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ABSTRACT   

In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate 
with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laser-
induced periodic surface structures (LIPSS). 

A short pulsed laser source (230 fs-10 ps) was applied using a focused Gaussian beam profile (15-30 μm). Laser 
parameters such as fluence, overlap (OL) and Overscans (OS), repetition frequency (100-200 kHz), wavelength (1030 
nm, 515 nm and 343 nm)  and polarization were varied to study the effect on periodicity, height and especially regularity 
of LIPSS obtained in layers of different thicknesses (150-400 nm). The aim was to produce these structures without 
cracking the metal layer and with as little ablation as possible. 

It was found that USLP are suitable to reach high power densities at the surface of the thin layers, avoiding mechanical 
stresses, cracking and delamination. 

A possible photovoltaic (PV) application could be found in texturing of thin film cells to enhance light trapping 
mechanisms.  
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1. INTRODUCTION  
Laser-induced periodic surface structures, also referred to as ripples, are wavy structures observed on the surface of 
many materials after laser irradiation. Although LIPSS have been studied since 1965 [2], their complete explanation is 
still debated. The regularity, shape and dimensions of LIPSS depend on the laser irradiation conditions as well as 
material properties. Periodicity, amplitude and orientation of LIPSS depend on the laser’s wavelength, fluence and 
polarization [15,19].  Under most processing conditions, LIPSS show bifurcations or forking (when a single ripple split 
in two of half periodicity) and their length is smaller than the spot size; but interestingly, by choosing proper process 
parameters, the length of LIPSS can be extended without interruptions to areas larger than the spot size. Highly 
periodical—i.e. very regular— LIPSS, longer than the laser spot size, have been shown in “scanned laser lines” on 
different bulk materials [4]. A practical application of these highly regular wavy structures, without bifurcations, could 
be found in diffraction nano-gratings.  

Nano-gratings of different periodicities using this technique have been obtained on bulk materials [3], while the 
feasibility of this process on thin deposited metal films (≤ 400 nm in our work) has not been yet studied extensively. 

Besides finding the proper processing conditions for obtaining a uniform area of LIPSS on a given material, the 
processing of thin metallic films adds another complexity, because thermo-mechanical effects during processing may 
cause cracking, delamination and excessive ablation of the thin layer. Fortunately, the so-called Brittle to Ductile 
Transition (BDT) [20] allows thin metallic layers to undergo thermal stresses during laser processing without cracking. 
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The aim of the present research was to show the possibility to create highly regular LIPSS using ultra-short laser pulses 
on the top surface of molybdenum (Mo) layers of 400 nm thickness on glass, without cracking the layer or having 
excessive ablation, which would expose the supporting glass substrate (see section 3). 

Moreover, we presented the feasibility of those structures on thin Mo films using ps lasers instead of fs lasers, which 
makes the technology more attractive for industrial applications. The periodicity of the experimentally obtained LIPSS 
was compared to an analytical model of Sipe et al. [13], describing the absorbed laser energy below bulk material’s 
rough surface. 

 

2. EXPERIMENTAL SETUP 
2.1 Laser setup  

Two different laser sources were employed to study the effect of fluence, pulse duration and wavelength on LIPSS 
formation in the Mo layer: 

• The Pharos source from Light Conversion Ltd, which is a Yb:KGW  laser source with tunable pulse length (230 
fs-10 ps), 10 W maximum output, central wavelength of 1030 nm, maximum repetition frequency 200 kHz and a 
beam quality M2 < 1.2.  

• The TruMicro 5050 from Trumpf, which is a Yb:YAG laser source, with fixed pulse length of 6.7 ps, 50 W 
maximum output, central wavelength of 1030 nm (IR)  maximum repetition frequency of 400 kHz and M2 < 1.3.  

Both laser sources showed a Gaussian power density distribution and were equipped with pulse-pickers, allowing the 
user to change the repetition frequency without affecting the energy per pulse. To study the effect of the laser 
wavelength, a Second Harmonic Generation (SHG) or a Third Harmonic Generation (THG) unit was employed to 
convert the central wavelength to 515 nm (green) and 343 nm (UV).  

The diameter d of the focused laser beam on the surface was determined using the D2 method [4] for each wavelength 
used. d was found to range from 15 to 30 μm, depending on the wavelength and setup used. Fluence was then calculated 
for single pulses and the OL was defined as:  

OL=1-v/(d⋅fp),            (1) 

where v denotes the velocity of the focal spot, and fp the applied pulse frequency. 

In both systems, galvano-scanners (IntelliScan14 of Scanlab) were used to scan the focal spot over the surface of the 
samples with telecentric F-theta lenses (Ronar of Linos) to focus the laser beam on the samples. The focal length of theta 
lenses used with the TruMicro laser for IR, green and UV were respectively 80 mm, 100 mm and 100 mm, while with the 
Pharos source, only IR was exploited and the focal length for the lens used was 100 mm.      

2.2 Analysis equipment 

Morphological inspection of the laser-treated areas was performed by optical microscopy, Scanning Electron Microscopy 
SEM, JCM-5000 NeoScope), Atomic Force Microscopy (AFM, Nanosurf easyscan 2), Confocal Laser Scanning 
Microscopy (CLSM, Keyence VK-9700). A spectrophotometer (PerkinElmer Lambda 950 with ARTA accessory) was 
used to analyze the angular intensity distribution (AID) of the refracted light at different angles and wavelengths of the 
obtained nano-gratings [5].  

2.3 Samples  

Mo layers of different thicknesses were deposited on glass substrates. For initial tests, samples of 150 nm thickness 
deposited by Physical Vapor Deposition (PVD) on borosilicate glass were used. For structuring areas with LIPSS, we 
used Mo layers deposited by sputtering on soda lime glass by third party. The latter combination of thin film Mo on soda 
lime glass is regularly used for the production of Cu(In,Ga)Se2 solar cells. The Mo for this application has, in general, a 
high porosity [18], while Mo for other applications might require more dense layers and will react differently during 
laser texturing. The latter is not addressed in this work. 
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Table 1.  Averaged periodicity and amplitude of LIPSS obtained with the three different laser wavelengths. Data were obtained by 
AFM and SEM. 

 UV [λ=343 nm] Green [λ=515 nm] IR [λ=1030 nm] 

Averaged periodicity [nm] 270 390 890 

Averaged amplitude [nm] 29 21 13 

 

4. DISCUSSION 
Theoretical and numerical models of LIPSS, or more specifically models predicting periodicity of LIPSS are known only 
for bulk material. In this section, we compared the periodicity predicted by one of those “bulk” models to the 
experimentally obtained periodicity in the thin Mo layers.  

In 1973, it was proposed by Emmony et al. [12] that LIPSS were a result of interference between the incident laser beam 
and surface-scattered waves. On the basis of this concept, Sipe et al. developed the efficacy factor theory in 1983 [13]. 
This theory is usually referred to as Sipe theory. It predicts, in the frequency domain, the spatial inhomogeneous energy 
absorption A(k) just below the rough surface of materials as a function of k. Here, k is a vector spanning the frequency 
domain, normalized by the norm of the wave vector of the incident laser light 2π/λ. The main assumption is that LIPSS 
occur where the absorbed energy A(k) is the largest. In the frame of the Sipe theory, A(k) is proportional to η(k)×b(k), 
where b(k) is the Fourier component of the initial roughness of the surface and η(k) is the so-called Efficacy Factor. This 
factor quantifies the efficacy with which the roughness leads to an inhomogeneous absorption at k. The expression of 
η(k) can be found in the original article of Sipe et al. [13]. Prior to any laser treatment, b(k) is expected to be a slowly 
varying function for a surface with homogeneously distributed roughness [13]. Hence, the inhomogeneous absorption of 
energy from the laser radiation leading to LIPSS formation is mainly governed by the quantity η(k). 

An example of η(k), as a function of frequency components in two directions (x and y) is shown in Fig. 6 (a). It was 
computed for the same parameters as in the experiments in section 3. That is, λ = 515 nm, angle of incidence θ = 0, 
optical materials properties ñ=3.192+3.378i (ñ=n+ik), statistical surface roughness parameters F = 0.1 and s = 0.4. Here, 
F is the filling factor and s the shape factor. F and s are parameters used to describe random rough surfaces. More 
information can be found in [13] and [15]. The complex refractive index is that of Mo for λ = 515 nm [17]. To discuss 
the results in the frequency domain, the same notations as in [16] are used. The only visible features in Fig. 6 (a) are the 
so-called type-s features. These features are following the bright areas of the outer part of the circle of radius ||k||=1, 
meaning that the LIPSS expected on Mo under these laser conditions should have a periodicity slightly smaller than λ = 
515 nm.  

 
Figure 7.  (a) Efficacy factor map computed with λ = 515 nm, θ = 0, n = 3.192, k = 3.378, F= 0.1 and s = 0.4. A linear 

gray scale is used. (b) Fast Fourier transform of (c). (c) Large area of ripple obtained on 400 nm thick Mo 
layer with 0.009 J/cm2, f = 200 kHz, 98% OL and 20 μm pitch between scanned lines. The dotted circles in 
(a) and (b) have radii k=1. The dashed circle in b) has a radius k=2. The polarization direction is indicated by 
the white arrows in (a), (b) and (c). 
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In Fig. 6 (c), LIPSS produced on 400 nm thick layer with 0.009 J/cm2, f = 200 kHz, 98% OL and 20 μm pitch between 
scanned lines are shown. The 2D Fourier transform of the intensities in Fig. 6 (c) is presented in Fig. 6  (b). Next, this 
frequency map can be compared to the predicted η(k)-map in Fig. 6 (a).  The type-s in Fig. 6 (b) are following the circle 
of radius ||k||=1 as in the efficacy factor map. However, they are less spread in the frequency domain. This is not in 
contradiction with the Sipe theory since the predictions in Sipe’s theory were made for initially random rough surfaces. 
Once the LIPSS start to develop, η(k) is not the only quantity driving LIPSS growth, because then b(k) is no longer a 
slowly varying function. Other interesting features are visible in Fig.6 (b). Bright areas (so relevant frequencies in the 
absorbed energy)  are following the outer part of the ||k||=2 circles. These frequencies have an amplitude significantly 
smaller than the type-s features. These correspond to  LIPSS forking in the 2D spatial domain. In a recent article, Skolski 
et al. showed that the type-s are not the only features contributing to the periodicity to be expected in the space domain. 
These other features are referred to [16] as type-r. Even though, the simulations here were made for a material for which 
n > k, η(k) is also showing type-r features for a material if n < k. Therefore, we attribute the features around the ||k||=2 
circle to the type-r features. It is worth mentioning that a study of the interpulse feedback mechanisms involved in LIPSS 
formation would clarify these experimental observations. Nonetheless, we concluded from the comparison of the “bulky” 
modeling results and the experimental results, that LIPSS produced in the thin Mo layers have the same origin as the 
LIPSS formed on bulk materials.  

 

5. CONCLUSIONS 
We demonstrated the feasibility of LIPSS very regular nano gratings of various periodicities (890 nm and 390 nm) over 
large areas on 400 nm thin Mo film on borosilicate glass using  6.7 ps laser without cracking the film nor exposing the 
glass.  

We also showed that the periodicity of LIPSS produced on thin films was in good agreement with the theoretical 
expectations for LIPSS on bulk material. 

A drawback of this technology is the low speed required to process large areas (e.g., using a 1 kW ps laser, texturing  1 
m2 of surface requires about  50 s). Although laser texturing is probably not a promising technology in PV industry due 
to the high area output required, thin metal film surface texturing can be an interesting solution for other applications 
such as nano-optics or microelectronics.  
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