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ABSTRACT 

 
Detector sampling and optical blur are two major factors affecting Target Acquisition (TA) performance with modern 
EO and IR systems. In order to quantify their relative significance, we simulated five realistic LWIR and MWIR sensors 
from very under-sampled (detector pitch d >> diffraction blur Fλ) to well-sampled (Fλ >> d). Next, we measured their 
TOD (Triangle Orientation Discrimination) sensor performance curve. The results show a region that is clearly detector-
limited, a region that is clearly diffraction-limited, and a transition area. For a high contrast target, threshold size TFPA on 
the sensor focal plane can mathematically be described with a simple linear expression: TFPA =1.5·d ·w(d/Fλ) + 0.95· 
Fλ·w(Fλ/d), w being a steep weighting function between 0 and 1. Next, tacticle vehicle identification range predictions 
with the TOD TA model and TTP (Targeting Task Performance) model where compared to measured ranges with 
human observers. The TOD excellently predicts performance for both well-sampled and under-sampled sensors. While 
earlier TTP versions (2001, 2005) showed a pronounced difference in the relative weight of sampling and blur to range, 
the predictions with the newest (2008) TTP version that considers in-band aliasing are remarkably close to the TOD. In 
conclusion, the TOD methodology now provides a solid laboratory sensor performance test, a Monte Carlo simulation 
model to assess performance from sensor physics, a Target Acquisition range prediction model and a simple analytical 
expression to quickly predict sensor performance as a function of sampling and blur. TTP approaches TOD with respect 
to field performance prediction.  
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1. INTRODUCTION 
 
When we perceive scenes and objects with natural vision, our Visual Acuity (VA, i.e. the amount of detail that we can 
resolve with foveal vision) is limited by the optics blur in our eye. Vision through optics such as binoculars does not 
essentially differ from that with the unaided eye, and to a certain extent this also holds for conventional scanning 
Electro-Optical (EO) systems.  

The current EO systems of choice, however, have a pixel array sensor or Focal Plane Array (FPA), and these systems 
are usually more or less under-sampled. This means that the scene information is spatially sampled with a spacing that 
can be relatively coarse compared to the optics blur of the EO system. The results are i) a different type of degradation, 
ii) an image that is phase dependent (i.e. the shape of an object image depends on the relative position of the object with 
respect to the sensor pixels) and iii) the occurrence of aliasing or spurious response. These characteristics make Target 
Acquisition (TA) or object recognition with an under-sampled imager essentially different from that with a well-
sampled imager. 

Recent studies1,2 show that Fλ/d is an important parameter with respect to the amount of under-sampling in pixel-based 
systems. F is the F-number of the optics, λ is the average spectral wavelength of the sensor system and d is the detector 
pitch of the pixels on the Focal Plane Array (FPA). This makes sense because the variable Fλ is associated with 
diffraction blur (e.g., the Airy disk diameter of the optics is 0.41·Fλ, and the optical cut-off f0 = (Fλ)-1 ) while d is 
associated with FPA resolution (Nyquist frequency fN = 1/(2d) ). So, for a well-sampled system we expect the smallest 
resolvable details with the system to be proportional to Fλ and for a very under-sampled system to be proportional to 
detector pitch. A transition from one to the other region is exhibited when 0.41 < Fλ/d  < 1.01,2. In this region, both 
sampling and blur contribute to the visual performance with the sensor system. 

Several promising models exist to predict TA performance with EO sensors: the TOD method and model3,4,5,6, TRM37,8 
and the TTP metric9,10,11. They all claim to cope with well-sampled and under-sampled imagers, but they disagree in the 
relative importance of detector spacing and diffraction blur on the ‘effective resolution’ or VA with the sensor. In 
addition, they behave differently in the transition region12,13. For example, a quantitative comparison between TOD and 
TTP (the model underlying the NVTherm thermal imager range prediction model) in 2002 showed huge differences12. 
Predictions with an updated version of the TTP metric (the basis of the NVThermIP model) are much closer to the 
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TOD13: when the performance with blur-limited sensors is set equal, NVThermIP is about 25% more optimistic in range 
performance prediction for under-sampled imagers than the TOD is. While the TOD essentially remained unchanged 
over the years, the TTP metric has undergone major changes. Until now, the TTP metric was based on the EB 
(Equivalent Blur) assumption and neglected part of the aliasing called “in-band aliasing”. The newest version of the 
TTP metric11, indicated as the AAN (Aliasing As Noise) model, does take in-band aliasing into account.  

In this study, we try to disentangle the contribution of blur and sampling to the TOD of a sensor system. This will result 
in a very simple approximation of the sensor’s Visual Acuity. We will perform some example range calculations and 
compare the results to those with different versions of the TTP metric. 

This paper is organized as follows. The experimental method is described in Chapter 2. Results are given in Chapter 3, 
and modeled using a simple weighted linear sum model based on blur and detector size in Chapter 4. Example range 
predictions with the model are given in Chapter 5, and the results are discussed in Chapter 6. 

2. METHODS 
 
2.1 TOD SENSOR PERFORMANCE CHARACTERIZATION 

The Triangle Orientation Discrimination3 (TOD) method is a way to quantify sensor performance with a human-in-the-
loop. The method provides a sensor performance measure (the TOD curve) and a TA (Target Acquisition) model to 
calculate range performance in the field (the TOD TA model). A recent overview of the TOD method is described by 
Bijl & de Vries9. 

Basically, the TOD curve describes the ability of a human observer using the sensor under test to discriminate between 
equilateral triangles of four possible orientations (apex Up, Down, Right or Left, see Figure 1). Independent variables 
are triangle angular size and (thermal or visual) contrast.  

Visual Acuity (VA) is one of the special points on the TOD curves and  represents the ability to resolve spatial details at 
the high contrast limit.  

A TOD curve can measured with real or a simulated sensor, and with a human observer or a vision model5,14.  

 
Figure 1 The test pattern or stimulus in the TOD method is an equilateral triangle with one of four 
possible orientations: apex Up, Down, Left or Right. The observer has to indicate its orientation. Task 
difficulty depends on test pattern size and contrast. From Bijl &Valeton9. 

 

2.2 TEST PATTERN GENERATION AND SENSOR SIMULATION 

A simulation platform EO-VISTA15 that includes a triangle test pattern generator, the pcSitoS sensor simulation model16  
and a Human Visual System (HVS) model5 was used to generate the test patterns and simulate the image degradation 
through a number of sensors (see 2.4). Choices with the simulation platform are given in section 2.3-2.5. 

2.3 TEST TARGETS 

Test patterns of 7 different sizes around the threshold were generated for each sensor, and each size was generated 30 
times with different orientation and a randomized position with respect to the FPA. In order to avoid effects of noise on 
the results, thermal contrast was high: 20K.   

2.4 CHOICE OF SENSORS 

We selected a number of typical MWIR and LWIR sensors. See Table 2. The FLIR SC2000 uncooled microbolometer 
is extensively investigated and data with the real and simulated sensor are reported in a series of papers15,17,18. The other 
sensors were selected from Krapels et al. (2007)2. Using these sensors is convenient because imagery and model 
calculations are available.   
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The result is a set of LWR and MWIR sensors with an Fλ/d varying from 0.21 (very under-sampled) to 2.21 (well-
sampled), varying in spectral wavelength, aperture, focal length, detector pitch d, fill factor, and FOV.  

2.5 TEST AND OBSERVERS 

2.1.1. Human observers and observer model 

Four human observers participated in the experiment: NL, JS, AW and TB. 

In addition, the test was run with the HVS model5 instead of a human observer. 

2.1.2. Observer experiment 

The total number of images was 7 (test pattern sizes) * 30 (repetitions per size) * 5 (sensors) = 1050. Each image was 
presented once to each observer and to the HVS model. Observers had to judge the orientation of the triangle, even if 
they were not sure. In order to minimize learning effects, the order of the presentations was first randomized, then 
divided into four blocks and the blocks were presented in different order to each human observer according to a 4 by 4 
Latin Square design. Total measurement time per observer is approximately 75 minutes. 

The result of the test is a 75% correct threshold triangle size for each sensor and each observer. Each threshold is based 
upon 210 observations. 

3. RESULTS 
 
Figure 2 shows the probability vs. triangle size relationship for the five sensors as measured with the four human 
observers and the HVS model. A Weibull curve is fitted through the data (filled lines: human observers; dashed lines: 
HVS model). This fit was accepted in all 25 cases. For all observers, threshold sizes at the 75% correct level S (in mrad) 
are tabulated in Table 3. VA is defined as VA = S-1. The accuracy for each threshold estimate is high: standard errors are 
in the order of 3-4%.  

3.1 HUMAN OBSERVER THRESHOLDS 

One of the four observers (AW) scores significantly lower than the other three: for the five sensors threshold size is 2, 
2.5, 3, 6, and 9 times the standard error above the results for the other three observers. This observer is removed from 
further analysis. In Table 3, we report the weighted average Shuman observers and standard error in the mean (maximum of 
internal and external error) for the resulting three observers. Again, the error is small: 3-6%.  

3.2 HVS THRESHOLDS 

Threshold sizes SHVS for the HVS model are systematically higher than Shuman observers. The ratio slightly depends on the 
amount of under-sampling: Below Fλ/d =1 (detector limited), the ratio is independent and around 0.77, above Fλ/d =1 
the ratio increases above 0.88 and seems to approach 1.0, i.e. in the case of a diffraction-limited system the HVS model 
perfectly predicts human Visual Acuity.  The same set of test patterns were presented to observers and HVS model, so 
the difference in performance cannot be ascribed to coincidental differences in test sets. We conclude that the HVS 
mode comes close to the human acuity for well-sampled systems but needs improvement for under-sampled systems 
(see Discussion). 

In addition, with the HVS model the slopes of the probability versus size curves for low Fλ/d-values seem to be 
shallower than with the human observers (see Figure 2). 

Proc. of SPIE Vol. 7300  73000C-3



0

0.2

0.4

0.6

0.8

1

1.2

1 10

triangle size (mrad)

fr
ac

tio
n 

co
rr

e

 
(a) 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 1 10

triangle size (mrad)

fr
ac

tio
n 

co
rr

e

 
(b) 

0

0.2

0.4

0.6

0.8

1

1.2

1 10

triangle size (mrad)

fr
ac

tio
n 

co
rr

e

 
(c) 

0

0.2

0.4

0.6

0.8

1

1.2

1 10

triangle size (mrad)

fr
ac

tio
n 

co
rr

ec
t

 
(d) 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 1

triangle size (mrad)

fr
ac

tio
n 

co
rr

ec
t

 
(e) 

Figure 2 Fraction correct versus triangle size (in mrad) and best fits for the five simulated sensors with the four 
observers and the HVS model. Target thermal contrast: 20K. (a)  FLIR SC2000; (b) ‘Typical LWIR’; (c) TVS 8502; (d) 
Indigo Phoenix; (e) DRS heavy TWS. Open circles: NL; filled circles: JS; open triangles: AW; filled triangles: TB; 
filled squares: HVS model. Solid lines: best fits to the human observer data; dashed lines: best fits to the HVS model 
data.  

3.3 TRIANGLE TRESHOLD SIZE AS A FUNCTION OF FΛ/D 

In Figure 3, triangle threshold size, now expressed in μm at the Focal Plane, is plotted as a function of Fλ/d. Filled 
triangles show the average results for human observers, while open triangles show the data for the HVS model. Also 
included in the plot are detector pitch d (open squares) and Fλ (open circles), all in μm. Error bars indicate the standard 
error in the mean. 

In Figure 3 we see that: 

• For small Fλ/d, triangle size at the focal plane seems to be proportional to detector pitch d. 
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• For large Fλ/d, triangle size at the focal plane is close to Fλ. 
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Figure 3 Triangle threshold size at the Focal Plane (in μm) as a function of Fλ/d. Filled triangles: human 
observers; open triangles: HVS model. Also plotted are detector pitch d (open squares) and Fλ (open 
circles). 

 

4. MODELING THE RESULTS 
 
4.1 WEIGHTED LINEAR SUM MODEL 

For small Fλ/d we expect detector pitch d to be the major factor determining TOD acuity. This is in agreement with the 
results in Figure 3: below Fλ/d =1 we see that the triangle threshold size nicely follows the detector pitch.  

For large Fλ/d we expect Fλ to be the major factor determining TOD acuity. Above Fλ/d = 2, the system is well-
sampled and the effect of detector pitch should be very small. 

In the intermediate range we expect both d and Fλ to contribute, and the total degradation should be more than the 
separate contributions from sampling and blur.  

We assume the threshold size to be a weighted linear sum of a detector-limited and blur-limited component: 

(1) ⎟
⎠
⎞

⎜
⎝
⎛⋅⋅+⎟

⎠
⎞

⎜
⎝
⎛⋅⋅=

d
FwFc

F
dwdcTFPA

λλ
λ 21  

where TFPA is the TOD triangle threshold size at the Focal Plane. TFPA, d and λ are all in μm. w(x) is a weighting function 
that is close to 1 for x ≤ 1, and rapidly drops to zero for x > 2. We assume that the weighting function is described by a 
Weibull function with slope θ: 

(2) 
θ)(101)( xxw −−=  

Further note that: 

(3) 
optics

ector

f
f

d
F

,0

det,0=
λ

 

where f0,detector and f0,optics are the MTF cut-off frequencies of the detector and optics, respectively. From (1) it also 
follows that: 
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(4) 
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where VA is Visual Acuity through the sensor in mrad-1, and f = focal length in mm 

4.2 RESULTS FOR THE TOD 

See Figure 4. The weighted linear sum model nicely fits the data, even though a large number of sensor parameters were 
neglected. Parameter values  c1 and c2 were optimized to match the data at the lower and the higher limits of Fλ/d, while 
parameter θ was optimized for a good match in the middle region. The values are given in Table 1, row 2 (human 
observer) and row 3 (HVS model). The weighting functions are shown in Figure 5. 

The data in Table 1 indicate that: 

• For a detector-limited sensor system, TOD triangle threshold size at high contrast is approximately 1.5 times 
detector pitch d. This result has been reported in earlier studies 

• For a diffraction limited system, TOD triangle threshold size at high contrast is approximately 0.95 times 
diffraction blur Fλ 

• The HVS model matches the human observer data for diffraction-limited sensors but underestimates performance 
for under-sampled imagers by a factor of 1.5/1.9 = 0.79. See also the Discussion. 

 
Table 1 Optimum parameter values for the weighted linear sum model 

 c1 c2 θ 

TOD with human observer 1.5 0.95 5 

TOD with HVS model 1.9 0.95 5 
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Figure 4 Data from Figure 3, including the weighted sum model predictions (see equation 1) fitting the human 
observer (weighted sum 1) and the HVS model (weighted sum 2) data. Fit parameters are given in Table 1.  
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Figure 5 Weighting functions w(d/Fλ), w(Fλ/d) with slope θ = 5 (equation 2) and their sum as a function of Fλ/d. 

 
4.3 NVTHERMIP CALCULATIONS 

With the sensors listed in Table 2, NVThermIP range calculations were performed. For each sensor, optimum viewing 
distance was chosen. Using the procedure described elsewhere13, the range calculations are calculated back to target size 
on the Focal Plane Array. V50 was chosen in such a way that for the sensor with the highest Fλ/d value (the most well-
sampled sensor), predicted triangle size matched that of the TOD measurements. Thus, the ratio between predicted and 
measured triangle size (and predicted range) is 1.0 for sensor number 5. Predicted range versus Fλ/d showed a different 
behaviour than with the TOD. For example, the ratio is around 1.27 for a typically under-sampled imager (sensor 1 and 
2). This is in agreement with the earlier finding13 that NVThermIP is about 25% more optimistic for under-sampled 
imagers than TOD compared to well-sampled imagers. 

We were able to fit the relationship between predicted range and Fλ/d but with different constants c1 and c2, a shallower 
weighting function (θ = 2) and a transition from detector-limited to blur-limited is around Fλ/d = 0.7 instead of 1. 

 
5. TA RANGE PREDICTIONS WITH THE WEIGHTED LINEAR SUM MODEL 

 
In this section we will show some example calculations with the weighted linear sum model defined in section 4.1. We 
will use the parameters deduced for the TOD measurements with the human observer (see Table 1), unless stated 
otherwise. Since the model is deduced for acuity-limited performance, we assume high contrast and no atmospheric 
losses.   

5.1 TYPICAL UNDER-SAMPLED SENSOR 

VA from equation 4 and w(x) from equation 2 are the starting point for our calculations, with c1 = 1.5, c2 = 0.95, and θ = 
5. Probability versus range relationship P(r) is calculated with the following two equations6,13: 

(6) 
7575

75
0

M
VAA

MS
Ar

C

⋅
=

⋅
=  

(5) 
β)/( 7541)( rrrP −−=  

 

where r75 is the target acquisition range (in km) at probability P = 0.75, β determines the slope of the relationship and 
has value β =1.25 in our model6,13, A is the target set characteristic size (in m, see section A.2), C0 is the target set 
characteristic inherent RSS contrast (ΔT0 for thermal, see section A.2), and SC0  (= VA-1 in the high contrast limit) is the 
corresponding triangle threshold size (triangle square-root area in mrad) from the TOD curve. Finally, M75 is a 
magnification factor between required target and triangle size that quantifies the task difficulty (see section A.2).  
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For the FLIR SC2000, we have (Table 2): d = 47.5 μm;  Fλ = 10 μm (F/1 optics), and f = 36.3 mm. Typical values for 
tracked armored vehicle identification with LWIR sensors are6,19: M75 = 14.0, A = 3.0 m and ΔT0 = 4.7 K.  

For this condition we find that VA = 0.51 mrad-1, in agreement with reported measurements15, and r75 = 110 m. 
Probability versus range is shown in Figure 6 (solid line). 

5.2 RANGE IMPROVEMENT WITH FOCAL LENGTH 

Suppose we equip the FLIR SC2000 (section 5.2) with an objective with tenfold focal length (f = 363 mm). With F/1 
optics  (lens diameter equals focal length), range increases by the same factor. But if the lens diameter is 36.3 mm we 
have an F/10 optics and blur starts to play an important role.  

Again using equations (2) and (4), we end up with VA = 3.7 mrad-1 and r75 = 790 m, i.e. an effective ID range increaase 
of a factor of 7.2 instead of 10. 
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Figure 6 Probability versus range relationship example for target ID with the under-sampled FLIR SC2000 sensor. 
Range is plotted on a log scale. Solid line: standard optics (section 5.1). Dashed line: optics with 10x higher focal length 
and F-number (section 5.2). In the second example, diffraction blur plays a significant role and the effective ID range 
increase is 7.2 times.  

5.3 TACTICAL VEHICLE IDENTIFICATION DATA 

5.3.1 Experimental data 

Tactical vehicle ID data for well-sampled and under-sampled imagery are used from a series of TTP validation 
experiments published by Vollmerhausen et al. (2004, 2008)10,11. Details on the experiments and sensor specifications 
are reported in the referred papers. Experiment #25 is performed using a sensor with realistic in-band aliasing, and was 
set up to determine the effect of display pixel visibility (E-zoom and pixel interpolation) on target ID. Experiment #36 
was performed to vary the amount of aliasing by changing the fill factor. Both experiments contained six conditions 
(indicated by lines 1-6) including normal and extreme parameter values. Figure 7 shows part of the data (open and filled 
diamonds) obtained with these experiments. Left graph: experiment 25. Right graph: experiment 36. Ranges appear to 
be rather insensitive to the independent variables in the experiments: if we consider all conditions in experiment 25, r50 
= 1.8-2.1 km, i.e. the maximum range variation is 15%. In experiment 36, all ranges are close to r50 = 0.9 km. 

5.3.2 TOD range predictions 

On the basis of a number of experiments with well-sampled imagery, the authors of the TTP validation study10 derived 
the target set specific parameters required for model predictions: V50 = 20.8, target characteristic size = 3.1 m, and target 
characteristic contrast is high (sufficiently high to be resolution limited). With these parameters and the V50 ↔ M75 
conversion derived for well-sampled imagers13 (M75 = 0.60·V50 = 12.5) we can make tacticle vehice ID range predictions 
using the TOD weighted linear sum model derived in Chapter 4. For the sensor in experiment 25, we have d = 30 μm, 
Fλ = 8 μm and f = 220 mm11, so VA = 4.88 mrad-1 and r75 = 1.21 km. For the sensor in experiment 36, we have d = 25 
μm, Fλ = 8 μm and f = 73.3 mm11, so VA = 1.95 mrad-1 and r75 = 0.48 km.  
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The probability vs. range relationships predicted with the TOD TA model are shown in Figure 7 together with the data. 
Predictions are excellent: for experiment 25, the predictions perfectly match for ID levels above 0.40 and slightly 
deviate below this level. For experiment 36, ranges at higher probability levels are slightly understimated 
(approximately 20% at the 75% correct ID level) but in general the curve matches the data well. The average ratio 
between measured and predicted range at the 50% correct ID level over the four conditions shown is 1.03 with a 
standard deviation of 0.12. 

Note that there are no free parameters: target set parameters were derived for well-sampled imagery in the original 
study10 and V50 was converted to M75 for well-sampled imagery13. So TOD predictions match tactical vehicle ID data for 
both well-sampled and under-sampled imagery.  

For each experiment, there is only one predicted curve because the weighted linear sum model is based on only three 
sensor variables and does not differentiate between the experimental conditions within the experiment. As an end-to-end 
sensor performance measure, the real TOD will make a difference between the experimental conditions.  
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Figure 7 Experimental tacticle vehicle ID data (open and filled diamonds) from two TA model validation 
experiments (# 25 and # 36, see section 5.3.1) with under-sampled imagers published by Vollmerhausen et al. 
(2004, 2008)10,11 and TOD predictions (filled lines, see section 5.3.2). The predictions are excellent. Note that 
there are no free parameters: target set specific parameters were derived for well-sampled imagery in the 
original study10 and V50 was converted to M75 for well-sampled imagery13. So TOD predictions match tactical 
vehicle ID data for both well-sampled and under-sampled imagery.   

 

5.3.3 TTP range predictions 

TTP range predictions for experiments 25 and 36 are taken from Vollmerhausen et al. (2008)11. The results are shown in 
Figure 8, together with the observer data (symbols as in Figure 7).  Left graph: exp 25; Right graph: exp 36.  

Filled and dash-dot lines represent the predictions with the TTP EB (Equivalent Blur) model. Filled lines predict the 
open diamond data, dash-dot lines correspond to the filled diamond data. In all conditions, the EB model considerable 
overestimates measured TA range: the average ratio between measured and predicted range at the 50% correct ID level 
over the four conditions shown is 1.49 with a standard deviation of 0.30.  

Dotted and dashed lines represent the predictions with a new TTP metric: the AAN (Aliasing As Noise) model. This 
model takes into account the effects of in-band aliasing. Dotted lines correspond to the open diamond data, dashed lines 
to the filled diamond data. With this model, the average ratio between measured and predicted range at the 50% correct 
ID level over the four conditions shown is 0.94 with a standard deviation of 0.12.  

Obviously, the AAN model provides a much better fit to these experimental data than EB does, and TOD and AAN 
prediction accuracy to these data are comparable. 
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Figure 8 Same experimental data as in Figure 7. In addition, range predictions with the TTP Equivalent Blur 
(EB) model10 (filled and dash-dot lines) and the TTP Aliasing As Noise (AAN) model11 (dotted and dashed 
lines). See section 5.3.3. The AAN model takes into account in-band aliasing and better predicts the 
experimental data. Data and model predictions are taken from Vollmerhausen et al. (2008)11. 

 
 

6. DISCUSSION AND CONCLUSIONS 
 
6.1.1 Analytical TOD model 

We derived a very simple analytical expression (the ‘weighted linear sum model’) to estimate the VA (Visual Acuity, 
the high contrast cut-off of the TOD curve) of a pixel-based Electro-Optical sensor system, based on only three sensor 
variables: detector pitch d, optic blur Fλ, and focal length f.  

This simple expression calculates the contribution of blur and sampling on sensor performance, and enables a first order 
prediction of the TA range potential with a given sensor system. The next steps are to extend the equation for an entire 
TOD curve and to incorporate more sensor parameters. Obvious parameters are spatial and temporal noise, spectral 
wavelength, fill factor, display characteristics and viewing distance. 

Development of such a model makes sense because the most popular range prediction models disagree on the relative 
importance of sampling and blur and this issue needs more study. In addition, current predictions of a TOD curve are 
performed with an image-based simulation of the TOD test (see section 2.2), either with a human observer or the HVS 
model. Though this simulation potentially yields the most accurate results (see also 6.1.2), calculations are time-
consuming and not always practical.   

6.1.2 HVS model accuracy and  improvement 

The results show that the Human Visual System (HVS) model used in the TOD simulation model accurately predicts 
human performance with well-sampled imagers but systematically underestimates TOD performance for detector-
limited sensors. The difference is approximately 20%, and explains deviations shown earlier5,13.  

The prediction error can be explained as follows. In order to determine its most probable orientation, the HVS model 
correlates the neural activity of a degraded triangle with the activities of four reference triangles. In a realistic model, the 
reference triangles should be degraded as well, but in the current model we use the original test patterns. With an under-
sampled imager, the degraded test patterns can have many different shapes very unlike the original triangle because of 
the phase-dependency. Therefore, taking the highest correlation of the sensor image with reference test patterns 
degraded in different phases may lead to a result closer to human performance. 

6.1.3 TOD and TTP range predictions  

TA range performance was calculated for tacticle vehicle ID with two under-sampled imagers, using target set specific 
parameters that were derived with well-sampled imagery10, 11. The results of the predictions, shown in Figure 7, are 
excellent, illustrating that the model (and the TOD) correctly weigh blur and sampling for these sensors. In this 
example, the weighted linear sum approximation of the TOD was used: final range predictions using the simulation 
model (2.2) need to be performed. This result supports a range of earlier TOD validation studies. 
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The same ID data set was used by other authors to validate different versions of the TTP metric11.  The results were that 
the 2005 TTP metric (based on the Equivalent Blur approximation) overestimates under-sampled range performance. 
Predictions with the 2008 version however, are very close to the TOD calculations and to the data from the two 
experiments. The AAN model is the first TTP version that takes into account in-band aliasing, while the earlier versions 
only calculated out-of-band aliasing. TOD inherently takes into account both in-and out-of-band aliasing. 

7. CONCLUSIONS 
 
• A very simple analytical expression was derived to quickly calculate sensor performance with a pixel-based EO 

sensor system 
 
• Tactical vehicle ID studies show that the TOD accurately predicts range performance for well-sampled and under-

sampled imagers. 
 
• The results suggest that the TOD triangle test pattern discrimination task is a good representative for a real vehicle 

ID task: in all validation studies performed so far, the effect of sensor differences on performance for these two 
tasks has been equivalent. 

 
• The new TTP metric (the AAN model) predictions are close to those with the TOD and to the vehicle ID data. More 

extensive comparison studies with complex imaging systems are desirable. 
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APPENDIX 1: EXPERIMENTAL CONDITIONS AND RESULTS 

 
Table 2: Five typical MWIR and LWIR sensors with increasing Fλ/d 
 

Sensor FLIR SC2000 ‘Typical’ 
LWIR 

TVS 8502 Indigo 
Phoenix 

DRS heavy TWS 

type LWIR, uncooled 
microbolometer 

LWIR MWIR, InSb, 
cooled 

LWIR, 
uncooled 

LWIR, uncooled 
microbolometer 

Primary sensor parameters
Spectral range (μm) 7.5-13 8-12 3-5 8-12 8-12
Av. optical transmission 0.8 1 1 1 1 
Optics blur calculated 0 calculated calculated calculated 
Aperture diameter (mm) 36.3 32 7.5 5.2 19.5 
Focal length (mm) 36.3 32 30 13 103.3 
NETD (K) 0.07 0.05 0.025 0.07 0.092
H detectors 320 1280 256 640 640 
V detectors 240 720 256 512 480 
H detector pitch (μm) 47.5 25 30 25 24 
V detector pitch (μm) 47.5 25 30 25 24 
H detector size (μm) 42.5 25 27 23 22 
V detector size (μm) 42.5 25 27 23 22 
Frame rate (Hz) 50 60 120 60 30 

Deduced parameters 
Average λ (μm) 10 10 4 10 10 
f-number 1 1 4 2.5 5.3 
Fill factor 0.8 1 0.81 0.85 0.84 
Fλ/d 0.21 0.40 0.53 1.0 2.21 
HFOV (°) 24 53.1 14.6 63.2 9 
VFOV (°) 18 31.4 14.6 52.4 6.75 
IFOV (mrad) 1.31 0.78 1.0 1.92 0.23 

 
Table 3: Results of the measurements. S is threshold triangle size @ 20K (mrad). VA = S-1. 
 
Sensor FLIR 

SC2000 
Typical 
LWIR 

TVS 8502 Indigo 
Phoenix 

DRS heavy 
TWS 

S (mrad) with NL 1.81 ± 0.07 1.15 ± 0.04 1.38 ± 0.05 4.24 ± 0.14 0.479 ± 0.012
S (mrad) with JS 2.12 ± 0.09 1.21 ± 0.04 1.27 ± 0.05 4.74 ± 0.18 0.469 ± 0.016 
S (mrad) with AW 2.14 ± 0.09 1.38 ± 0.04 1.76 ± 0.08 5.21 ± 0.19 0.555 ± 0.016 
S (mrad) with TB 2.08 ± 0.06 1.41 ± 0.05 1.62 ± 0.05 4.55 ± 0.016 0.500 ± 0.013 
Weighted average S 
(mrad) with observers 
NL, JS, TB 

1.99 ± 0.08 1.23 ± 0.06 1.42 ± 0.08 4.47 ± 0.12 0.483 ± 0.008 
 

S (mrad) with HVS 
model 

2.50 ± 0.124 1.65 ± 0.055 1.83 ± 0.07 5.05 ± 0.18 0.514 ± 0.018 

      
Sobservers/IFOV 1.52  ± 0.06 1.58 ± 0.07 1.42 ± 0.08 2.33 ± 0.06 2.10 ± 0.03 
SHVS/IFOV 1.91 ± 0.09 2.12 ± 0.07 1.83 ± 0.07 2.63 ± 0.09 2.23 ± 0.08 
    
Sobservers/ SHVS 0.80 ± 0.05 0.75 ± 0.04 0.78 ± 0.05 0.89 ± 0.04 0.94 ± 0.04 
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