
Towards self-organizing Kalman filters
Joris Sijs

TNO Technical Sciences
Den Haag, The Netherlands

Email: joris.sijs@tno.nl

Zoltan Papp
TNO Technical Sciences

Den Haag, The Netherlands
Email: zoltan.papp@tno.nl

Abstract—Distributed Kalman filtering is an important signal
processing method for state estimation in large-scale sensor net-
works. However, existing solutions do not account for unforeseen
events that are likely to occur and thus dramatically changing
the operational conditions (e.g. node failure, communication
deterioration). This article presents an integration solution for
distributed Kalman filtering with distributed self-organization
to cope with these events. An overview of existing methods on
both topics is presented, followed by an empirical case study of
a self-organizing sensor network for observing the contaminant
distribution process across a large area in time.

I. INTRODUCTION

A current trend in estimation is to connect different sensor
nodes via a scalable network topology and thereby, create “on-
the-fly” (ad-hoc) networks for monitoring large-area processes
with a high spatial accuracy. This trend is mainly a result
from the widely available sensor nodes for setting-up such a
(wireless) sensor network. However, sensor networks exhibit
special features, which makes their application challenging.
For one, sensor nodes are typically battery powered and/or
have an energy scavenging device to acquire the consumed
energy. In addition, due to power and space considerations,
the onboard computational and communication capabilities of
sensor nodes are seriously limited. Yet, they are frequently
deployed in harsh, even hostile environment, where node
failures are not exceptions but part of the normal operation. For
example, the changing environment in which nodes exchange
data induces dynamics in the network capacity and call for
adaptive communication strategies to assure the availability of
communication resources. These aspects make the application
development extremely challenging, as a stable and predictable
system performance should be delivered on a dynamically
changing configuration with computational, communication
and energy constraints. Distributed data interpretation algo-
rithms with reconfiguration capabilities constitute an important
and promising way to address these challenges.

In the following, the state estimation problem (based on
Kalman filtering) is investigated in this context. Several dis-
tributed solutions addressing the Kalman filtering problem
have been explored and aim to make use of the local process-
ing elements that are already present in each node. Such dis-
tributed Kalman filters typically process the sensor measure-
ments locally at each node rather then communicating them to
a single, central node. Characteristic approaches to distributed
Kalman filtering are presented in [1]–[4] and the references
therein. The proposed methods perform a modified Kalman

filtering algorithm locally in each node for computing a local
estimate of the global state (i.e. forming a network of Kalman
filters). Nodes improve their estimation results by exchanging
measurements and/or local estimates with other nodes in the
network. However, the available distributed Kalman filters
assume a fixed topology and communication strategy. Hence,
they cannot cope with the unforeseen operational events that
are typical for sensor networks, nor do they address deliberate
reconfigurations of the networked system during operation.

To solve this issue, signal processing algorithms running
in large-scale sensor networks should exhibit robustness with
respect to changing operational conditions and anticipated
failure modes. Building in redundancy may result in complex,
power hungry and prohibitively expensive solutions. A feasi-
ble alternative is to deploy the network with self-organizing
capabilities: runtime reconfiguration enables to follow changes
in the operational conditions of the sensor network, while
assuring optimal use of available resources.

The contribution of this article is integrating solutions for
distributed Kalman filtering with a framework of distributed
self organization. As such, nodes employs a modified Kalman
filter locally and, in addition, perform a management proce-
dure that supports the network of Kalman filters to establish
self-organization. To that end, existing solutions on distributed
Kalman filtering are summarized into a generalized local
estimation approach employed by individual nodes for esti-
mating the state. Further, a supportive management procedure
is designed that - depending on the available resources - can
choose the local estimation algorithms and its parametrization
to assure robustness and performance under wide range of op-
erational conditions. The proposed network of self-organizing
Kalman filters is further analyzed in an illustrative case-study.

II. NOTATION AND PRELIMINARIES

R, R+, Z and Z+ define the set of real numbers, non-
negative real numbers, integer numbers and non-negative inte-
ger numbers, respectively. For any C ⊂ R, let ZC := Z∩C. The
notation 0 is used to denote either zero, the null-vector or the
null-matrix of appropriate dimensions, while In denotes the
n× n identity matrix. The transpose, inverse and determinant
of a matrix A ∈ Rn×n are denoted as A>, A−1 and |A|,
respectively. Further, A

1
2 denotes the Cholesky decomposition

of a matrix An×n (if it exists). Given that a random vector
x ∈ Rn is Gaussian distributed, denoted as x ∼ G(µ,Σ), then
µ ∈ Rn and Σ ∈ Rn×n are the mean and covariance of x.

III. PROBLEM FORMULATION

Let us consider a linear process that is observed by a
sensor network with the following description:

The networked system consists of N sensor nodes, in
which a node i ∈ N is identified by a unique number within
N := Z[1,N]. The set Ni ⊆ N is defined as the collection of
neighboring nodes j ∈ N that exchange data with node i.

The dynamical process measured by each node i ∈ N is
described with discrete-time process model, for some local
sampling time τi ∈ R>0 and some ki-th sample instant, i.e.,

x[ki] = Aτix[ki−1] + w[ki−1],

yi[ki] = Cix[ki] + vi[ki].
(1)

The state and local measurement are denoted as x ∈ Rn
and yi ∈ Rmi , respectively, while process-noise w ∈Rn and
measurement-noise vi ∈ Rmi follow the Gaussian distribu-
tions w[ki] ∼ G(0, Qτi) and vi[ki] ∼ G(0, Vi), for some
Qτi ∈ Rn×n and Vi ∈ Rmi×mi . A method to compute
the model parameters Aτi and Qτi from a corresponding
continuous-time process model ẋ = Fx+ w, yields

Aτi := eFτi and Qτi := Bτicov
(
w(t−τi)

)
B>τi ,

with Bτi :=

∫ τi

0

eFηdη.

The goal of the sensor network is to compute a local
estimate xi ∈ Rn of the global state x in each node i.
Since the process model is linear and both noises are Gaus-
sian distributed, it is appropriate to assume that the random
variable xi[k] is Gaussian distributed as well, i.e., xi[ki] ∼
G(x̂i[ki], Pi[ki]) for some mean x̂i[ki] ∈ Rn and error-
covariance Pi[ki] ∈ Rn×n. To that extent, each node i per-
forms a local estimation algorithm for computing xi based on
its local measurement yi and on the data shared by its neigh-
boring nodes j ∈ Ni. Existing methods on distributed Kalman
filtering present an a priori solution for computing xi and
predefine what variables should be exchanged, at what time
and with which nodes, e.g. [1]–[4]. Hence, for a given sensor
network, a matched (static) estimation procedure is derived
under predefined conditions. However, static approaches are
not feasible for (large-scale) sensor network applications, due
to operational events likely to occur in the system. Solutions
should thus be in place that enables the state estimating
network to cope with these dynamically raising challenges
by a reconfiguration of the communication network during
operation, accompanied by a re-evaluation on the available
local estimation algorithms. These aspect can be addressed
by self organizing methods, in which a feasible solution for
(unforeseen) operational events is sought for during operation
of a network rather than prior to its deployment.

The problem addressed is integrating state-of-art results
in distributed Kalman filtering (DKF) with a management
layer for creating a self-organizing networked system, see
also Figure 1. The proposed solution derives a generalized

node

Modified Kalman filter

Management layer

Communication (1 and 2 way)

Fig. 1. A network of Kalman filters with supporting management layer to
realize the self-organizing property for estimating the state.

set-up for a local estimation algorithm from existing DKF
solutions, which is supported by the management layer. The
management layer is responsible for choosing specific esti-
mation and communication approaches, so to assure coherent
operational conditions depending on the available resources
of that particular node (communication, computational and
battery-level). Let us start with a description of the local
estimation algorithm.

IV. DISTRIBUTED KALMAN FILTERING

The algorithmic set-up for computing the local estimate xi
is a generalization of existing DKF solutions. Typically, these
solutions propose that each node i performs a Kalman filter
based on its local measurement yi and thereby, establishes
an initial estimate for xi ∼ G(x̂i, Pi). See, for example,
the methods proposed in [1]–[4] and some overview articles
in [5], [6]. Additionally, various solutions were proposed to
improve this initial local estimate xi by exchanging data with
the neighboring nodes j ∈ Ni, i.e.,
• Share local measurements,, i.e., node i receives yj for all
j ∈ Ni, which can be merged with a Kalman filter;

• Share local estimates, i.e., node i receives xj ∼ G(x̂j , Pj)
for all j ∈ Ni, which can be merged with consensus or
fusion methods.

Based on the currently available DKF methods a generalized
local estimation algorithm can be designed relying on the
node’s local measurement and on the data received from
neighboring nodes. Each functionality of this generalized set-
up is characterized by a specific algorithm, though it is
not necessary to specify them prior to deployment. Instead,
nodes are deployed with a number of suitable algorithms
for each functionality, from which a selection can be made
during operation. The alternative algorithms related to DKF
are presented next. It is assumed that nodes implements some
form of synchronization among their local sampling instants
τi according to a fundamental sampling time τ ∈ R+ and a
localized (time-dependent) scalar ai(t) ∈ Z>1, i.e.,

t0i = t0j , ∀ i, j ∈ N
τi = ai(t) · τ, ∀ t ∈ R+, i ∈ N

The above characterization implies that any two nodes i and j
in the network have the same initial sampling instant and that
the local sampling time τi, for any node i ∈ N , is equal to
a multiple of τ . The corresponding multiplication factor ai(t)
is determined by the management layer of node i.

A. Generalized local estimation algorithm
Figure 2 depicts a schematic set-up of the generalized local

estimation algorithm, followed by a detailed description of the
set-up. It shows that xi ∼ G(x̂i, Pi) is computed by merging
local measurements in a Kalman filtering function prior to
merging local estimates in a synchronization/fusion function.

Kalman filter
fKF(, ,)

yi,Ci,Vi xi,Pi

xj,Pj

xi ,Pi + +

yj,Cj,Vj
Received

i, i

Synchr. - fusion
fME(, ,)

Fig. 2. Schematic set-up of the generalized local estimation algorithm
performed by each node i in the network.

Note that the measurement model yj [ki] = Cjx[ki] + vj [ki]
should be available to node i before yj [ki] can be exploited.
Therefore, if node j shares the local measurement, (yj , Cj , Vj)
should be exchanged, while if node j shares local estimates,
it exchanges (x̂j , Pj). Hence, the received data of Figure 2,
yields
• Yi ⊂ Rmj × Rmj×n × Rmj×mj is the collection of

(yj , Cj , Vj) received by node i from neighboring nodes
j ∈ Ni. Note that Yi could be empty, for example, when
none of the nodes j ∈ Ni shares its local measurement;

• Xi ⊂ Rn × Rn×n is the collection of (x̂j , Pj) received
by node i from its neighboring nodes j ∈ Ni. Similar as
to Yi, also Xi can be an empty collection.

Let us continue with a detailed description of the Kalman
filtering function in Figure 2. This function merges the yi[ki]
with the received measurements yj [ki] to update its local es-
timate xi+ [ki−1] ∼ G(x̂i+ [ki−1], Pi+ [ki−1]). Measurements
can merged via the original Kalman filter or by the alternative
Information filter, which was proposed in [1]. For this latter
approach, measurements are rewritten into their information
form, for some zj ∈ Rn and Zj ∈ Rn×n, i.e.,

zj [ki] := C>j V
−1
j yj [ki] and Zj [ki] := C>j V

−1
j Cj .

The Information filter has similar results as the original
Kalman filter but differs in computational demand.
Furthermore, since its corresponding implementation is
more convenient when the amount of received measurements
(yj , Cj , Vj) ∈ Yi varies at sample instants, the Kalman
filtering function in the set-up of Figure 2 employs
the Information filter. Let us introduce this function as
fKF(·, ·, ·), i.e., having three inputs, along with the following
characterization:

(x̂i[ki], Pi[ki]) := fKF(x̂i+ [ki−1], Pi+ [ki−1],Yi[ki])

Mi = AτiPi+ [ki−1]A>τi +Qτi ,

Pi[ki] =
(
M−1
i + Zi[ki] +

∑
(yj ,Cj ,Vj)∈Yi[ki]

Zj [ki]
)−1

,

x̂i[ki] = Pi[ki]
(
M−1
i Aτi x̂i+ [ki−1] + zi[ki] +

∑
(yj ,Cj ,Vj)∈Yi[ki]

zj [ki]
)
.

The other function of Figure 2, introduced as fME(·, ·, ·),
merges the local estimate xi[ki] with the received
estimation variables (x̂j , Pj) ∈ Xi[ki] into a new estimate
xi+ [ki] ∼ G(x̂i+ [ki], Pi+ [ki]). Please note that it is not obliged
for a node to perform a fusion function, i.e., nodes can employ
xi+ = xi instead, for example, to save computational power
and thus energy. Recent DKF solutions, such as the ones
presented in [2], [3], adopt a synchronization approach to
characterize fME(·, ·, ·). However, such approaches do not
merge the error-covariances of the different estimates and
are therefore not employed in this set-up. Instead, fME(·, ·, ·)
follows a fusion approach. Fusion methods typically define
a fusion function, denoted as Ω(·, ·, ·, ·), to merge two prior
estimates xi and xj . Fusion of multiple estimates (> 2) can
be conducted recursively according to their order of arrival at
the corresponding node. This means that the merging function
fME(·, ·, ·) performed by a node i has the following description:

(x̂i+ [ki], Pi+ [ki]) := fME (x̂i[ki], Pi[ki],Xi[ki])

for each estimate (x̂j [ki], Pj [ki]) ∈ X[ki], do
(x̂i[ki], Pi[ki]) = Ω (x̂i[ki], Pi[ki], x̂j [ki], Pj [ki]) ,

end for
x̂i+ [ki] = x̂i[ki], Pi+ [ki] = Pi[ki].

Note that the above merging function still needs suitable
a fusion methods to characterize Ω(·, ·, ·, ·). An optimal
fusion methods was presented in [7], though it requires
that correlation of the two prior estimates is available. In
(self-organizing) sensor networks one cannot impose such a
requirement, as it amounts to keeping track of shared data
across the entire network. Alternative fusion methods that can
cope with an unknown correlation are covariance intersection
(CI) and ellipsoidal intersection (EI), as proposed in [8] and
[9], respectively. In CI the fusion function is characterized as
a convex combination of the two prior estimates xi and xj ,
for some scalar weight ωij ∈ R+, i.e.,

CI: (x̂i[ki], Pi[ki]) = Ω (x̂i[ki], Pi[ki], x̂j [ki], Pj [ki])

Σi =
(
(1− ωij)P−1

i [ki] + ωijP
−1
j [ki]

)−1
,

x̂i[ki] = Σi
(
(1− ωij)P−1

i [ki]x̂i[ki] + ωijP
−1
j [ki]x̂

−1
j [ki]

)
,

Pi[ki] = Σi.

The fusion method EI results in a “smaller” error-covariance
after fusion compared to CI, as the fusion result is not a
convex combination of prior estimate. Instead, EI finds an
explicit expression of the (unknown) correlation before the
merging the independent parts of xi and xj via algebraic
fusion formulas. To that extent, the (unknown) correlation
is characterized by a mutual covariance Γij ∈ Rn×n and a
mutual mean γij ∈ Rn, which then results in the following
fusion function Ω(·, ·, ·, ·):

EI: (x̂i[ki], Pi[ki]) = Ω (x̂i[ki], Pi[ki], x̂j [ki], Pj [ki])

Σi = (P−1
i [ki] + P−1

j [ki]− Γ−1
ij)−1,

x̂i[ki] = Σi
(
P−1
i [ki]x̂i[ki] + P−1

j [ki]x̂
−1
j [ki]− Γ−1

ij γij
)
,

Pi[ki] = Σi.

The mutual mean γij and mutual covariance Γij are found
by a singular value decomposition, which is denoted as
[S,D, S−1] = svd(Σ) for a positive definite Σ ∈ Rn×n, a
diagonal D ∈ Rn×n and a rotation matrix S ∈ Rn×n. As
such, let us introduce the matrices Di, Dj , Si, Sj ∈ Rn×n via
the singular value decompositions [Si, Di, S

−1
i] = svd(Pi[ki])

and [Sj , Dj , S
−1
j] = svd(D

− 1
2

i S−1
i Pj [ki]SiD

− 1
2

i). Then, an
algebraic expression of γij and Γij , for some ς ∈ R+ while
{A}qr ∈ R denotes the element of a matrix A on the q-th
row and r-th column, yields

DΓij = diag
(

max[1, {Dj}11], · · · , max[1, {Dj}nn]
)
,

Γij = SiD
1
2
i SjDΓijS

−1
j D

1
2
i S
−1
i ,

γij =
(
P−1
i + P−1

j − 2Γ−1 + 2ςIn
)−1×(

(P−1
j − Γ−1 + ςIn)x̂i + (P−1

i − Γ−1 + ςIn)x̂j
)
.

A suitable value of ς follows: ς = 0 if |1 − {Dj}qq| > 10ε,
for all q ∈ Z[1,n] and some ε ∈ R>0, while ς = ε otherwise.
The design parameter ε supports a numerically stable result.

This completes the description of the estimation algorithm
depicted in Figure 2. A node i merges received measurement
in Yi with the Kalman filtering function fKF, while received
estimates in Xi are merged with fME via either CI or EI.
Which functionalities are performed and what local variables
are shared with other nodes is decided by the management
layer. However, to make rational decisions the imposed com-
munication and computational requirements of these different
options should be available and are therefore presented, next.

V. REQUIRED RESOURCES

Important resources in sensor networks are communication
and computation, as they both can be translated to the use
of energy and time. The previously addressed estimation
algorithm performed by each node is assessed on its require-
ment with respect to these two resources. To that extent,
it is assumed that nodes could decide to share their local
measurement in the original or in the information form. The
resulting communication requirements of node i for the dif-
ferent data packages are then listed in Table I, while the order
in computational demand for the different functionalities is
presented in Table II, for some Mi := mi+

∑
(yj ,Cj ,Vj)∈Yi

mj .

VI. SELF-ORGANIZING SOLUTIONS

The design challenge of any embedded system is to realize
the given functionalities (in this case state estimation) on
a given hardware platform while satisfying a set of non-
functional requirements, such as response times, dependability,

TABLE I
REQUIRED COMMUNICATION IN THE AMOUNT OF FLOATING POINTS

EXCHANGED BY NODE i DEPENDING ON WHICH DATA IS SHARED.

exchanged data communication demand
(yi, Ci, Vi) m2

i + 2mi + n
(zi, Zi) n2 + n
(x̂i, Pi) n2 + n

TABLE II
COMPUTATIONAL DEMAND IN THE ORDER OF FLOATING POINTS

OPERATIONS PER EMPLOYED FUNCTIONALITY.

functionality computational demand
fKF ≈ O(3n3 + Min

2 + nM2
i)

Ω according to CI ≈ O(3n3 + 9n2)
Ω according to EI ≈ O(31n3 + 7n2)

power efficiency, etc. Model-based system design has been
proven to be a successful methodology for supporting the
system design process [10]. Model-based methodologies use
multiple models to capture the relevant properties of the
design. These models can then be used for various purposes,
such as automatic code generation, design optimization, sys-
tem evolution and so on. Crucial for the design process are
the interactions between the different models, which can be
expressed as constraints, dependencies, etc.

There are various models that formalize design considera-
tion, such as requirements, components, constraints, to charac-
terize the design space. Two fundamental models of the design
are emphasized here: the task model (capturing the required
functionalities of the employed signal processing method) and
the physical model (capturing the hardware configuration of
the implementation). Figure. 3 illustrates the use of the models
in the design process.

T1
T2

T3

T4

d32

d31

P1

c23

c13P2

P3

c12

Task model Physical model

T P

mapping

Fig. 3. Modeling of signal processing and implementation, in which each
aspect is characterized with some properties, e.g., memory and execution
speed for Pi (processing); bit-rate and latency for cij (communication), update
rate and]instructions for Tq (task); message size and update rate for dqr
(interaction).

The task model in this figure is represented as directed
a graph, the signal processing components (tasks) are repre-
sented by the vertices of the graph, while their data exchange
(interactions) are represented by the edges. Both the tasks as
well as the interactions are characterized by a set of properties,
which typically reflect non-functional requirements/properties.
The tasks run on a connected set of processors, represented

by the physical model of the system. The components in this
simplified physical model are the computing nodes and the
communication links.

The design process involves finding a particular mapping
that defines the assignment of a task Tq to a processor Pi, i.e.,
it determines which task runs on which node. Obviously the
memory and execution time requirements define constraints
when assigning the tasks to nodes. Further, data exchange be-
tween tasks makes the assignment problem more challenging
in distributed configurations, as a task assignment also defines
the use of communication links cij- and the communication
links have limited capabilities. The design process results in
a sequence of decisions, which lead to a feasible system
design. Traditionally the design process is “offline” (design
time & static), i.e., it is completed before the implementation
and deployment of the system itself. The task model, the
hardware configuration and their characteristics are assumed to
be known during this design time and the design uncertainties
are assumed to be low.

Sensor deterioration, node failure, unreliable communica-
tion, depleted batteries, etc., are not exceptions but manifest
themselves as common operational events. These events result
in changes in the system configuration, as captured by the
physical model, due to which implementations relying on static
designs fail to deliver as specified.

A resource conscious way to cope with this problem is
to assure that the sensor network can “follow” those system
changes and “adjust” its internals to deliver (at least a pre-
defined subset of) the assigned functionalities as far as it is
feasible (“graceful degradation” property). This approach re-
quires runtime reconfiguration capabilities and has significant
impact both on system design and on the runtime operation
of the system. Conceptually the system design process is
not completely finished in design time but a set of design
alternatives are provided for execution. During operation -
depending on the health state of the configuration and its
environmental conditions - a selection is made automatically
to assure an optimal use of available resources.

Expressed in the concepts of Figure 3, the runtime re-
configuration is carried out via changing the task graph (i.e.
selecting a different signal processing scheme, changing cer-
tain parameters of the processing blocks, etc.) or re-mapping
the task graph to the physical model (i.e. changing the task
assignment with the consequential change in the communi-
cation topology). As Figure 1 already indicates, our goal
is to realize the reconfiguration functionality for distributed
state estimation in a distributed manner to improve robustness
and scalability. Figure 4 details the state estimation nodes
of Figure 1. The SE component implements the node’s state
estimation algorithm, i.e. forming the core signal processing
functionality. The SE components do not interact with each
other directly but via the SHELL, which is responsible for
assuring the optimal use of the system resources. The two
main functions of this SHELL are the communication service
(C) and management service (M). C acts as a switchboard,
i.e. maintains connections among the SEs running on different

nodes. M is the intelligent component, i.e., it controls C
and SE according to the information about the system level
goals and requirements the relevant estimation performance
and current system health readings. The dashed lines rep-
resent the status/control interfaces. Note that M has access
to the implementation platform for assessing its health state
(e.g. remaining battery energy level) and to control platform
parameters (e.g. clock speed). Phrasing differently: SE is the
“number cruncher” without insight into the “big picture”;
C is merely a configurable switch, while M has all the
“knowledge” about achieving system level goals under optimal
use of resources, i.e. it embodies the (certain subset of) design
knowledge.

requirements

constraints

exec. state

SE data

M SE: algorithms,

 parameters.

SE M: quality xi.

SE

C

M

CORESHELL

C

M

M C: routing,

 parameters.

C M: qualtiy.

platform monitor&control

Fig. 4. State estimator node functionalities.

Consequently, the key element for runtime reconfiguration
is the management services component M . The concept
of a reconfiguration process is illustrated in Figure 5. The
reconfiguration process is triggered by observed changes in
the embedding environment of the system or in the system
itself, e.g., realizing node failure or a low battery status.
The “trajectory” for reconfiguration is not predefined but is a
result of an optimization process attempting to maximize the
“usefulness” of the system, as defined by performance criteria.

RECONFIG-

URATOR

constraints configuration

goals

environment

configuration

reparameterization

rewiring

models

REASONERMONITOR

new

configuration

violation

perform.

Fig. 5. The reconfiguration process.

The relevant models of the system, such as the task,
physical and temporal model, are formalized and stored in a
database represented by the models block. The constraints
block represents the dependencies in the models and between
models. The MONITOR functionality checks if the ob-
served changes result in a violation of certain constraints by
the systems or a significant drop in its performance. If the
MONITOR concludes that current circumstances prevent the
system to perform as requested, then the reconfiguration pro-
cess is initiated. The REASONER determines a new config-
uration that satisfies all constraints and provides an acceptable

performance. It should be emphasized the REASONER may
not carry out pure logical reasoning but also other types of
search and optimization functions depending on the represen-
tation describing models, goals, etc. The new configuration is
passed to the RECONFIGURATOR functionality to plan
and execute the sequence of operations for “transforming” the
old into the new configuration in runtime.

The efficient implementation of runtime reconfiguration
should address challenges both in representation, monitoring
and reasoning. There are no ultimate answers to these ques-
tions, consequently the research area of runtime reconfigurable
systems design is quickly evolving. Established domains as
self-adaptive software systems [11] and dynamically recon-
figurable hardware systems [12], [13] provide fundamental
contributions. A few characteristic approaches to practical
runtime reconfigurability includes model integrated computing
(MIC) [10], formalization of the reconfiguration as constraint
satisfaction problem [14], [15], multi-aspect modeling as rep-
resentation combined with aspect oriented programming [16],
discover - match - coordinate service oriented architecture
scheme with a hierarchical service overlay [17] and object
centric paradigm to compose the compound services [18]. [19]
describes a model-based solution to validate at runtime that the
sensor network functionalities are performed correctly.

Due to the typically large design space that should be
explored, combined with the demanding reasoning algorithms,
make the distributed real-time implementation difficult and
many times unfeasible. To that extent, we adopted a rule-
based formalism [20] to express the reconfiguration knowl-
edge (e.g. directed search, optimization, etc.). Rule bases can
be preprocessed offline (i.e. compiling the human readable
format into executable “machine friendly” format) and small-
footprint forward changing inference algorithms (reasoners)
enable onboard implementations on relatively low performance
platforms. The careful “tailoring” of the rule base, i.e. properly
constraining the search space and dedicating the scope of the
reconfigurability to the actual case in hand, makes the real-time
implementation of runtime reconfiguration possible for a wide
spectrum of distributed state estimation problems. A “flavor”
of the rule formalism is given via application examples, next.

VII. CASE STUDY ON A DIFFUSION PROCESS

A spatio-temporal 2D diffusion process is considered in the
case study for demonstrating and evaluating a self-organizing
sensor network with DKF. The goal is to estimate the con-
taminant’s distribution across an area of 1200 × 1200 meters
that results from a contaminant source. As time passes, the
corresponding concentration levels ρ ∈ R+ across this area
change due to diffusion and wind from the North. As such,
the contaminant distribution in the area is characterized on a
grid with a grid-size of 100 meters, where ρ(q) ∈ Rn denotes
the concentration level at the q-th grid-point q ∈ [1, 144]
(a grid-point is defined as the center of a particular grid-
box). A concentration level ρ(q) depends on similar levels at
neighboring grid-points, which are denoted as qn for north, qs
for south, qe for east and qw for west. See also Figure 6 for

a graphical representation of these grid-points relative to the
q-th grid-point. The continuous-time process model of ρ(q),
for some a, an, as, ae, aw ∈ R and for all q ∈ Z[1,144], yields

ρ̇(q) = aρ(q) + anρ
(qn) + asρ

(qs) + aeρ
(qe) + awρ

(qw) + u(q).

The variable u(q) ∈ R+ parameterizes the production of the
contaminant source at grid-point q conform to u(18) = 75,
u(29) = 75, u(30) = 100, u(31) = 100 and u(42) = 175, for all
time t ∈ R+, while u(q) = 0 for all other q. Value of the
remaining parameters are chosen to establish a northern wind
direction, i.e., a = −12

800 , an = 1
800 , as = 2

800 , ae = 7
800 and

aw = 2
800 . The resulting concentration levels of the simulated

process are depicted in Figure 6.

source

q

qn

qs

qeqw

node

O(1)

200 400 600 800 1000

200

400

600

800

1000

300
600

900
300

600

900

0

10

20

ρ
(q
)

O
(q)

Fig. 6. The monitored area is divided into a grid. Each grid-point q has
four neighbors qn, qs, qe and qw , i.e., one to the north, south, east and west
of grid-point q, respectively. The contaminant matter produced by the source
spreads through the area due to diffusion and wind.

The concentration levels are to be reconstructed by the
deployed sensor network. The network consists of 18 sensor
nodes that are randomly distributed across the area, see also
Figure 6, for which the position of each node is assumed to
be available. Further, the local measurement yi is equivalent
to the concentration level ρ(q) of node i its corresponding
grid-point q, for some measurement-noise vi ∼ G(0, 0.5).
Each node i performs the local estimation algorithm illustrated
in Figure 2 with a supportive management layer. Although
wind measurements would improve the estimation results,
such information cannot be assumed to be available for nodes
in ad-hoc networks, nor knowledge on the chemical source.
Therefore, the process-parameters employed by an individual
node for state estimation, yield a= −12

800 , an= 3
800 , as= 3

800 ,
ae = 3

800 and aw = 3
800 , while the unknown source is

represented by process-noise w(q) ∼ G(0, 2 · 103), for all
q ∈ Z[1,144]. Further, the state is defined as the collection
of all concentration levels, i.e., x :=

(
ρ(1) ρ(2) · · · ρ(144)

)>
.

The above description is used to define model parameters Aτi ,
Qτi and Vi of the discrete-time process model in (1) for each
node i ∈ N and some initial sampling time τi = 10 seconds.

Two different types of sensor network configurations are
assessed, a hierarchical and a flat set-up, in the presence of
(unforseen) operational events. Let us first present the results
with respect to self-organization, followed by the estimation
performance in time. Note that it is not desired to assess the
considered estimators with respect to a centralized solution, as
it would result in system requirements that are infeasible.

A. Event driven self-organization

Before presenting the reconfiguration results of the network,
let us first describe the two evaluated sensor networks.
• In a hierarchical sensor network nodes are given specific

tasks so that the network consists of multiple subnet-
works, as it is illustrated in Figure 7(a). In each sub-
network nodes exchange their local measurements with
the center node of that particular subnetwork (denoted
with dashed lines). The center node computes a local
estimate based on these received measurements via fKF,
after which this estimate is shared with the center nodes
of other subnetworks (denoted with the solid lines). The
received estimates are then fused with the local estimate
according to the merging function fME.

• The flat sensor networks reflects an ad-hoc networked
system. Therein, nodes adopt a mesh-network-topology,
as it is depicted in Figure 7(c). Since there is no hierarchy,
each node computes a local estimate of the state by
performing the estimation algorithm depicted in Figure 2,
where local estimates are shared with neighboring nodes.
Note that no local measurements are shared.

Two operational events will occur in this network,
followed by the corresponding action as it is implemented
in the reconfiguration process of each node. A rule-based
representation formalism is used to define the “knowledge
base” of the reconfiguration functionality. For the clarity
of the illustrative example, we do not attempt a rigorously
formal description of the knowledge base but only the
“style” of the rule-based representation is shown. Similarly,
instead of explicit optimization, situation → action type of
reconfiguration activities are shown.
1. Event: at t = 150 seconds nodes 1, 3 and 8 will cross their
critical energy level.
Action: If the critical energy level is crossed, then lower the
node’s local sampling time from 10 seconds to 20 seconds.
2. Event: At t = 250 seconds nodes 5 and 11 will break
down, which is detected by other nodes in the networks.
Action hierarchical network: If a center node brakes down,
then check the energy levels of other all nodes in the
subnetwork. The node with the largest batter-level is assigned
as the new center node with matching responsibilities.
Action flat network: If a nodes brakes down and the network
has lost its connectivity, then establish a network connection
with other nodes until this connectivity is re-established. In
case this means increasing the communication range to larger
distances, decrease the sampling time accordingly.

As an example, the rule set below shows the handling of
the #2 event in the hierarchical configuration.

Rule_2a:
IF NEIGHBOR(?x) & TIMEDOUT(?x) &

?x.function = centerfun
THEN set(go_for_newcenter,TRUE)

Rule_2b:
IF go_for_newcenter & NEIGHBOR(?x) &

!TIMEDOUT(?x) &

max(?x.power) = self.power
THEN exec(assign,centerfun),

exec(broadcast,centerfun_msg)

The handling of predicates, pattern matching variables, at-
tributes and actions on the right-hand-side of the rules follows
“standard” operation of rule-based systems, see e.g. [20].

The results of the above re-organizational rules for both
types of network set-ups is depicted in Figure 7

300 600 900

300

600

900

1
23

4

5
6

7

89
10

11
12 13 14

15
16 17 18

(a) Initial topology (hierch.)

300 600 900

900

600

300

1
23

4

5
6

7
89

10

11 12 13 14
15

16 17 18

(b) After 250 seconds (hierch.)

300 600 900

300

600

900

1
2

3

4

5

6

7

89

10
11

12 13
14

15

16
17 18

(c) Initial topology (flat)

300 600 900

300

600

900

1
23

4

5
6

7
89

10
11

12 13 14
15

16 17 18

(d) After 250 seconds (flat)

Fig. 7. Communication topology of the hierarchical network, i.e., (a) and (b),
and of the flat network, i.e., (c) and (d). A dashed line implies the exchange
measurements, wile a solid lines implies the exchange of estimates.

Let us start by analyzing the hierarchical network, for which
Figure 7(a) depicts its topology prior to the event of nodes
5 and 11 braking down, while Figure 7(b) illustrates this
topology after the event (assuming that the battery of nodes 2
and 4 have the highest battery-level). This figure indicates that
nodes 2 and 4 have become responsible for estimating the state
and thereby, replace nodes 5 and 11, respectively. In the case of
the flat network, Figure 7(c) depicts the corresponding network
topology prior to the operational events, while Figure 7(d)
illustrates the topology and afterwards. This figure indicates
that the sensor network re-establishes the connectivity of the
network, also after the event of a node braking down. However,
node 6 had to increase its radio power and thus will lower its
local sampling time to τ6 = 20 seconds. Let us continue with
an analysis of the estimation results, next.

B. Estimation results
The estimation performance is analyzed according to a

particular estimation error, as it is depicted in Figure 8, for
which the estimation error of single node i is defined as
∆i :=

(
x−x̂i)>

(
x−x̂i). Then, Figure 8 depicts the difference

in the estimation error of a network not affected by operational
event with the estimation error in a network that is affected
by the previously presented operational event. The reason that
the figure depicts the results of node 7, is because this node
affected by both events.

Before Figure 8 is analyzed, let us denote the (hierarchical
and flat) network in the presence of the above mentioned

0 100 200 300 400
0

20

40

60

time [sec]

∆ ∆7 7
−

ideal reconf

(a) Hierarchical network

0 100 200 300 400
0

30

60

90

time [sec]

∆ ∆7 7
−

ideal reconf

(b) Flat network

Fig. 8. The difference in the estimation error of node 7 for a network
not affected by operational event minus a network that is affected by the
previously presented operational event.

operational events as the reconf-case and the same network
in the absence of operational event as the ideal-case. Then,
the figure indicates that the results of the reconf-case and the
ideal-case are equivalent until the two operational events occur,
which is expected as both network cases are similar until 150
seconds. After that time, the estimation error of node 7 in the
reconf-case increases with respect to the ideal-case. This is due
to the fact that nodes 1, 3 and 8 double their local sampling
times into 20 seconds and thus, node 7 will receive twice
as less measurement information from nodes 1 and 3. This
leads to an increase in estimation error of node 7 compared
to the ideal-case. Further, note that this error decreases when
local measurement information from nodes 1 and 3 is received,
i.e., at the time instants 170, 190, 210, ..., 370, 390. At these
instants, node 7 receives two more local measurements, i.e.,
y1 and y3, which are not received at the other sample instants
due to the fact that nodes 1 and 3 have an update rate that is
twice as slow. After the second operational event, i.e., nodes
5 and 11 break down at t = 250, one can notice a difference
between the results of the hierarchical network with respect to
the flat one. Although in both cases the estimation error of the
reconf-case is still higher than the ideal-case, the figures show
that different optimal solutions exists for the two different type
of network configurations. Nonetheless, from both cases one
can conclude that the networked system is able to estimate the
state in multiple nodes of the network, even in the presence
of unforseen operational events.

VIII. CONCLUSIONS

Distributed Kalman filtering (DKF) is an important signal
processing method for state estimation in networked systems.
However, existing solutions do not account for operational
events that are likely to occur in these systems, especially
in (wireless) sensor networks. Therefore, this article presented
a first step to combine DKF with existing approaches for es-
tablishing a self-organizing sensor network. Empirical studies
on these self-organizing sensor networks for state estimation
showed promising results that encourage a further investigation
towards a network on self-organizing Kalman filters. Future
research could thus involve other existing methods to deter-
mine the local estimation results at an individual node, or
allowing the supportive management layer to determine which
state elements should be estimated locally.

REFERENCES

[1] H. Durant-Whyte, B. Rao, and H. Hu, “Towards a fully decentralized
architecture for multi-sensor data fusion,” in 1990 IEEE Int. Conf. on
Robotics and Automation, Cincinnati, USA, 1990, pp. 1331–1336.

[2] S. Kirti and A. Scaglione, “Scalable distributed Kalman filtering through
consensus,” in Proc. of the IEEE Int. Conf. on Acoustics, Speech and
Signal Processing, Las Vegas, USA, 2008, pp. 2725 – 2728.

[3] A. Ribeiro, I. D. Schizas, S. I. Roumeliotis, and G. B. Giannakis,
“Kalman filtering in wireless sensor networks: Reducing communication
cost in state-estimation problems,” IEEE Control Systems Magazine,
vol. 4, pp. 66–86, 2010.

[4] J. Sijs and M. Lazar, “Distributed Kalman filtering with global covari-
ance,” in Proc. of the American Control Conf., San Francisco, USA,
2011, pp. 4840 – 4845.

[5] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Distributed kalman
filtering based on consensus strategies,” IEEE Journal on Selected Areas
in Communications, vol. 26, pp. 622–633, 2008.

[6] J. Sijs, M. Lazar, P. Van de Bosch, and Z. Papp, “An overview of non-
centralized Kalman filters,” in Proc. of the IEEE Int. Conf. on Control
Applications, San Antonio, USA, 2008, pp. 739–744.

[7] Y. Bar-Shalom and L. Campo, “The effect of the common process noise
on the two-sensor fused-track covariance.” IEEE Trans. on Aerospace
and Electronic Systems, vol. AES-22, no. 6, pp. 803–805, 1986.

[8] S. J. Julier and J. K. Uhlmann, “A non-divergent estimation algorithm in
the presence of uknown correlations,” in Proc. of the American Control
Conf., Piscataway, USA, 1997, pp. 2369–2373.

[9] J. Sijs and M. Lazar, “State fusion with unknown correlation: Ellipsoidal
intersection,” Automatica (in press), 2012.

[10] G. Karsai and J. Sztipanovits, “A model-based approach to self-adaptive
software,” Intelligent Systems and their Applications, IEEE, vol. 14,
no. 3, pp. 46 –53, may/jun 1999.

[11] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. e. Magee,
“Software engineering for self-adaptive systems: A research roadmap.”
in Software Engineering for Self-Adaptive Systems, ser. Lecture Notes
in Computer Science, vol. 5525. Springer, 2009, pp. 1–26.

[12] R. Hartenstein, “A decade of reconfigurable computing: a visionary ret-
rospective,” in Design, Automation and Test in Europe, 2001. Conference
and Exhibition 2001. Proceedings, 2001, pp. 642 –649.

[13] E. L. d. S. Carvalho, N. L. V. Calazans, and F. G. Moraes, “Dynamic task
mapping for mpsocs,” IEEE Des. Test, vol. 27, pp. 26–35, September
2010. [Online]. Available: http://dx.doi.org/10.1109/MDT.2010.106

[14] T. Streichert, D. Koch, C. Haubelt, and J. Teich, “Modeling and design
of fault-tolerant and self-adaptive reconfigurable networked embedded
systems,” EURASIP JOURNAL ON EMBEDDED SYSTEMS, p. 15,
2006.

[15] S. Kogekar, S. Neema, B. Eames, X. Koutsoukos, A. Ledeczi,
and M. Maroti, “Constraint-guided dynamic reconfiguration in sensor
networks,” in Proceedings of the 3rd international symposium on
Information processing in sensor networks, ser. IPSN ’04. New
York, NY, USA: ACM, 2004, pp. 379–387. [Online]. Available:
http://doi.acm.org/10.1145/984622.984677

[16] B. Morin, O. Barais, J.-M. Jzquel, F. Fleurey, and A. Solberg,
“Models at runtime to support dynamic adaptation,” IEEE
Computer, pp. 46–53, October 2009. [Online]. Available:
http://www.irisa.fr/triskell/publis/2009/Morin09f.pdf

[17] S. Kalasapur, M. Kumar, and B. Shirazi, “Seamless service composition
(sesco) in pervasive environments,” in Proceedings of the First ACM
International Workshop on Multimedia Service Composition, ser. MSC
’05. New York, NY, USA: ACM, 2005, pp. 11–20. [Online]. Available:
http://doi.acm.org/10.1145/1099423.1099428

[18] X. D. Koutsoukos, M. Kushwaha, I. Amundson, S. Neema, and J. Szti-
panovits, OASiS: A service-oriented architecture for ambient-aware
sensor networks, 2007, vol. 4888 LNCS, pp. 125–149.

[19] Y. Wu, K. Kapitanova, J. Li, J. A. Stankovic, S. H. Son, and
K. Whitehouse, “Run time assurance of application-level requirements
in wireless sensor networks,” in Proceedings of the 9th ACM/IEEE
International Conference on Information Processing in Sensor Networks,
ser. IPSN ’10. New York, NY, USA: ACM, 2010, pp. 197–208.
[Online]. Available: http://doi.acm.org/10.1145/1791212.1791236

[20] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Prentice-Hall, Englewood Cliffs, NJ, 2003.

