONCLUSION

In this paper we have presented some of the

functionality of our FIT3D Toolbox for 3D recon-

struction from a set of ordered images. We believe

that FIT3D fills a gap in the set of research tools

that will help other scientist to develop and apply

their methods and techniques in a more global

context. FIT3D allows them to obtain a full 3D

model with little effort in the integration. As com-

pared to other relevant tools, FIT3D presents a set

of novel approaches for both robust monocular

visual motion estimation and refinement by point

cloud distance minimization. Even tough FIT3D

provides functionality for global refinement, the

robust motion estimation techniques employed

are in most cases sufficient and do not require

the global refinement step. Only for those more

difficult data sets it needs to be applied. Also,

FIT3D is provided in an educative format where

special care has been taken in building Matlab

functions that are easy to use and understand.

Along with the toolbox a set of example scripts

and data sets are provided. In the future we plan

to extend the Toolbox with error analysis methods

and eliminate the constraint of ordered images

using topological mapping techniques.

Given the extent of FIT3D only a small por-

tion of the functionality has been presented here.

Additional functionality is provided for: mass fea-

ture extraction, feature matching, feature tracking,

error measures, interfaces for PMVS2, motion

sampling, simulators for ground truth generation

and evaluation, and a long etcetera.
REFERENCES

[1] J. Bouguet. Camera calibration toolbox for matlab.
http://www.vision.caltech.edu/bouguetj/.

[2] Frank Dellaert, Steven Seitz, Chuck Thorpe, and Se-
bastian Thrun. Structure from motion without corre-
spondence. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’00),
June 2000.

[3] Daniel DeMenthon and Larry S. Davis. Exact and
approximate solutions of the perspective-three-point
problem. IEEE Trans. Pattern Anal. Mach. Intell.,
14(11):1100–1105, 1992.

[4] Isaac Esteban, Leo Dorst, and Judith Dijk. Closed form
solution for the scale ambiguity problem in monocular
visual odometry, 2010.

[5] Martin A. Fischler and Robert C. Bolles. Random sample
consensus: a paradigm for model fitting with applications
to image analysis and automated cartography. pages 726–
740, 1987.

[6] Y. Furukawa and J. Ponce. Accurate, dense, and robust
multi-view stereopsis. In Computer Vision and Pattern
Recognition, 2007. CVPR ’07. IEEE Conference on,
pages 1–8, 2007.

[7] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521623049, 2000.

[8] P. D. Kovesi. MATLAB and Octave functions for
computer vision and image processing. School of
Computer Science & Software Engineering, The
University of Western Australia. Available from:
<http://www.csse.uwa.edu.au/∼pk/research/matlabfns/>.

[9] M.I.A. Lourakis and A.A. Argyros. The design
and implementation of a generic sparse bundle ad-
justment software package based on the levenberg-
marquardt algorithm. Technical Report 340, In-
stitute of Computer Science - FORTH, Herak-
lion, Crete, Greece, Aug. 2004. Available from
http://www.ics.forth.gr/˜lourakis/sba.

[10] D. Lowe. Distinctive image features from scale-invariant
keypoints. In Int. J. of Computer Vision, 2004.

[11] D. Nister. An efficient solution to the five-point relative
pose problem. In CVPR, 2003.

[12] Noah Snavely, Steven M. Seitz, and Richard Szeliski.
Photo tourism: Exploring photo collections in 3d. In
SIGGRAPH Conference Proceedings, pages 835–846,
New York, NY, USA, 2006. ACM Press.

[13] Bill Triggs, Philip Mclauchlan, Richard Hartley, and
Andrew Fitzgibbon. Bundle adjustment – a modern
synthesis, 2000.

Proc. of SPIE Vol. 7835 78350J-8

Downloaded from SPIE Digital Library on 20 Dec 2010 to 134.221.128.246. Terms of Use: http://spiedl.org/terms

[14] A. Vedaldi. An open implementation of the SIFT detector
and descriptor. Technical Report 070012, UCLA CSD,
2007.

[15] Zhengyou Zhang. Flexible camera calibration by viewing
a plane from unknown orientations. In International
Conference on Computer Vision, 1999.

Proc. of SPIE Vol. 7835 78350J-9

Downloaded from SPIE Digital Library on 20 Dec 2010 to 134.221.128.246. Terms of Use: http://spiedl.org/terms

