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ABSTRACT

We show experimental results demonstrating the feasibility of an extremely fast sequential phase-diversity (SPD)
algorithm for point sources. The algorithm can be implemented on a typical adaptive optics (AO) system to
improve the wavefront reconstruction beyond the capabilities of a wavefront sensor by using the information
from the imaging camera. The algorithm is based on a small-phase approximation enabling fast numerical
implementation, and it finds the optimal wavefront correction by iteratively updating the deformable mirror.
Our experiments were made at an AO-setup with a 37 actuator membrane mirror, and the results show that
the algorithm finds an optimal image quality in 5–10 iterations, when the initial wavefront errors are typical
non-common path aberrations having a magnitude of 1–1.5 rad rms. The results are in excellent agreement with
corresponding numerical simulations.
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1. INTRODUCTION

When imaging objects through atmosphere, the turbulence distort the images. This is a common problem in
astronomical observations as well as the limiting factor in current long distance surveillance cameras. To compen-
sate this issue, both real-time techniques like adaptive optics1 and post-facto image reconstruction techniques2–4

have been extensively studied.

The problem of adaptive optics, in particular when trying to increase image resolution over large field of
views, is that the optical systems easily become complex and expensive. On the other hand, the problem with
the post-facto approaches, like phase-diversity,2, 3, 5–8 is that it is computationally extremely demanding.

In our earlier work, we have shown that the combination of AO into traditional phase-diversity techniques
offers a lot of potential in reducing the computational demands.9 An alternative approach to design inexpensive
ways to improve simple AO systems would be using the phase-diversity inspired focal-plane wavefront sensing
techniques to drive the deformable mirror. Such ideas, called sequential phase diversity (SPD), have been
proposed at a general level,10, 11 but to our knowledge no detailed implementations have been published.

In this work, we will demonstrate that the sequential phase diversity is a viable concept. As a first step,
we will concentrate on a technique working with point sources. It is described in detail in Section 2, and more
physical insight are given in our another paper.12 Section 3 describes the experimental arrangements we have
done to validate the concept, and the results are shown in Section 4. Finally, the relevance of the experiments
is discussed in Section 5.
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2. SEQUENTIAL PHASE-DIVERSITY ALGORITHM

This section describes in detail how we implement the sequential phase diversity (SPD). Our approach is based
on a modified version of the small-phase solution to phase-retrieval problem proposed by.13 Physical insight and
more details of the approach can be found in.12

When assuming that the unknown wavefront error is small enough (less than a radian WF rms), it is pos-
sible to approximate the complex amplitudes in pupil plane as a linear function of the wavefront. This linear
approximation, combined with a sequence of images with controllable WF differences, is sufficient to design a
computationally efficient algorithm that can iteratively correct the WF aberrations, using only the focal plane
images as a wavefront sensor.

Gonsalves proposed using a small-phase approximation

H = A(1 + iT ), (1)

where H is complex field at the pupil plane, i is imaginary unit, and T is the wavefront. While this expression is
a useful starting point in designing algorithms based on small-phase approximations, it gives no practical details
how to deal with the energy conservation — the normalized PSF energy should be constant and independent of
the phase.

We will show that good results can be obtained by approximating the complex amplitudes as

H = α1/2A + iAT, (2)

where α is the Strehl ratio of the intensity-normalized PSF. This approximation explicitly tells how to model
the fact that the maximum of a distorted intensity image is lower than in the diffraction limited PSF.

The approximation leads to very similar equations as in,13 enabling the phase retrieval by two successive
Fourier transforms. We use the same notations as in,13 and we denote the odd and even parts of the wavefront
T as To and Te. Respectively, the PSF (|F {H} |2) is broken to po and pe. Thus, the phase can be solved by
knowing that

y =
po

2α1/2a
≈

po

2a
(3)

and
v2 = pe − αa2 − y2, (4)

where y is the imaginary part of F {ATo}, and v is the real part of F {ATe}. We also apply regularization by
substituting the division by a by a multiplication of a/(a2 + e), where e is a sufficiently small number.

We solve the sign ambiguity in Eq. (4) by using sequential phase diversity. We update the DM state at each
iteration, and we aim to correct the WF aberrations as well as possible. Therefore, at each time step k, we know
the current and previous image (p(k), p(k − 1)) and the Fourier transforms of odd and even parts of the change
in DM shape (yd(k), vd(k)). In addition, the odd WF components in Fourier space, y(k) and y(k−1), are trivial
to obtain by using Eq. (3).

Then, we assume that the following relations hold for the even image components,

pe(k − 1) = α(k − 1)a2 + [y(k) + yd(k)]
2

+ [v(k) + vd(k)]
2
, (5)

pe(k) = α(k)a2 + y(k)2 + v(k)2. (6)

It is seen that the pe is dominated by a large term αa2, and even slight errors in determining the correct value of
α will have a big impact when computing the difference between pe(k − 1) and pe(k). Therefore, we scale their
values to an equal maximum value (max{a2}), and we assume the first terms in Eqs. (5) and (6) cancel each
other in subtraction. This permits us to estimate the signs of v as

s(k) = sign

{

vd

vd(k)2 + e

[

max{a2}

[

pe(k)

max{pe(k)}
−

pe(k − 1)

max{pe(k − 1)}

]

− yd(k)2 − 2y(k)yd(k) − vd(k)2
]}

. (7)
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Then, the computation of even WF components at iteration k is done using Eq. (4),

v(k) = s(k)
[
∣

∣pe(k) − αa2 − y(k)2
∣

∣

]1/2
, (8)

where the absolute values are introduced to avoid problems with small numeric errors.

At the first iteration, Eq. (7) cannot be used, so we use the signs of non-perturbed complex amplitudes in
image plane (s(1) = sign {a}).

As soon as the y(k) and v(k) are obtained, we take Fourier transforms to obtain ATo and ATe. To avoid
noise propagation, we apply here low-pass filtering using Gaussian windows with a size of 194× 194. This is not
necessarily an optimal size, but it gives sufficiently robust performance.

Then, we apply WF correction, using DM, to compensate exactly this amount of wavefront error. It appears
that the WF estimates produced this way are somewhat underestimated, so it is not necessary to reduce the
loop gains used in the feedback loop to avoid over-shoot and stability issues. The underestimation is not severe,
and it gets compensated in closed-loop operation.

The major computational requirements in the WF reconstruction come from the Fourier transforms. Two
FFTs are needed to obtain ATo and ATe, and, in addition, one FFT is needed to transform applied WF change
from phase space to yd and vd. Besides of the FFTs, also additional algebraic operations are needed to transform
the phase into DM actuator commands.

3. EXPERIMENTAL SETUP

This section describes the experiments we have conducted to validate the algorithm described in the previous
section.

We use a standard, pre-aligned, adaptive optics kit from Okotech.14 The setup contains a monochromatic
light source, 37-actuator membrane mirror, Shack-Hartman wavefront sensor and an imaging camera. The details
are shown in table 1.

We investigated the beam quality in the setup by looking at the amplitudes of the SH-WFS spots. It appears
the beam has approximately a Gaussian shape, the center is shifted about 30×30% from the on-axis position, and
the amplitudes at the edges are about 30–60% of the maximum intensity. However, we have made no attempts
to take this into account in the simulations or SPD implementation.

At first, we use both the WFS and DM to calibrate the system to be able to accurately introduce arbitrary
wavefront shapes with the mirror. We estimate actuator influence functions using the WFS, and then create
mirror modes that are best fits to the Karhunen-Loeve modes15 computed by yao.16 To avoid noise propagation
and excessive fitting errors, we restrict our controlled modes to the 20 lowest order mirror modes.

The details of these procedures can be found in numerous references, for instance.1, 17, 18

The SPD algorithm has then been then tested by only using the focal plane camera images to compute the
iterative WF corrections.

Since the DM can correct only a very limited amount of WF stroke, we decided not to make any tip/tilt
(TT) correction by the mirror. Instead, we change the clipping of the image array: at each iteration, we choose
an array of 128 × 128 pixels having the center-of-gravity of measured PSF in the middle. This clipped array is
then fed to the SPD computation.

In the SPD computations, we model the pupil and phase by arrays of 128× 128 pixels. The pupil is assumed
to be circular and having a perfect top-hat shape. To obtain the correct PSF pixel scale, we are using FFT
arrays of 388 × 388 pixels.
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Table 1. Parameters of experimental setup

DM 15 mm OKO Mirror
DM type micro-machined membrane
number of actuators 37
controlled mirror modes 20

WFS Shack-Hartmann
subaperture geometry hexagonal
active sub-apertures 121
subaperture size 50 pix (diameter)
subaperture spot size 10 pix (FWHM)

Light source monochromatic laser diode
wavelength 633 nm

imaging camera Basler piA640-210gm
image resolution 640×480
Pixel Size 7.4 µm
Pixel Bit Depth 12 bits
Perfect PSF FWHM 3.0 pix

4. RESULTS

The algorithm performance, throughout this section, is measured by estimating the Strehl ratio as a function of
iteration. Due to ease of implementation, the Strehl estimation is done by pure maximum comparison of intensity
images normalized to same energy. Although the images are cut to a small size (32 × 32 pixels) containing the
PSF core, it is known that this estimation is prone to errors of approximately 2–10%.19 However, the given
Strehl values work perfectly as indicative performance measure.

Throughout this section, we consider the performance in six selected noise cases to study the algorithm’s
robustness. We select three different exposure times, and for each exposure time we consider two cases: a single
exposure and an average of 32 images. Each case results in different noise levels, but essentially all are limited
by the CCD read-out noise and the dynamic range of the camera. Therefore, we will report the noise simply as
the relative rms value of the maximum image intensity. Those values are enumerated in Table 2.

Table 2. Log relative noise rms values

exposure → max intensity 1 image 32 images

400 → 1300 -2.3 -2.9
750 → 2400 -2.6 -3.1
1100 → 3600 -2.7 -3.3

The values shown in Table 2 (averaged maximum image intensity and relative noise rms with respect to
the maximum intensity) are estimated from the measurements at the AO kit. We have used those values to
determine the noise statistics in our simulations. All the simulations shown in this section are made with both
photon-shot noise following Poisson distribution, as well as with additive Gaussian read-out noise.

4.1 Comparison of SPD algorithms

At first, we compare the expected performances of two types of SPD implementations. We test two ways to
normalize the PSF in the used approximations. The first case is done is discussed in Section 2. In second
case, we assume the measured PSF is normalized to the same energy as diffraction limited PSF, but no Strehl
normalization is done (the value of α in Eq. (2) is assumed to be unity).
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We run simulations with parameters identical to the system discussed in Section 3 (static system, SPD is
used to calibrate non-common path aberrations). We assume that the initial WF rms error is 1.2 rad, and it is
corrected iteratively by SPD. We test two cases: relative noise rms (ratio of the maximum intensity) is 10−2.7

and 10−3.4. For each case, we do 8 identical simulation realizations. The results are shown in Fig. 1.
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Figure 1. Comparison of SPD algorithms with and without Strehl normalization: Strehl ratio as a function of iteration.
Dots show the simulated data points, lines are fits of sigmoid functions. 8 simulation runs are done for each set of
parameters.

It is seen that normalizing the Strehl in SPD computations improves the performance. In the high-noise case,
the mean of final converged Strehl increases from ∼0.74 to ∼0.88, and also robustness improves: the converged
Strehl ratios vary within [0.80, 0.94] instead of [0.50, 0.90]. In addition, the algorithm converges almost 2 times
faster. In the high-noise case the mean improves 2.5% and speed in convergence is still at least 30%.

4.2 Limiting factors in SPD performance

Next, we show the SPD results recorded by the optical setup.

At first, the deformable mirror is set to an initial condition by setting the actuator voltages to approximately
at the middle of their operating range, and we align the optical components to optimize the image quality at
the imaging camera. The wavefront sensor is calibrated to have this as a reference position. At our setup, this
results in non-common path aberration errors that we estimate to be approximately 1.2 rad rms. Then, SPD is
used to calibrate these errors.

We tried to reach the best performance that the SPD can reach at our AO setup, so we have used the low-noise
case: highest possible exposure time, and each image fed to SPD is an average of 32 single-exposure images.
Fig. 2 shows the five first images we recorded, and it is seen that five iterations are sufficient to dramatically
improve the Strehl ratio: it increases from 0.30 to 0.80.

Strehl = 0.3 Strehl = 0.36 Strehl = 0.66 Strehl = 0.79 Strehl = 0.8

Figure 2. An example of the convergence with the sequential phase-diversity imaging. Relative noise rms is 10−7.5. 1st
image shows the non-common path aberrations, and the last shows the image after 5 iterations.

We also wanted to compare the measured final image to simulations. We assumed that the WF rms error
at uncorrectable high spatial frequencies is 0.36 rad (randomly distributed on 96 Zernike modes), and run the
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SPD algorithm on simulated images having the same noise level. Fig. 3 shows the resulting images, that can be
obtained after about 6–9 iterations.

Measured, Strehl 0.86

Simulated, Strehl 0.86
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Figure 3. Examples of final image quality. Relative noise rms is 10−7.5. Upper right: measured intensity image (nonlinear
scale). Upper left: simulated image. Lower: comparison of radial profiles.

Visual inspection shows that first diffraction ring is fully visible (although a bit clumpy), and the fragments
of the second ring can be seen, in particular in the measured image. Both simulation and measured image have
the same Strehl ratio of 0.86, but clearly different features can be seen to cause the errors.

In the simulated image, almost all of the remaining errors are at the high spatial frequencies that are not
corrected by mirror modes. In the measured image, an unknown amount of errors is left in the correctable space.
This could explain that the rings seem more smooth in the measurement. Besides, we believe the brighter blobs
around the second ring of the recorded image could be ghost reflections from the beam splitter and/or reflected
light from other parts of the optics.

To further investigate the limitations at our AO setup, we studied the final image quality as a function of
the noise level. We compared the Strehl estimates of the recorded images to similarly computed estimates from
simulations where the uncorrectable component of high spatial frequencies have 0.34, 0.36 and 0.40 rad rms WF
error. The results are shown in Fig. 4.

It is seen that the measured Strehl can be increased by reducing the relative noise rms until about 10−2.6,
and lower noise levels are not improving the results. The simulations predict that an increase of 3% should
still be possible, and we conclude that the limiting factors are systematic errors that can be difficult to reduce:
estimation errors caused by light reflected from other components and modeling errors (e.g, sensor pixels scale
and diffraction limited PSF).

In addition, we see that the Strehl ratios estimated from the measurements vary much more than the simulated
ones: their standard deviation is ∼10 times higher. This issue is discussed in more detail in the following section.

Since we cannot accurately determine the estimation error at the controllable lower spatial frequencies, it is
neither possible to estimate the error at higher spatial frequencies. Based on the simulations show in Fig. 4, we
believe it to be between 0.34 and 0.40 rad rms. In the following, the value of 0.36 rad is used.
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Figure 4. Final Strehl ratio as a function of relative noise rms. The noise rms is shown as ratio of the maximum image
intensity.

4.3 SPD convergence properties

Next, we study in more detail the convergence properties of the SPD algorithm. We consider three cases, where
the initial correctable WF error is 1.2, 1.5 and 1.9 rad rms. In the first case, all the errors are caused by the
non-common path aberrations, and the two latter cases have additional aberrations introduced by the deformable
mirror.

Fig. 5 shows the estimated Strehl ratios of the first 100 iterations in the selected cases.

It can be seen that the estimated Strehl ratios from both measured and simulated data sets agree very well.
The SPD algorithm converges to the Strehl ratio of 0.85. The convergence takes about 5 iterations at initial
aberrations of 1.2 rad and about two times longer with initial aberrations of 1.5 rad. When the initial aberrations
are made larger, the algorithm starts to fail since the used approximation in Eq. (2) is no longer valid.

Fig. 5 also shows the same effect seen earlier in Fig. 4: the variance of the mean converged Strehl ratios is
much larger in the measured data compared to the simulations. It is seen that the noise-induced Strehl variations
within each individual SPD runs are almost identical, and therefore the errors in noise modeling do not explain
the difference in the converged Strehl ratios.

Instead, most of the larger variations can be explained by errors in tip/tilt correction. As we do not correct
tip/tilt by the deformable mirror (but instead change the clipping region), we do introduce an effect that the
SPD WF reconstruction sees as a TT error. The recorded data shows that the location of the clipping array gets
fixed after a few iterations, and it will not change at the later iterations. However, the clipping location has a
±2 pixel variation between the different SPD runs. This explains the variation in converged Strehl values. The
residual TT will distort the SPD WF reconstruction and introduces a decrease in the estimated Strehl ratio.
The reasons for the different convergence patterns need to be investigated further, but we believe that improved
TT correction would fully eliminate the clipping issue.

As also seen in Fig. 5, the algorithm stability is compromised when the initial WF aberrations are increased
to 1.9 rad rms. Fig. 5 shows only the case at one noise level, and the fail rates at all noise levels, based on 8
SPD run on identical parameters, are enumerated in Table 3.

The table shows that the simulations fail 2–4 times more often than the experiments on our AO setup, which
could be explained by the inaccuracies in determining the actual initial WF aberrations. In addition, it is seen
that the measured SPD runs are 2–3 times more likely to fail at the low-noise compared to the medium-noise
cases. This could be explained by the control issues in the feed-back loop. We are using a constant loop-gain

Proc. of SPIE Vol. 8447  84475Z-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/24/2013 Terms of Use: http://spiedl.org/terms



0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

iteration

S
tre

hl
 ra

tio
measured

 

 

1.2
1.5
1.9

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

iteration

S
tre

hl
 ra

tio

simulated

 

 

1.2
1.5
1.9

Figure 5. Illustration of algorithm convergence properties: Strehl ratio as a function of iteration. Relative noise rms is
10−2.9. Colors show the initial wavefront rms error (1.2, 1.5, 1.9 or 2.1 rad). Points show individual estimations and
lines are fits to a sigmoid function. Eight different realization runs are done. Upper plot: measured data. Lower plot:
simulated data.
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Table 3. SPD fail rates with initial aberration of 1.9 rad rms

noise -3.3 -3.1 -2.9 -2.7 -2.6 -2.3

measured 0.62 0.38 0.38 0.25 0.12 1
simulated 0.88 1 0.75 0.88 0.88 0.75

of one, and we are not optimizing our phase reconstruction by taking into account that the noise will effectively
decrease the magnitude of the reconstruction leading to underestimation. A sensitivity correction, similar to the
one proposed in,20 could perhaps be used to further improve the performance.

A similar drop in performance is seen when we study the number of required iterations that is needed to
reach the convergence. We define the convergence to be the point where a sigmoid function fit to estimated
Strehl ratios reaches 95% of the maximum value of the fit. These convergence iterations are shown in Fig. 6 as
a function of noise level.

Figure 6. Number of required convergence iterations as a function of noise level. Colors show the initial wavefront rms
error (1.2, 1.5, 1.9 or 2.1 rad). Line plots are from measured data, filled areas show the simulation results.

Both measurements and simulations show that as long as the relative noise level is lower than 10−2.9–10−2.7,
the SPD algorithm performs optimally when the initial WF aberrations are 1.2 or 1.5 rad rms. 4–6 iterations are
needed in the former case and 8–18 iterations in the latter case. If the amount of noise is increased to 10−2.1, it
can be necessary to iterate 2–3 times longer. If the amount of the initial aberrations is 1.9 rad rms, it is necessary
to make 18–60 iterations, depending on the noise level, to reach the final Strehl ratio.
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In addition, it is seen — similarly to Table 3 — that the performance is optimal at medium instead of lowest
noise levels. Again, we believe this can be explained by the non-optimal control tuning of the feedback loop.

5. CONCLUSIONS

We have described in detail a sequential phase-diversity algorithm, and we studied its properties in simulations
and actual experiments. The described SPD algorithm is computationally efficient — only three FFTs (and
a few additional pixel-wise algebraic operations) are required to transfer the measured intensity images to the
wavefront.

The algorithm converges from 1.2 rad WF rms error to the optical performance limit in about 4–6 iterations,
which is comparable to the performance that a sensitive and non-linear pyramid wavefront sensor would give
in similar conditions.20 If we assume that an existing AO system can deliver a residual wavefront with 1.5 rad
rms error, we could easily boost its performance by implementing the SPD algorithm to further correct the
turbulence in real-time. This would be possible by using the current off-the-shelf hardware.

To our knowledge, this is the first time, when a complete and well-documented demonstration of fast focal-
plane sensing algorithm has been published at this extent.

We have shown that the algorithm works well, and it is robust to correct typical non-common path aberrations
at a simple low-order adaptive optics system. The algorithm corrects well 20 lowest mirror modes (being best
least squares fits to Karhunen-Loeve modes) at noise levels where the rms of the additive read-out noise is less
than 0.1% of the maximum intensity. This is easily achievable with current camera technology.

However, a few additional and challenging steps are still needed to bring the technology to the point where
its performance at a wider range of applications is ultimately demonstrated. At least the following crucial points
still needs to be addressed.

1. The algorithm works only at point sources. We plan to study options to apply deconvolution and iterative
techniques to extend the technique also for extended sources.

2. The algorithm works only with monochromatic sources. It is necessary to study options how to deal with
the PSF blurring that is caused by polychromatic light.

3. Optimization of the feedback loop has to be addressed. To get the best performance with SPD, it is
necessary to put attention on the control issues. At least the following parameters have to be optimized:
loop gains when applying the DM correction, regularization coefficient e (in the inversion to compute y),
low-pass filtering window size (when computing ATo and ATe) and possibly also the approximation type
(either H = α1/2A + iAT or H = α1/2A(1 + iT )).

In addition, it is can also be necessary to pay attention to the issue of phase-to-actuator mapping. We need
to find an efficient way to solve the relationship between wavefront shape and actuator commands to actually
correct the distorting phase. This issue becomes more important when the number of actuators is increased and
the actuators have strong cross-couplings.
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