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Abstract. We present a new method to derive a multiscale urban camou-
flage pattern from a given set of background image samples. We applied
this method to design a camouflage pattern for a given (semi-arid) urban
environment. We performed a human visual search experiment and a
computational evaluation study to assess the effectiveness of this multi-
scale camouflage pattern relative to the performance of 10 other (multi-
scale, disruptive and monotonous) patterns that were also designed for
deployment in the same operating theater. The results show that the pat-
tern combines the overall lowest detection probability with an average
mean search time. We also show that a frequency-tuned saliency metric
predicts human observer performance to an appreciable extent. This com-
putational metric can therefore be incorporated in the design process to
optimize the effectiveness of camouflage patterns derived from a set of
background samples. © 2012 Society of Photo-Optical Instrumentation Engineers
(SPIE). [DOI: 10.1117/1.OE.52.4.041103]
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1 Introduction
There is currently a renewed interest in the design and eva-
luation of improved personal camouflage.1–5 Traditionally
camouflage design was (and still is) largely based on intui-
tion and aesthetics, and was performed by industrial
designers and (especially in the beginning) by artists6

(incl. cubists such as Georges Braque).7,8 The design princi-
ples were often inspired by nature and based on biological
principles such as blending and disruption.9–11

More recently, scientific studies into the statistics of nat-
ural images, texture, visual perception and psychology12

have entered the design process. As a result, it is now com-
monly acknowledged that effective camouflage patterns
should contain details at multiple spatial scales (i.e., they
should consist of both micro- and macropatterns), and should
be similar in composition to natural images. Various camou-
flage patterns have been developed for a range of different
theaters, such as woodland, jungle, desert, and arctic.13 Cur-
rent camouflage design follows two different trends. One
trend is towards “universal” designs (such as the Army Com-
bat Uniform of the U.S. Army) that perform well in a wide
range of environments.13 Another trend is towards more spe-
cialized designs, such as an individual design for urban
environments (e.g., the Canadian Urban Environment Pattern
which is currently under investigation). A universal pattern
will most likely perform less well than a pattern that has been
specifically designed for the environment in which it is
deployed (like specialized patterns used for hunting, e.g.,
www.mossyoak.com). The challenge is therefore to design
a pattern that is near-optimal for a variety of environments.

Urban environments differ largely from other theaters,
both in their visual aspects and functional requirements.
A specialized urban camouflage design may therefore

outperform the more traditional patterns that were primarily
designed for deployment in rural environments. Camouflage
requirements for urban areas present a different challenge
from those of natural environments like woodland or desert
terrains. In urban combat, the tactical ranges are much closer
than in woodland or desert warfare (over the last years the
mean engagement distance has decreased to about 40 m).
This suggests the need for camouflage designs with smaller
macro patterns (i.e., patterns that resemble their background
at closer viewing distances). Another common assumption is
that urban backgrounds require camouflage schemes with
vertical and horizontal straight edges, in combination with
large macro patterns that mimic the pattern of the buildings
and other man-made objects. Whereas natural environments
display details at a wide range of scales (their spatial struc-
ture is approximately independent of the viewing distance),14

man-made environments basically contain elements at two
distinct scales (consisting of large structures and small
details, and not much significant structure in between). As
a result, multiscale and disruptive patterns may be less effec-
tive when viewed against contrasting areas of solid color like
walls or pavement, and low contrast or uniform patterns may
perform better in urban environments. These assumptions
about optimal urban camouflage were evaluated in this
study by comparing the relative performance of camouflage
patterns that differ widely in their structure.

In the rest of this paper, we first present a new method for
the construction of a multiscale camouflage pattern from a
given set of background image samples. This method can
be used both to create specialized camouflage designs (by
using a set of background image samples from a single thea-
ter, e.g., an urban environment) and multitheater designs (by
using a set of background image samples from a variety of
theaters). Then we show how the method was applied to
derive a camouflage pattern for a semi-arid urban area
(designated by NATO SCI-157). Finally we present the0091-3286/2012/$25.00 © 2012 SPIE
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results of psychophysical (search) and computational (sal-
iency metric) comparative evaluation studies that were per-
formed to assess the effectiveness of the TNO multiscale
camouflage pattern relative to that of 10 other (multiscale,
disruptive, and monotonous) patterns that were also espe-
cially designed for the same area (by other members of
the NATO SCI-157 group).15

2 Camouflage Patterns
In this section, we present the TNO method for deriving a
multiscale camouflage pattern from a given set of (character-
istic) background images. We also briefly describe the other
camouflage patterns that were used in this study, that were
designed by other members of NATO SCI-157.

2.1 Test Site and Color Selection

The test site used in this study was Fort Huachuca, a small
town in a semiarid environment (southeast Arizona, United
States; Fig. 1).

The aim of this study was to assess the camouflaging
properties of different spatial patterns, not to compare the
effectiveness of different colors. Therefore, all patterns
investigated in this study used the same set of 4 colors
(Fig. 2). These colors were derived from the analysis
of a collection of images representing various characteristic
locations in the test environment, and from on-site color
measurements.

Shape-disruptive patterns require bright and dark colors to
create an appreciable luminance contrast. A dark color (right-
most color in Fig. 2) was therefore derived from a collection
of shaded background images, while a bright color (leftmost
color in Fig. 2) was derived from a set of images representing
sunlit stone walls. The two remaining colors have a medium
brightness. A neutral gray color (second from left in Fig. 2)
of medium brightness was included since this occurs most
frequently in an urban environment (concrete, stones, streets,
grayish shadows, etc.). Finally, a mean representative back-
ground color of medium brightness (third from left in Fig. 2)
was computed from the overall set of images of the test site.

2.2 TNO Multiscale Pattern

2.2.1 Texture selection

Natural images generally contain elements of all sizes, with
larger elements occurring less frequently. The spatial struc-
ture of natural images shows the same statistical behavior as
fractals (the power in spatial frequency decreases with one
over the frequency).15 Fractals are images in which the
appearance essentially doesn’t change when zooming in.
We choose to use a similar texture, with a fractal nature.
The advantage of such a texture is that it contains elements
of various sizes. Thus, for each background there will be pat-
tern elements that match the size of the background ele-
ments. The apparent size of relevant details in a scene
with camouflage depends on the distance from the observer
to both the camouflage pattern itself and to its local back-
ground pattern. For instance, when a camouflaged person
stands right in front of a brick wall, the best camouflage pat-
tern will be one that contains brick-like elements of the same
size as the bricks in the wall. However, when the brick wall is
farther away in the distance, the brick-like elements in the
camouflage pattern should be smaller to match the angular
size of the bricks in the background. By choosing a fractal
structure, we ensure that the camouflage pattern will always
contain elements that match the size of the background
details.

Most existing camouflage patterns contain a dominant
direction (i.e., contain elongated elements). For scenes
with unrestricted viewing distance, this may have some
value, since the perspective effect transforms circular patches
on the ground into ellipses. However, in urban environments
viewing distances are severely restricted by many objects
that block the view (e.g., cars, trees, houses). Furthermore,
older camouflage patterns have been designed for use in a
fixed orientation (i.e., an upright position of the person wear-
ing the camouflage pattern). Such directional patterns will no
longer match the background when they are used in a differ-
ent orientation (e.g., when a person lies down on the ground).
Therefore, we chose to use a pattern without a dominant
direction. To this end, we constructed a colored fractal tex-
ture pattern with a power spectrum that falls off with one
over the spatial frequency (1∕f) in both the hue, saturation

Fig. 1 Some typical views of the test site (Fort Huachuca, Arizona,
United States).
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and value (HSV) signals [i.e., in perceptually de-correlated
color space; see Fig. 3(b)]. This was done by filling each
channel with a Gaussian white noise image that had been
filtered in the Fourier domain to produce an image with a
1∕f natural slope amplitude spectrum.

2.2.2 Color selection

A collage was constructed of background samples that were
characteristic for the test site [Fig. 3(a)], and its color distri-
bution was transferred to a 1∕f fractal color texture pattern
as follows. First, both the background sample collage
[Fig. 3(a)] and the fractal texture [Fig. 3(b)] were trans-
formed to indexed images using 16 colors and standard
indexing techniques.* The 16 entries in the color map of
the collage and the colored fractal image (shown as insets
on the right sides of these images in Fig. 3) were ordered
in accordance of occurrence. Next, the entries in the color
lookup table of the fractal image were replaced by those
belonging to the collage (i.e., their respective color tables
were swapped), to create a fractal texture with a color dis-
tribution that is similar to that of the collage. In the last
step, this pattern was approximated by a pattern containing
the four colors derived by NATO SCI-157 (Fig. 2). This was
done by first representing the fractal texture image (now con-
taining 16 colors) as an RGB image, and then transforming it
to an indexed image representation (using standard dithering
techniques) containing only the four prescribed colors.

2.3 NATO SCI-157 Patterns

Members of the NATO SCI-157 group designed different
camouflage patterns for a comparative evaluation test in
the Fort Huachuca urban area. These camouflage patterns
were printed on cloth that was then used to sew suits. Figure 4
shows the 11 uniforms that were used in the test. Suit 1 is a
plain beige suit and suit 11 is an in-service (semi-arid) suit
designed for deployment in arid conditions. Both of these
suits were included for reference purposes. The rationale
for including a plain (monotone, sandy) suit in the test is
that all patterns look monochrome when seen from a suffi-
cient distance, and brightness is the only distinctive cue.
Suits 2 through 10 were all designed by members of SCI-
157 and consist of the same four dominant colors that
were derived from imagery of the Fort Huachuca area and
from on-site color measurements (Fig. 2). Suits 2 and 3
were designed to explore the prospect of shape disruption.
Suits 4 through 10 are adorned with micropatterns that
were synthesized with different techniques. Suite 9 is

adorned with the TNO test pattern that was constructed
according to the procedure described in Sec. 2.2 [Fig. 3(d)].
Suits 4 and 10 were designed to have, respectively a rela-
tively high and low overall luminance value.

2.4 Test Imagery

Panoramic digital color images were registered of a manne-
quin wearing each of the 11 different camouflage suits
(see Sec. 2.3) on each of 36 different selected locations in
the Fort Huachuca background (target scenes: Fig. 5). The
same locations were also registered without a person present
(empty scenes).

3 Visual Search Experiment
We performed a visual search experiment using digital
images of the target and empty scenes registered at all 36
different locations in the Fort Huachuca background. A
total of 11 subjects participated in the experiment. A PC
was used to control the presentation of the stimuli and to
register the response of the participants. The setup was
placed in a dimly lit room. Participants were comfortable
seated at a distance of 40 cm behind a PC monitor (a
30-in. LCD screen, 75 Hz). The images were presented
with resolution of 2560 × 700 pixels. In each trial, either
a target or an empty scene was shown. The participant’s

Fig. 3 (a) Representative set of background samples with the 16 pri-
mary colors shown on the right. (b) Fractal color texture. (c) Pattern
obtained by swapping the color tables of (a) and (b). (d) Dithered
representation of (c) using only 4 colors.

Fig. 2 The 11 different suits that were evaluated in this study. Suit number 9 is the TNO design.

*The pixels in an indexed image do not contain RGB values but entries
(values ranging from 0 to 15 in this case) to a color lookup table containing
RGB values.
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task was first to decide whether the image contained a target
and second, to indicate the target location as quickly as pos-
sible after the onset of the image presentation by clicking the
mouse on the target as soon as the target was detected. When
the participant did not find a target, he/she could indicate that
no target was present by clicking on a square in the bottom-
right corner of the screen. The computer registered the
response time and the position of the mouse cursor on the
screen (indicating either the location of the target or a “no
target present” response) when the participant clicked the
mouse button in response. Each subject participated in
one session in which 36 target scenes and 36 empty scenes
were shown. The subject was informed that there was a 50%
chance that an image contained a target. Corresponding
target and empty scenes (i.e., images of the same location
either with or without a target) were shown mirror-reversed,
to prevent possible recognition of the scene. The 396
target-location scenes (11 camouflage patterns × 36 locations)
were randomly divided into 11 sets of 36 scenes, such that

each set showed each location only once. Each of the 11
observers viewed one set in a single session.

4 Frequency-Tuned Saliency
Human visual fixation behavior is driven both by sensorial
bottom-up mechanisms16,17 and by higher order task-specific
or goal-directed top-down mechanisms.18,19 Visual saliency
refers to the physical, bottom-up distinctness of image
details.20 It is a relative property that depends on the degree
to which a detail is visually distinct from its background.21

Visual saliency is believed to drive human fixation behavior
during free viewing by attracting visual attention in a
bottom-up way.22 As such, it is an important factor in our
everyday functioning. Human observer studies have indeed
shown that saliency can be a strong predictor of attention
and gaze allocation during free viewing, both for static
scenes23–25 and for dynamic scenes.26 Moreover, saliency
also appears to determine which details humans find inter-
esting in visual scenes.27

Based on the notion that being a local outlier makes a
point salient, Koch and Ullman17 introduced the concept
of a saliency map, which is a two-dimensional topographic
representation of saliency for each pixel in an image. Over
the past decade, many different algorithms have been pro-
posed to compute visual saliency maps from digital ima-
gery.17,28–47 These algorithms typically transform a given
input image into a scalar-valued map in which local signal

Fig. 5 The 36 different target locations, each showing a mannequin dressed in one of the 11 different camouflage suits as an example.

Fig. 4 The set of 4 colors used in the construction of all camouflage
patterns investigated in this study.
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intensity corresponds to local image saliency.33,45 In an
extensive comparative evaluation study48 we recently estab-
lished that the maximum value over the target support
computed by Achanta’s Frequency Tuned Saliency
model45 is currently the best saliency-based predictor of
human visual search and detection performance in complex
realistic scenarios.

Achanta et al.45 compute bottom-up image saliency as
local multiscale color and luminance feature contrast. The
underlying hypothesis of this approach is that human fixation
is driven by local center-surround feature contrast.

First, the input sRGB image I is transformed to CIE Lab
color space. Then, the scalar frequency-tuned saliency (FTS)
map S for image I is computed as

Sðx; yÞ ¼ kIμ − Iωhc
k; (1)

where Iμ is the arithmetic mean image feature vector;
Iωhc

equals a Gaussian blurred version of the original
image, using a 5 × 5 separable binomial kernel; kk equals
the L2 norm (Euclidian distance); and x; y represent the
pixel coordinates.

Blurring with a 5 × 5 Gaussian kernel serves to eliminate
noise and fine texture details from the original image, while
still retaining a sufficient amount of high frequency details.
We use 1

16
½1; 4; 6; 4; 1� giving ωhc ¼ π∕2.75. The mean

image feature vector corresponds to blurring with a Gaussian
of infinite extent. The difference Iμ − Iωhc

effectively repre-
sents the output of a range of bandpass (DoG) filters at sev-
eral image scales. Since the norm of the difference is used,
only the magnitude of the local differences contributes to the
saliency of the image detail.

We computed the maximum of frequency-tuned saliency
value over the target support for each of the target scenes
used in this study as follows. First we constructed target
masks (binary images representing the target support area)
for all target scenes (i.e., all 11 different camouflage suits
on each of the 36 different locations in the Fort Huachuca
background), by manually segmenting the images using
Photoshop CS5. Then we applied Eq. (1) to compute a sal-
iency map for each target scene, and we computed the max-
imal saliency value over the target support using the
corresponding binary mask. Finally, we computed the
mean of the maximal saliency value over all 36 tested loca-
tions for each of the 11 patterns.

5 Results

5.1 Human Observer Performance

The results of the visual search experiment enable the quan-
tification of camouflage performance in terms of search time
(mean time required to find a target) and detection probabil-
ity (fraction of trials in which the target is actually found).
Figure 6 presents the detection probability and the mean
search time for the 11 camouflage patterns tested in this
study. The overall false alarm rate was quite low (about 7%).

Effective camouflage performance should combine long
search times with a low detection probability (lower right
hand corner in Fig. 6). Figure 6 shows that patterns 1, 8,
9, and 11 perform well in the sense that they have a low
detection probability. Patterns 1, 8 and 11 show good perfor-
mance in the sense that they combine relatively long search
times with relatively low detection probabilities. Pattern 11

(the in-service semi-arid suit) yields the overall longest
search time, while the fractal pattern 9 has the overall lowest
detection probability. Pattern 1 (monotone plain beige suit)
yields the second longest search time. Patterns 2, 3 and 4
show relatively low performance in the sense that they com-
bine relatively short search times with relatively high detec-
tion probabilities.

The overall score of the camouflage patterns will depend
on the weight attributed to each of the two performance mea-
sures (mean search time and detection probability). However,
it is evident that the weight assigned to detection probability
should be relatively high. We therefore conclude that TNO
pattern 9 performs well since it combines the lowest detec-
tion probability with an intermediate search time.

5.2 Computational Saliency

Figures 7 and 8 show, respectively the detection probability
and the mean search time as a function of the maximum of
the FTS saliency value over the target support.

It appears that both detection probability and the mean
search time correlate strongly with the maximal FTS saliency
value over the target support, with a one-tailed Pearson

Fig. 6 Detection probability (%; standard error about 0.05) versus
mean search time (s; standard error about 0.5) for each of the 11
camouflage patterns tested.

Fig. 7 Detection probability (%) as a function of the maximum of the
FTS saliency value (-) over the target support. The line represents the
result of a linear best fit to the data (R2 ¼ 0.56).
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correlation of r ¼ 75 and r ¼ 80, respectively (both signifi-
cant at the 0.01 level). Since r2 ¼ 56 and 64, respectively,
both measures explain about 60% of the original variance.
Hence, the FTS saliency metric appears to predict human
observer performance in a visual search and detection task
with camouflaged targets to an appreciable extent.

6 Discussion and Conclusions
We presented the efficient TNO method to design a dedi-
cated multiscale camouflage pattern from a given set of char-
acteristic background image samples, and used this method
to construct a camouflage pattern for a semi-arid urban area.
We evaluated the camouflage effectiveness of the resulting
pattern relative to 10 other specially designed patterns,
both through a human visual search experiment and through
a computational saliency metric.

The camouflage performance measures resulting from the
visual search experiments were the fraction of locations in
which the target was detected and the average search time
over trials in which the targets were detected. These metrics
allowed us to distinguish between good (patterns 1, 8, 9, 11
in Fig. 4), medium (patterns 5, 6, 10) and poorly performing
patterns (2, 3, 4, 7). The pattern based on the design method
presented here (pattern number 9) combined the overall low-
est detection probability with an intermediate search time,
indicating that the TNO design method can produce effective
camouflage patterns.

Interestingly, some common assumptions regarding char-
acteristics that are essential for urban camouflage patterns
were not confirmed in this study. It is often assumed that
urban camouflage designs require large macropatterns
with horizontal and vertical edges to blend in with an
urban environment. However, our present results show
that shape disruptive designs with large macropatterns (pat-
terns 2 and 3 in Fig. 4) did not outperform designs with small
micropatterns (Fig. 6). Also, the assumption that an effective
urban pattern should contain vertical and horizontal elements
is not confirmed. This also questions the need for a camou-
flage pattern customized for a particular urban environ-
ment. Instead, our study suggests that general purpose arid
patterns may provide good camouflage also in urban arid
environments.

It is well known that visual targets that are similar to their
local background or to details in other parts of the scene are
harder to find than targets that are highly distinct or conspic-
uous. Hence, visual target conspicuity also depends on the
amount of detail and the structural composition of a
scene.49–51 A target is generally less conspicuous when it
is placed in an area with more detail or when it is structurally
similar to its background. It appears that detection perfor-
mance depends to a large degree on the energy contrast
between a target and its local background, whereas recogni-
tion depends mainly on the structural dissimilarity between a
target and its surround.52,53 This obscuring effect, which is
generally known as clutter, determines human visual search
and detection performance to a large extent. For complex
scenes, the spatial relationships (shape and relative location)
of features in an image can have a greater effect on detection
than the relative luminance of the features.54 Many attempts
have been made to quantify the effects of clutter by means of
digital clutter metrics. However, the concept of clutter is
inherently elusive, and attempts to model it have only
been partly successful.54–68

The present results indicate that the simple computational
FTS saliency metric predicts the relative effectiveness of dif-
ferent visual camouflage designs to a large degree. However,
this metric only incorporates the energy contrast between a
target and its local background, and therefore only models
human detection performance. An effective camouflage eva-
luation metric should also include a structural dissimilarity
metric to account for human recognition performance (cog-
nitive screening). We therefore attempted to extend the FTS
metric with Wang and Bovik’s structural image similarity
index (SSIM), which measures the similarity between
images in terms of luminance, contrast and structure.53,69

We hypothesized that a larger similarity between the camou-
flage pattern and its local background would result in a
longer search time and a lower detection probability. How-
ever, the predictions of the combined metric correlated
less with human observer performance than the predictions
of the FTS metric alone. We intend to investigate this issue
further in a follow-up study. The availability of a validated
computational camouflage evaluation metric will enable the
automatic design of an optimal camouflage pattern for a
given area from a set of characteristic background image
samples.
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