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ABSTRACT 
 
Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral 
band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the 
spectral bands. HYBASE is used to assess the minimum number of spectral bands that is required to get the best target 
background contrast. The band selection algorithm is described along with a description of the graphical user interface. 
HYBASE is tested on a representative dataset. The test results shed new light on the optimum band selection. HYBASE 
is developed for the Royal Netherlands Army to  investigate the benefit brought by hyper- or multispectral sensors in 
comparison to present day broad band sensors. HYBASE is tested in European field trials. 
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1. INTRODUCTION 
 
The ever growing complexity of the modern battlefield makes it more difficult to generate a recognized environmental 
picture. Constraints like less availability of qualified personnel and changing battleground conditions contribute to this  
growth. This resulted in a need for sensors which are able to discriminate threats better than sensors that are built today 
and s ensors t hat can  be adapted to a  n ew operation al s cenario. T here a re s everal e merging techn ologies for 
discriminative imaging; one of them is multi- and hyperspectral sensors. 
 
Present day hyperspectral sensors may contain a high number of spectral bands ranging typically from 100 to 200. The 
penalty f or using s uch a high number of  spectral ban ds is th at t he s ignal to noise rat io decreas es. Als o operation al 
systems will be co mplex a nd ex pensive beca use o f th e wavelength dis crimination e lement ins ide t he hy perspectral 
sensor, th is i s especially true for t he i nfrared wavelength range. I f t he co mplete hyperspectral i mage c ube has to be  
processed for the detection of t argets making use of both spectral and spatial target characteristics the huge amount of 
data of a hyperspectral image cube is troublesome. This complicates a near real t ime image processing solution. Band 
selection is therefore seen as an important step in realizing operational hyper/multi spectral imaging solutions 
 
Most research involving band selection has been focusing only on the location of the bands. However, for a multispectal 
configuration very narrow ba nds are not pract ical, beca use t his would requ ire long i ntegration times to g et a good 
signal-to-noise rat io. O ur research  t herefore n ot o nly l ooks at  t he l ocation of t he ban ds bu t al so at  t he width o f t he 
bands. In  prev ious res earch a  f irst at tempt has bee n made b y dev eloping a n a lgorithm that first det ermines t he bes t 
locations for the bands and than the best width of th e bands. This however does not al low for a co mparison between 
broad and narrow bands. Therefore a n ew algorithm has been written that is capable of finding a specified number of 
bands of  a s pecified width. T wo v ersion of  t his al gorithm h ave been  dev eloped, a f ast on e t hat ca n qu ickly find a  
solution bu t does  not guarantee to find t he bes t ban ds an d a n opti mal al gorithm, which searches all  pos sible 
combinations but as a consequence takes a lot longer and can only be used if the number of required bands is small.  
 
 

2. BAND SELECTION ALGORITHMS 
 
In our previous research (Withagen e t al ., 2001) a fi rst at tempt has been made b y developing an algorithm that first 
determines the bes t locations for the bands and than the best width of  the bands. This ho wever does  not al low for a 
comparison between broad and n arrow bands. Therefore a new algorithm has been written that is capable o f finding a 
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specified number of bands of a specified width. Two versions of this algorithm have been developed, a fast one that can 
quickly f ind a  so lution b ut d oes no t gua rantee t o fi nd t he b est b ands a nd a n o ptimal a lgorithm, which se arches a ll 
possible combinations but as a consequence takes a lot longer and can only be used if the number of required bands is 
small.  
 
To ev aluate a ba nd co mbination t he ban d s election al gorithm uses a dis tance measure t hat q uantifies t he separation 
between classes. We used two different distance measures (Landgrebe, 2003). The Mahalanobis distance is defined as:  
 

[ ] [ ]1
1 2 1 2

T
D μ μ μ μ−= − Σ −  

 
Where μ1 and μ2 are t he clas s averages o f clas s 1 (targ et) and 2 (back ground) and Σ is  the covariance matrix o f t he 
classes. 
 
When using the Mahalanobis distance measure one has to keep in mind that the following assumptions are made: 
• The distributions of the classes are multivariate Gaussian distributions. 
• The covariance matrix of these distributions is the same for all classes. 
• The total number of pixels is large enough to accurately describe the covariance matrix (a rule of thumb is that the 

number of pixels should be at least 10 times the number of dimensions). 
 
This dis tance measure is  i mplemented b y first trans forming t he f eature-space an d then  calcu lating th e E uclidian 
distance bet ween th e ce ntres of  t he clas ses in t his trans formed feature space. T he tran sformation makes us e o f t he 
average co variance matrix of th e diff erent cla sses i nvolved. T he data is  tra nsformed to  a diff erent feature-space b y 
multiplying i t with the eigenvectors of this covariance matrix. The effect of this transformation is  that the data is d e-
correlated. (for color images, please see electronic version of manuscript) 
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Figure 1:  Example of a 2D feature-space (left) and its transformation (right). 

 
The advantage of this can be seen in Figure 1. In the original feature-space (left figure) the distance between BG1 (light 
green) a nd B G2 (dark  green) is  lar ger t han th e dis tance bet ween B G1 (li ght green) and T 1 (red) , an d h ence t he 
separability between BG1 and BG2 is better. In the transformed feature-space (right figure) the classes which are most 
easy to separate also have the highest (Euclidian) distance. In the transformed feature-space the (Euclidian) distance is 
calculated between the centres of the different classes. The resulting set of distances is stored in a distance matrix. From 
this matrix a final single distance value can be derived in several ways depending on the experimental requirements (for 
example t he minimum value of th is matrix can  be tak en). B ecause we want to dis tinguish bet ween backg round an d 
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target classes we choose the smallest distance between a target and a background class. This final distance value we will 
refer to as the quality (of a band combination). In the band selection algorithm this quality is maximized. 
 
The Bhattacharyya distance is another distance measure that measures the distance between two multivariate Gaussian 
distributions. It is defined as: 
 

[ ] [ ] [ ]
21

21
21

1

21
21

2/1
ln

2

1

28

1

ΣΣ

Σ+Σ
+−⎥⎦

⎤
⎢⎣
⎡ Σ+Σ−=

−
TB μμμμ  

 
One important difference with the Mahalanobis distance i s that it does  not take the average covariance matrix of t he 
classes bu t keeps th e clas s cov ariance matrices. T he price  th at h as to be paid  is  th at n ow each  clas s h as to con tain 
enough pixels to describe its covariance matrix accurately. 
 
 

3. OPTIMIZATION OF BAND SELECTION 
 
To f ind th e bes t ban d com bination t wo alg orithms h ave been  dev eloped. On e alg orithm searches all pos sible ban d 
combinations. This algorithm can only be used if the number of required bands is small (<4) because calculation times 
increase exponentially with the number of bands. Therefore another algorithm has been written that searches in a more 
time efficient way, but as a consequence it is not guaranteed to find the best band combination. 
 
The al gorithms are i mplemented i n Mat lab® an d make us e of  t he t oolbox PR Tools, a  t oolbox of fered f or f ree f or 
academic res earch b y t he Univ ersity of  Del ft i n T he Neth erlands (ref erence 3). T he m ain data- object of  P RTools is  
called the dataset. In this dataset a large number of objects can be stored, each object consisting of a certain amount of 
features. We use this dataset-type to s tore our pixel-data. The dataset-object also makes it possible to label each  object 
with an integer value, which can be used to divide the pixels in different classes. 
 
We have analyzed the effects of two algorithms: 

• Algorithm 1 is th e fast algorithm. The way it select s its b ands is b y first selecting the band with the highest 
quality. Then it s earches for a second band that in combination with the already found band gives the highest 
quality. T hen it sear ches for a th ird b and in  th e sa me way an d so  o n till th e n umber o f r equired b ands ar e 
found. 

• Algorithm 2 (called the optimum algorithm) searches every possible combination of bands, which guarantees 
that it will find t he ban d co mbination with t he highest qu ality. B ecause ca lculation t imes i ncrease 
exponentially with t he number of  bands, i t can on ly be used i f t he number o f bands r equired i s small. T he 
algorithm can also be used in a s ub-optimal way, by defining a s tep-parameter (see below) higher than 1, i n 
which case the algorithm gets faster. Besides a poten tially better solution, algorithm 2 has  another advantage 
with respect to algorithm 1: because it calculates the quality for each combination, an overview of all qualities 
can be made, giving extra insight in the problem. 

 
To do the classification, the QDC (quadratic discriminant classifier) classifier provided by PRTools is used. This is a  
normal densities based quadratic classifier. For the algorithms several inputs are needed: number of background classes, 
bandwidth, s hape, dis tance t ype, ov erlap, qu ality criteria.  For alg orithm 2 we als o s et a s tep an d ti me es timation 
parameter. For TimeEstimation, if 1, the algorithm makes an estimate of the calculation time by calculating how many 
combinations it will have to evaluate and multiplying this with the quality evaluation-time, which it g ets by making 5 
evaluations an d tak ing th e averag e. A  Step par ameter ( default is 1 ) is d efined to  u se th e alg orithm in a f aster, su b-
optimal way. T he idea beh ind th is para meter is  t hat when for example a ban dwidth o f 30 f eatures is  used, the band 
consisting of features 1 through 30 will almost be exactly the same as band 2-31. By setting a step of for example 3, the 
algorithm will only take into account bands 1-30, 4-33, 7-36 and so on, which can greatly decrease the calculation-time 
without sacrificing much of the optimality of the solution.  
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Table 1:  Calculation times for algorithm 1, with max_overlap = 0 and band_width  = 1. The number of pixels used 
is 1000. 

number of bands calculation time 
Bhattacharyya [s] 

calculation time 
Mahalanobis [s] 

2 8.5 16.0 
4 19.0 31.9 
6 30.9 47.7 
8 43.5 63.7 
10 57.3 80.3 

 
 
If the overlap parameter is set to 0 (no overlap allowed), the bandwidth has also some influence on the calculation time. 
The larger the bandwidth the faster the algorithm will be becau se after the first band has been picked all features that 
make up this band are ex cluded for the following bands so effectively the total number of features decreases. Table 1 
shows the calc ulation ti mes of th e Mat lab i mplementation o f al gorithm 1  for sev eral n umbers o f b ands using the 
Bhattacharyya or t he Mahalanobis distance. The bandwidth used i s 1. T he number of  pixels used i s 1000. F rom this 
table can be concluded that the calculation of the Bhattacharyya distance takes on average about 30% less time then the 
calculation of the Mahalanobis distance. 
 
Calculation times for algorithm 2 are a lo t higher than those of algorithm 1. The relation between the calculation time, 
the number of bands and the total number of features is: 
 

calc_time   ~   
_ !

_
_ !( _ _ )!

total features
no pixels

no bands total features no bands
⋅

−
 

 
Depending on the value of the max_overlap parameter, the bandwidth also has a big influence on the calculation time. 
In t able 2 s ome cal culation t imes are given for t hree di fferent ban dwidths a nd 2 di fferent num bers of  ban ds. 
max_overlap is set at 0 and the distance measure is Bhattacharyya. The Mahalanobis distance measure shows the same 
pattern but the times are about 30% higher. 
 

Table 2:  Calculation times (hh:mm:ss)  for algorithm 2, using the Bhattacharyya distance measure,  with 
max_overlap = 0 and  band_width  = 1, 10 and 30. The number of pixels used is 1000. For step 
parameter = 1,2. 

Step: 1 Step: 2 number of 
bands 1 10 30 1 10 30 
2 00:10:03 00:07:20 00:04:58 00: 02:10 00: 01:50 00: 00:54 
3 10:33:20 07:30:00 02:08:20 01: 13:20 00: 48:57 00: 16:10 
 
 

4. GRAPHICAL  USER  INTERFACE (GUI) 
 
The number of required spectral bands is assessed with HYBASE in a number of steps in a Matlab® environment. The 
first requirement is that the user has to i nput a hyperspectral image cube in which target and background are pres ent. 
Subsequently regions in the image are selected and attributed to either background or target. Target boxes are coloured 
in red, background boxes in white. When all relevant target and background areas are selected the spectra of all pi xels 
inside either the target or the background boxes are plotted at the bottom panel of the GUI (see Figure 2). 
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Figure 2:  Spectra of target areas and background areas are selected via Matlab® GUI 

 (for color images, please see electronic version of manuscript)
 
Within the feature (or spectral band) selection tool the feature width and the maximum allowed overlap are input. Now 
the optimum position of these features is calculated. The result of the optimum band positions is plotted in the top panel 
of the GUI (see Figure 3), by vertical lines that are drawn over the spectra. Each band starts with a blue vertical line and 
ends with a black vertical line. The optimum spectral band positions are also outputted to the Matlab® command line. 

Proc. of SPIE Vol. 7334  733422-5

Downloaded from SPIE Digital Library on 19 Nov 2009 to 195.169.128.3. Terms of Use:  http://spiedl.org/terms



electData

Imae 5eetion

50

00

50

00

50

0
450

Featutes:

3

500

FlexThick FeatSel

bUU 650 700 750 800 850 900
Band Thickness: Max Overlap:

FicedT hick FeatSel 10 10

3D view

DII

250

200-.

U

300

50
100

2W

200
250

100 150

 

Figure 3:  Optimum position of spectral bands are indicated by vertical lines. Blue lines mark start of new band, 
black lines mark end of band. (for color image, please see electronic version of manuscript)

 
 
 
If exactly three features are selected the position of the pixels in 3-dimensional feature space are plotted (see Figure 4). 
The u ser can  rotate th e cu be f or better v isualization of  t he s eparation t hat h as been  achieved bet ween targ et a nd 
background pixels using the selected number of features. 
 
 
 

 

Figure 4:  Projection of pixels in 3-dimensional space spanned by three selected features (=spectral bands) 
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5. BAND SELECTION RESULTS 
 
To see how algorithm 1 ( fast) performs compared to t he algorithm 2 ( slow, but optimal) a co mparison has been made 
for a representative data set for the case that several targets are used with the following input settings: 

bandwidth = 30 
number of bands = 3 
step = 2 
overlap = 0 

 
The comparison has been made for the Bhattacharyya as well as the Mahalanobis distance. Table 3 summarizes the 
result. 
 

Table 3: Comparison between algorithm 1 and algorithm 2. 

 
 
Algorithm 1 performs quite well in finding the maximum quality. For the Bhattacharyya distance, algorithm 1 is 1 3% 
off, and for the Mahalanobis distance it is 14% off. The difference in classification error is even smaller. 
 
The most surprising thing is that some of the found bands are really different, comparing band 1 for the Bhattacharyya 
distance a nd t he Ma halanobis dis tance of al gorithm 2 shows v ery di fferent ban ds, while t he c lassification error i s 
similar. This raises the question if there are more band combinations that give similar results. 
 
To investigate this, the quality of all band combinations (34220 in total) has been plotted for the Bhattacharyya distance 
and the Mahalanobis distance. These plots offer a revealing view on the significance of ‘best bands’. There are in fact a 
lot of  dif ferent ban d co mbinations t hat h ave a qu ality cl ose to th e maximum value, es pecially i n t he cas e of  t he 
Bhattacharyya di stance. T he periodic n ature of  t he f igures aris es from t he s ystematic way i n which t he ban d 
combinations were chosen. Because of that a certain band reoccurs every so often.  
 
Having in mind that there is no direct translation of the distance measure into the classification result, it makes sense to 
not only look at the band combination with the highest distance, but also at the ones that come close to that. If the bands 
are plotted that are within 10% of the maximum value for the Bhattacharyya distance., the band around 11 µ m has the 
highest contribution to the quality, since it is a lways present, see  f igure 5.  W hen this band is  chosen in combination 
with a band between 10 and 10.5 µm, the choice of the third band doesn’t matter anymore. It can be anywhere between 
8 and 9.7 µ m. So the contribution of this third band is minimal and in this case just taking the first two bands would 
probably give a similar classification result. 
 
In figure 5 (right side) also the pixel classification results are plotted as well. The red line in those graphs represents the 
classification error of the band combination with the highest quality. Its classification result is average compared to the 
classification when the other band combinations with quality within 10% of the maximum is being used.  
 
Classification results have also been compared by using the Mahalanobis distance. This time there are only a total of 26 
band com binations th at are w ithin 10% of  th e maximum an d t he ban ds are all arou nd th e s ame wavelengths. 
Surprisingly, t hese b ands d o not s how up i n t he set o f b est b ands found using t he B hattacharyya cr iterion. S till, t he 

 algorithm 1 
bhattacharyya 

algorithm 2 
bhattacharyya 

algorithm 1 
mahalonobis 

algorithm 2 
mahalonobis 

Quality   0.4745   0.5450   2.3396   2.7131 
QDC class. error 
( misclassified pixels) 

    75     76     81     78 

band 1 (feature numbers)  80 - 109  81 – 110   6 -  35   7 - 36 
band 2 (feature numbers) 114 - 143 117 – 146 110 - 139  95 -124 
band 3 (feature numbers) 168 - 197 169 - 198 169 - 198 169 -198 
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bands found with the Mahalanobis criterion give a co mparable classification result. Apparently, the boundary of 10% 
within the maximum could be set lower to include even more band combinations. 
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Figure 5:  Bands that have a quality (using the Bhattacharyya distance) within 10% of the maximum quality and 
associated miss-classifications 

 
 

6. APPLICATION OF BAND SELECTION 
 
HYBASE is typically used in a system design study and these outputs can feed operational studies. Figure 6 shows the 
location of  HYBASE in  this design chain. Based on a hy perspectral data s et in  a relev ant scenario one can make an 
analysis with H YBASE o f t he minimum number o f r equired sp ectral b ands, th eir widths a nd p ositions for th e 
targets/backgrounds studied.  
 
 

 

Figure 6:  Typical usage of HYBASE in system design 
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When a multispectral sensor has been designed and realized the system will be used for data acquisitions. Multispectral 
target detection/classification tools will then be used to extract the relevant data. The target DRI (detection, recognition, 
identificaton) proces sing c hain f irst pre- processes t he acqu ired h ypercubes ( geo r eferencing, no ise r eduction, d ata 
normalization, temperature emissivity separation). Then targets are bein g detected us ing anomaly and signature based 
detection method in  co mbination with c hange d etection. Sp atial in formation is used to  r educe f alse alar m r ates. 
Additional se nsor d ata f rom e.g. h igh r esolution i magers, radar an d/or 3 D laser  r adar i s b eing u sed to  class ify a nd 
identify t argets i n a deci sion f usion proces s. Many  of  t hese alg orithms run  n ear real-ti me. P otential ap plications o f 
sensor combinations are described in Schwering et al. (2007). 
 
 

7. DISCUSSIONS AND CONCLUSIONS 
 
An effective approach to optimum band selection in hyperspectral imaging has been demonstrated. 
 
Target detection/recognition/identification is part of a more extensive software processing chain as depicted in Figure 6. 
First t he acq uired hy percubes are bei ng pre -processed (g eo r eferencing, noise r eduction, d ata normalization, 
temperature e missivity separation). T hen targets are bei ng det ected using a nomaly a nd s ignature bas ed det ection 
method in combination with change detection. Spatial information is used to reduce false alarm rates. Additional sensor 
data f rom e.g . high resolution imagers, radar an d/or 3D laser radar i s being used to classify and identify targets in a  
decision fusion process. TNO has access to many of the tools in the processing chain which TNO can offer in addition 
to the HYBASE band selection tool. 
 
Below are listed the conclusions from our research. What has to be kept in mind is that the conclusions are based upon 
one dataset with a frequency range from 7.7 µm to 12.1 µm, so mainly emissivity is measured: 
 
• Algorithm 1 (t he fast al gorithm) perf orms g ood co mpared t o al gorithm 2 (t he opt imal al gorithm). T he ba nd 

combinations found by algorithm 1 have a quality value within 15% of the quality found by algorithm 2, while the 
calculation time is a lot smaller. 

• Using the Bhattacharyya distance as a measure for the separation of the different classes gives comparable results 
as the Mahalanobis distance. 

• Although no thorough study has been done between the relation of the quality and the classification error, in some 
cases the difference in classification error can be very big for similar qualities (up to 100% difference) 

• Often, there is a whole set of different band combinations that have a comparable quality and classification result. 
This s et i s re vealed b y plott ing t he ban d co mbinations having a q uality within a  c ertain percen tage o f t he 
maximum quality. 

• As a consequence of the above two points, the band combination with the highest quality does not necessarily have 
the lowest classification error. 

• The location of the best bands depends strongly on the choice of target and backgrounds. 
• For a good classification result clean spectra of the targets are required. Target masks for semi-hidden targets are 

useless, since they contain target as well as background pixels.  
• If th e number of  ba nds i ncreases t he qu ality i ncreases a nd th e cla ssification error de creases. Although ot her 

research shows that there is an optimal number of bands for the classification error, th is did n ot show up in our 
results. T his opti mum is  d ue to th e fact, th at when t he number of  ba nds i ncreases, statistical values used to  
describe the feature-space like the covariance matrix can be predicted less accurate. That this optimum did not turn 
up in our results is probably due to the fact that we used the areas that were classified also to train the classifier. 

 
The influence of the bandwidth on the quality is  substantially less than the influence of the number of bands. This is  
probably becaus e t he s pectra in  th e t hermal i nfrared reg ion (7.7 µ m to 12.1 µ m) i nvolved did n ot h ave a ny sharp 
features. There is also no clear relation between the bandwidth and the quality, sometimes the quality increases. 
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Figure 7:  Multi spectral image processing chain 

 
If the complete hyperspectral image cube has to be proces sed for the detection of targets making use of both spectral 
and s patial tar get c haracteristics t he huge a mount of  d ata of  a hyperspectral i mage cu be is  tro ublesome. T his 
complicates a near real ti me i mage proces sing s olution. Band s election is t herefore an  i mportant s tep in  real izing 
operational h yper/multi sp ectral i maging so lutions. I n Fi gure 7  we p resent th e b asic T NO processing ch ain for 
automatic targ et data proces sing of  hyperspectral i mage i nformation. T his s erves as  the big  pictu re in  th e res earch, 
consisting of real-time on-line steps, combined with supporting off-line data mining activities.  
 
Most research involving band selection has been focusing only on the location of the bands. However, for a multispectal 
configuration very n arrow ba nds are not practical, becaus e th is would requ ire lar ge i ntegration times to  g et a good 
signal-to-noise ratio. O ur research therefore not only looked at th e location of  t he bands but also at t he width o f t he 
bands.  
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