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Abstract—The objective of a cognitive radar network is to 

optimise radar performance in the highly variable mission 

environments that current operational systems encounter, while 

minimising its interference with other systems and its 

vulnerability to countermeasures such as jamming and anti-

radiation missiles. A cognitive radar network may achieve these 

challenges by fully exploiting the available radar resources, 

sharing data among network components and taking into 

account prior environmental and situational knowledge as well 

as experience accumulated during operations. This knowledge 

can vary from high level information such as intelligence about 

the threat to low level information such as clutter maps. This 

paper presents a cognitive radar network architecture that 

supports this functionality and the application of (self)-learning 

methods. In this paper reinforcement learning is used to 

maximise the survivability of naval surface ships in a littoral 

scenario by managing the modes of an air surveillance radar. 

I. INTRODUCTION 

In the past decades there has been a growing uncertainty 

about the missions and the threat environments in which 

radars have to operate. For example, air surveillance radars 

that have been designed to detect and track low flying hostile 

aircraft and helicopters in a land environment may suddenly 

be deployed in scenarios where rockets and mortars are the 

main threat. It may take skilled personnel days or weeks to 

modify an existing air surveillance radar in such a way that it 

is (partially) capable of detecting and tracking rockets and 

mortars instead of aircraft and helicopters. If humans would 

have had radar senses, the adaptation to the new threat 

environment would have been much quicker than what is 

currently feasible with radar systems. Owing to their cognitive 

abilities, humans can quickly learn from their experiences, 

they can incorporate knowledge obtained from previous 

experiences to improve their behaviour and adapt their 

behaviour adequately to new situations. It is the objective of 

this paper to investigate how the cognitive abilities of humans 

can be implemented in artificial cognitive systems to improve 

the performance of radar systems in unexpected situations. 

Simon Haykin was the first to use the term cognitive in 

conjunction with radar [1]. According to Haykin there are 

three ingredients that are basic to the constitution of a 

cognitive radar: (i) intelligent signal processing, which builds 

on learning through interactions of the radar with the 

surrounding environment; (ii) feedback from the receiver to 

the transmitter, which is a facilitator of intelligence; and (iii) 

preservation of the information content of radar returns, which 

is realized by a Bayesian approach to target detection through 

tracking. 

Cognitive principles have already been applied to artificial 

vision systems for a considerable time. The European Union 

has established the ECVision research network to promote 

research, education, and application systems engineering in 

cognitive computer vision. According to the definition by 

David Vernon on the associated website [2], a cognitive vision 

system can achieve four levels of generic visual functionality: 

detection, localisation, recognition and understanding. 

A cognitive vision system exhibits purposive goal-directed 

behaviour, is adaptive to unforeseen changes, and can 

anticipate the occurrence of objects and events. In adddition to 

this, an artificial cognitive system should be able to explain 

what it is doing and why it is doing something [3].  

A model of an observation system with different levels of 

functionality has also been identified in the JDL
1
 model which 

is popular in the data and information fusion domain. The 

revised JDL model as defined by Steinberg and Bowman 

identifies four data fusion levels [4]: 

• Level 0 : signal assessment 

• Level 1 : object assessment 

• Level 2 : situation assessment 

• Level 3 : impact assessment 

These levels roughly correspond with the levels defined by 

Vernon for a cognitive vision system. In the same paper, 

Steinberg and Bowman also extended the JDL model to the 

management of resources at different levels. In a further 

extension of the JDL model, Llinas et al. [5] identify the need 

for co-processing of abductive, inductive and deductive 

reasoning. While deductive reasoning already plays an 

important role in radar processing, abductive reasoning (i.e. 

discovery of patterns) and inductive reasoning (i.e. 

generalisation of patterns) are not yet widely applied but are 

an essential part of the self-learning and anticipation 

capability of a cognitive system. 

                                                 
1
 JDL: Joint Directors of Laboratories is a US DoD 

government committee. The Data Fusion Group of the JDL 

created the original JDL Data Fusion Model 
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This paper presents a high level architecture of a cognitive 

radar network that allows information to be exchanged at 

various information abstraction levels and describes how 

various inference processes may be implemented in this 

architecture. The paper demonstrates how reinforcement 

learning (RL) techniques may be used to improve the 

performance of a network of air surveillance radars in a 

littoral environment. 

This paper is organised as follows. Chapter II introduces a 

model of an artificial cognitive system. Chapter III describes a 

high level architecture of a cognitive radar network and the 

different levels at which cognitive radars in a network may 

communicate. Chapter IV demonstrates how a cognitive radar 

network can be used to perform multiplatform radar 

management using RL. Finally, conclusions are drawn and  

suggestions for future work are presented. 

II. A MODEL OF AN ARTIFICIAL COGNITIVE SYSTEM 

Figure 1 shows a hierarchical model of an artificial 

cognitive system that is based on the JDL model for data 

fusion and resource management. The branch on the left-hand 

side represents the fusion of information from various sensors 

and other information sources. The end-product of this branch 

is an awareness and understanding of the situation. The branch 

on the right-hand side represents the resource management 

process that is executed as a consequence of the mission 

objectives and the situation awareness. 

 

Fig. 1  Hierarchical model of a cognitive system with an information fusion 

branch on the left-hand side and a resource management branch on the right-

hand side. At each level deductive reasoning and abductive and inductive 

reasoning may take place with the depth indicating the time and spatial 

horizon. 

At the lowest (or physical) level, analogue sensor and 

actuator front-ends interact with the environment. Sensor 

front-ends may include radar receivers, wireless 

communications receivers, cameras, microphones, 

thermometers, etc. Actuator front-ends may include radar 

transmitters, wireless communications transmitters, antenna 

drives, engines, guns, etc.  At level 0, digital sensor signals are 

processed (signal assessment) and digital actuator signals are 

generated. The estimation of object properties (e.g. location, 

velocity, and class) (object assessment) and the scheduling of 

actuator resources occur at level 1. Level 2 is involved with 

the estimation of relations between objects (situation 

assessment)  and the allocation of resources to the different 

actuators. Finally, the highest level involves the prediction of 

the impact of relations between objects (including the system 

itself) and the planning of actions to reach the mission goals. 

At each level of the cognitive system model, the following 

reasoning processes may be performed: 

• abduction: discovery of patterns and generation of 

hypotheses 

• induction: generalisation of patterns and validation of 

hypotheses 

• deduction: detection of patterns and testing of hypotheses. 

Abduction and induction are generally off-line processes 

while deduction is an on-line process. At each step in the 

model hierarchy, the scale of the spatial and temporal 

processing is roughly increasing with an order of magnitude, 

while the spatial and temporal resolution is decreasing with an 

order of magnitude. 

III. COGNITIVE RADAR NETWORK ARCHITECTURE 

This section describes, as a specific case of an artificial 

cognitive system, the architecture of a cognitive radar network. 

Figure 2 shows the architecture of a cognitive radar network 

in which two (or more) cognitive radars exchange information 

at various levels.  

 

Fig. 2  Cognitive radar network architecture with examples of communication 

networks at each level. 

At the highest level (level 3), information is exchanged 

about the current situation and the planned course of action. 

An example of a network supporting the information 

exchange at this level is TITAAN (Theatre Indepependent 

Tactical Army and Air Force Network) [8]. Deductive 

reasoning (on-line processing) at this level includes the 

evaluation of threats and in-situ radar performance prediction 

while the off-line processing (abduction and induction) may 
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involve the analysis of radar performance during the mission 

and the forecasting of the impact of the weather on the 

mission. 

At level 2, target tracks are exchanged and tasks are 

distributed to the radars in the network. Link 16 is a typical 

example of a data link at this level [9]. Deductive processing 

at this level includes the detection of hostile intent. Abductive 

and inductive processes at this level involves the analysis of 

track behaviour and RL for multiplatform radar management. 

At level 1, radar plots are exchanged and information about 

the scheduled radar frequencies and beam directions. A 

typical example of a network for the exchange of radar plot 

data is the Data Distribution System of the Cooperative 

Engagement Capability (CEC) [8]. Target tracking and 

classification are examples of deductive processing while 

adaptive tracker settings and analysis of the radar time budget 

are examples of abductive and inductive processing at this 

level. 

At level 0, digital radar signals may be distributed to 

provide a multiperspective detection, tracking and recognition 

capability. Very high data rates are required here and 

broadband data links such as the tactical common data link 

(TCDL) should be used. The detection of targets and adaptive 

beam steering are examples of deductive processing at this 

level while calibration of the receiver and transmitter front-

ends is an example of off-line processing. 

At the physical level, analogue signals such as local 

oscillators (LO) may be distributed through optical fibers.  

Matched filtering is a form of deductive processing at this 

level. Off-line processing generally does not occur at this level. 

Also, multistatic radar can be viewed as a radar network that 

exchanges radar information through EM field propagation. 

IV. COGNITIVE MULTIPLATFORM RADAR MANAGEMENT 

A. Multiplatform radar management 

In this section we use level 3 and 2 of the cognitive radar 

network architecture to prepare and support a mission with 

three ships in a littoral environment where weapons such as 

anti-ship cruise missiles (ASCM), anti-radiation missiles 

(ARM), rockets and artillery may be deployed against them. 

Each ship is fitted with an air surveillance radar and an air 

defence system. 

The air surveillance radars support a short range and a long 

range mode, see figure 3. The two surveillance modes can be 

interchanged from one 45° azimuth sector to the other. The air 

defence system consists of three weapon systems, each with 

different range. The hit probablity of the missile 

correspondingly decreases stepwise with detection range. 

As shown in Fig.3, short range mode will detect high 

missiles at medium range and with correspondingly higher hit 

probablity than long range mode. In contrast, long range mode 

will not detect high missiles hiding behind high terrain during 

launch. In varying terrain, the best choice is not obvious: a 

balanced trade-off between certain but late detection and high 

hit probability against less certain early detection and low hit 

probability must be made. 

 

Fig. 3 Vertical coverage of the long range and short range modes of a volume 

surveillance radar, and the effects of terrain on the effectiveness against 

missiles of each mode. 

Optimum combination of the defence coverage of three 

vessels in a complex littoral environment is even more 

difficult. The multiplatform radar management problem is to 

find the combination of long range and short range modes on 

board of the three ships that provides the best combined 

survivability in a littoral air defence scenario. The result could 

be of the type displayed in Fig. 4. These settings can be found 

by a self-learning technique as RL that uses vessel hit 

probability data collected during many Monte Carlo runs of 

the scenario to optimise the settings of the three radars. 

 

Fig. 4 Possible air surveillance radar mode settings as a function of azimuth 

for a three vessel mission in a littoral environment. The short-range mode is 

indicated in orange while the long-range mode is in cyan. 

B. Reinforcement learning 

RL is a form of machine learning that allows a cognitive 

system to take actions in an environment that maximizes some 

long-term reward [9,10]. RL algorithms try to find a policy 

that maps states of the world to the optimum actions the 

cognitive system should take in those states. The environment 

of the cognitive system is typically formulated as a finite-state 

Markov decision process (MDP). State transition probabilities 

and reward probabilities in the MDP are typically stochastic 

but stationary over the course of the problem. RL differs from 

supervised learning in that correct input/output pairs are not 

required, and sub-optimal actions are not explicitly corrected.  

The reinforment learning problem is formally defined with: 

discrete sets of environmental states S, and cognitive system 

actions A, and a set of scalar reward signals R. The learning 

problem consists of finding a sequence of time-dependent 

Short range mode 

Long range mode 

Mountain 

profile 

Missiles 

Ground 

profile 
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decision rules δt, t = 1,…,T, that maps the sequence of 

environmental states to a sequence of actions. A sequence of 

decision rules is known as a policy P. A policy that minimizes 

the expected sum of the direct and future costs at any time t is 

called the optimal policy P*. An optimal policy always exists 

for an MDP, and sometimes more than one exist. 

To find an optimal policy, the RL algorithm requires a 

value function that gives for every policy P and time t the 

expected sum of the direct and future costs. The value 

function used for the multiplatform radar management 

problem is the risk function as defined by Bolderheij en van 

Genderen [11]. The risk at time t is defined as:  
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where L is the number of assets, K is the number of threat 

objects, V(i) is the value of an asset i, L(i,k) is the lethality of 

threat object k against asset i, and Pocc(i,k,t) is the probability 

of threat object k reaching asset i undetected at time t. 

C. Results 

Reinforcement learning requires large numbers of 

simulations. To allow for sufficient learning runs in a 

reasonable time span, a one-vessel problem is investigated by 

fast and simple models containing the major problem 

characteristics (Fig.5). The ship follows a 9-step trajectory 

along two coast lines with fixed mountain heigths (grey). 

Attacks are uniformly distributed over azimuth and heigth, 

except for the coast where they appear only above mountains. 

The human ‘best guess’ for the radar settings chooses short 

range towards the coast and long range towards open sea. In 

contrast, the RL optimum chooses short range towards the 

coasts up to much larger distances. 

 

Fig. 5 Air surveillance radar mode settings as a function of vessel position as 

determined by a human, and as determined bij RL. 

The importance of this result is that RL provided a policy 

which is not foreseen by a human, and has better performance. 

In Fig. 6, it is shown that the RL solution outperforms the 

human solution after about 20.000 simulation runs. 

 

Fig. 6 Value function (utility) of an RL strategy as a function of vessel 

position as determined by a human, and as determined bij RL. 

V. CONCLUSIONS 

A new cognitive radar network architecture is presented 

building on the JDL model and its recent extensions, and 

incorporating cognitive capabilities. The architecture allows 

the exchange of information at different levels and examples 

of cognition are given for each level. An example of cognitive 

radar network usage for multiplatform radar management is 

given in a littoral scenario with three air surveillance radars. 

In a single vessel simulation, RL provided an unforeseen 

policy which outperforms the human policy. 

Future work will concentrate on multi-sensor networked 

cognition and the impact of cognitive capabilities at other 

architectural levels. 
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