
Using Agent-based Simulation in a Decision Support System

for Military Command & Control

T. T. Luik BSc.
Faculteit Exacte Wetenschappen,
Vrije Universiteit Amsterdam

August 6, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
IN

ARTIFICIAL INTELLIGENCE

Project Supervisors

Dr. T. Bosse (VU Amsterdam)

Ir. N.M. de Reus (TNO Den Haag)

Project Period

September 2011 - August 2012

Abstract

In the military, command & control (C2) systems are used by the commanders to provide
orders to their troops and to monitor the execution of these orders. By connecting such systems
to a simulator, the simulator’s computer generated forces can replace actual human forces,
providing cheap, quick and reusable units for purposes such as training, mission preparation or
even support during mission execution. To allow this connection, TNO created a multi-agent
system to understand the orders from the military commander and subsequently provide the
simulator with the correct tasks to execute the given order. Building on this foundation, this
Master’s project’s task was to take it one step further by finding and creating a prototype
application for these agents. We chose to apply our multi-agent system in a decision support
system (DSS). For a decision support system based on simulation to actually provide support to
the commander, its interface needs to be usable in the C2 process and the simulation’s results
need to be realistic. To solve these problems, requirements from related research and military
experts on both these matters were consulted. Based on these examples, our decision support
system now provides a table in which multiple orders from the C2 system can be mapped to
an analysis of their execution in the simulator. During, prior or after simulation, these analysis
criteria can be shown or hidden, allowing the user to compare the orders on only the most
interesting criteria. To increase the realism of the simulation’s results, military doctrine has
been introduced to the multi-agent system. Now the agents can break up an assault in the
required phases, move in the correct formations and respond to unexpected enemy behaviour
with a blocking position, based on doctrinal documents provided by the Royal Netherlands
Army. By doing this, we have shown a glimpse of the future where the computer generated
forces realistically mimic soldiers’ behaviour like teamwork, coordination, reactive capabilities
and the deliberate doctrinal planning, thereby allowing the simulator to realistically foresee the
results of the commander’s orders. When used in conjuction with an expanded version of our
decision support system, commanders will be able to realistically evaluate and compare their
courses of action and choose the best one for accomplishing their current mission.

Acknowledgements

I would like to thank Tibor Bosse for supervising my Master’s project from the VU, providing
support and guidance on writing this thesis and on the grand layout of the project. Next,
I would like to thank Nico de Reus for providing me this opportunity to do my project at
TNO and for guiding me on a weekly basis, for arranging meetings with the experts and much
more. Also, I would like to thank Henk Henderson for his support on the programming side
of this project. And finally, I would like to thank the rest of the TNO Modelling, Simulation
and Gaming group for showing me a good time at TNO; and for allowing me to join in the
personal-growth sessions with Dutch guru Remco Claassen!

Contents

1 Introduction 8
1.1 Problem Domain . 9

1.1.1 TNO . 9
1.1.2 Command Agents . 10

1.2 Solution Range . 10
1.3 Research Question . 11

1.3.1 Usability . 11
1.3.2 Realism . 11

1.4 Thesis Outline . 12

2 Background and Related Work 13
2.1 Command & Control (C2) . 14

2.1.1 Command Hierarchy . 14
2.1.2 Military Decision-Making Process (MDMP) 15
2.1.3 Course of Action (COA) . 15
2.1.4 Integrated Staff Information System (ISIS) 16

2.2 Simulation Technologies . 16
2.2.1 Simulation Standards . 16

2.2.1.1 Coalition Battle Management Language (C-BML) 17
2.2.1.2 Military Scenario Definition Language (MSDL) 17
2.2.1.3 High-Level Architecture (HLA) 17

2.2.2 Computer Generated Forces (CGF) . 18
2.2.2.1 CGF Requirements . 19
2.2.2.2 VR-Forces . 20

2.2.3 Agents . 21
2.2.3.1 Belief-Desire-Intention (BDI) model 22

2.2.4 TNO Architectures . 24
2.2.4.1 System Architecture . 24
2.2.4.2 Agent Architecture . 24

2.3 Decision Support System for Command & Control 26
2.3.1 Previous C2 DSS projects in literature . 26
2.3.2 DSS Requirements . 28

1

3 Methods 31
3.1 Expert Information Solicitation . 32
3.2 Hardware & Software . 33
3.3 Validation . 33

4 Model 34
4.1 Increasing Realism . 35

4.1.1 Agent Behaviour . 35
4.1.2 Combat Instruction Sets (CISs) . 36

4.1.2.1 Scenario . 36
4.1.2.2 Assault . 37
4.1.2.3 March and Formations . 39
4.1.2.4 Blocking Position . 43

4.2 System Architecture . 44
4.3 Conceptual Design - Agent . 44

4.3.1 Agent Architecture . 45
4.3.2 HLA Manager . 45
4.3.3 Information Manager . 46
4.3.4 Stub agent . 46
4.3.5 Battalion agent . 46
4.3.6 Company agent . 46
4.3.7 Platoon agent . 47

4.4 Conceptual Design - Decision Support System (DSS) 47
4.4.1 Initial concept . 47
4.4.2 Measures of Effectiveness (MOEs) . 48

5 Implementation 50
5.1 Communicating to VR-Forces: New in- & output requirements 51

5.1.1 Set Heading, Turn To Heading & Set Speed 52
5.1.2 Abort executing task . 54
5.1.3 Move into formation . 54
5.1.4 Follow . 56
5.1.5 EntityFuel & EntityAmmunition . 56

5.2 Communicating with C2IS: Processing the MSDL ORBAT 58
5.3 Agent Behaviour: Implementation of the CISs . 59

5.3.1 CIS: Assault on Enemy Position . 59
5.3.1.1 Phase 1 : Preparation . 59
5.3.1.2 Phase 2 : Fire and Movement 61
5.3.1.3 Phase 3 : Final attack . 61
5.3.1.4 Phase 4 : Consolidate and Reorganize 61
5.3.1.5 Finalizing the assault . 61

5.3.2 CIS: Tactical Road March . 62
5.3.2.1 TacticalRoadMarch plan . 62
5.3.2.2 OffRoadMarch plan . 63

5.3.3 CIS: Hasty Occupation of a Blocking Position 63
5.3.3.1 Distance threshold . 63
5.3.3.2 Expected locations . 63
5.3.3.3 Blocking positions . 63
5.3.3.4 Suspension of other tasks . 64
5.3.3.5 Ending the blocking positions 65
5.3.3.6 Diagrams . 65

5.3.4 CIS formations . 65
5.3.4.1 Positional offset . 67
5.3.4.2 Heading . 69
5.3.4.3 CIS: Column Formation (Tank Company) 69
5.3.4.4 CIS: Column Formation (Tank Platoon) 69
5.3.4.5 CIS: Line Formation Traveling (Tank Company) 70
5.3.4.6 CIS: Line Formation Traveling (Tank Platoon) 70

5.4 DSS . 71
5.4.1 Implementing the GUI . 71

5.4.1.1 Table . 71
5.4.1.2 Listening to the DSS . 71

5.4.2 Computing the MOEs . 72
5.4.2.1 Survival rate . 72
5.4.2.2 Fuel percentage & ammunition percentage 73
5.4.2.3 Completed . 73
5.4.2.4 Enemy survival rate . 74

6 Results 75
6.1 DSS Behaviour . 76

6.1.1 Connecting DSS with an order . 77
6.1.2 Hiding MOEs . 77
6.1.3 Retrieving MOEs for the order . 78
6.1.4 Comparing MOEs . 79

6.2 CGF Behaviour . 80
6.2.1 Marching . 84

6.2.1.1 Previous Behaviour - Move . 84
6.2.1.2 Tactical Road March . 84
6.2.1.3 Column Formation . 84
6.2.1.4 Line Formation . 86

6.2.2 Assault on a enemy position . 86
6.2.2.1 Previous Behaviour - Seize . 86
6.2.2.2 Phase 1: Preparation . 87
6.2.2.3 Phase 2: Fire and Movement . 88
6.2.2.4 Phase 3: Final Attack . 88
6.2.2.5 Phase 4: Consolidation . 89

6.2.3 Blocking Position . 90

6.2.3.1 Enemy Presence . 90
6.2.3.2 Blocking Position occupied . 91
6.2.3.3 Enemy destroyed . 91
6.2.3.4 Blocking Position completed . 93

7 Discussion 94
7.1 Usability . 95

7.1.1 Expert desires . 95
7.1.2 Literature requirements . 96

7.2 Realism . 99
7.2.1 Level of realism . 99
7.2.2 Requirements . 100

7.2.2.1 Architecture . 100
7.2.2.2 Autonomous Operation . 100
7.2.2.3 Realistic Behaviour . 100
7.2.2.4 Organization . 101

7.3 BDI agents for C2-Simulation interoperability - good approach? 102
7.4 Future Work . 103

7.4.1 Remark about level of realism and discussion with RNLA experts 103
7.4.2 DSS . 104
7.4.3 CGF requirements . 105

8 Conclusions 106

Bibliography 110

A AI Upgrade Possibilities 114
A.1 Agent Behaviour . 115
A.2 Path Planning . 116
A.3 Enemy Behaviour . 116

B Combat Instruction Sets (CISs) 118

C UML Diagrams 120
C.1 Order processing . 121
C.2 UML Activity Diagram - CIS Blocking Position 121

C.2.1 Unit Detection Update diagram . 122
C.2.2 Blocking Position Battalion diagram . 122

D Military Scenario Definition Language (MSDL) 125
D.1 MSDL elements . 126

D.1.1 msdl:MilitaryScenario Element . 126
D.1.2 msdl:Organizations . 126
D.1.3 msdl:Units . 126
D.1.4 msdl:Unit . 126

D.1.5 msdl:Equipment . 126
D.1.6 msdl:EquipmentItem . 126

E FOM 132
E.1 FOM changes . 133

Glossary

B-HAVE AI navigation module in VR-Forces

BDI Belief-Desire-Intention agent paradigm

C-BML Coalition Battle Management Language

C2 Command and Control

C2IS Command and Control information system

C2WS Command and Control workstation, a synonym for C2IS

CGF Computer Generated Forces

CIS Combat Instruction Set

COA Course of Action

COP Common Operational Picture

COTS Commercial Off-The-Shelf

CxBR Context-based Reasoning agent paradigm

DSS Decision Support System

FFI Norwegian reseach institute Forsvarets forskningsinstitutt

FOM Federation Object Model

GIS Geographic Information System

GUI Graphical User Interface

HLA High-Level Architecture

ISIS RNLA’s C2IS called Integrated Staff Information System

Jadex Reasoning engine for BDI agents

Low-level BML Low-level Battle Management Language, TNO and FFI’s extensions to C-BML

6

M1A2 M1 Abrams tank

MAS Multi-Agent System

MDMP Military Decision-Making Process

MOE Measure of Effectiveness

MSDL Military Scenario Definition Language

MSG Modelling, Simulation and Gaming department of TNO in the Hague

MSG-048 NATO’s Modelling and Simulation Group 048

MSG-085 NATO’s Modelling and Simulation Group 085

NATO North Atlantic Treaty Organisation

NPC Non-Player Character

OpOrder Operation Order Template

ORBAT Order of Battle

RNLA Royal Netherlands Army

ROE Rules of Engagement

RPR FOM Real-time Platform Reference FOM, SISO’s FOM standard

RTS Real-Time Strategy

SISO Simulation Interoperability Standards Organization

TNO Netherlands Organisation for Applied Scientific Research

UML Unified Modeling Language

VR-Forces Virtual Reality Forces, a simulator from MÄK Technologies

VU Vrije Universiteit Amsterdam

XML Extensible Markup Language

Chapter 1

Introduction

8

Introduction 9

1.1 Problem Domain

Igitur qui desiderat pacem, preparet bellum. Vegetius Renatus (390)

Vegetius’ (∼390 AD) quote can be translated as: ”Therefore whoever desires peace, let him
prepare for war”. Still in this day and age it remains current, as nations around the world
continue to try and obtain a competitive edge with new military technology. With the advent
of the computer, military forces have created command & control (C2) systems to support
the commanding staff in controlling their military operations. While the soldiers are executing
an operation on the battlefield, the commanding staff resides off the battlefield with the C2
information system (C2IS1), trying to gain situational awareness of the current state of the
operation, so that the best informed decisions can be made. A recent development in this area
is the interoperability between C2 systems and simulation. Instead of providing the C2 system
with real-time input from sensors, simulation systems can be plugged in to model battlefield
situations and simulate this input. If successfully integrated, staff can be trained in a cost-
effective way using the preferred train as you fight paradigm. Moreover, realistic battlefield
situations can be simulated before or parallel to an operation, to support the commanding staff
in their decision making before or during an operation. As such, C2 - simulation interoperability
should be of great benefit to whoever desires peace.

1.1.1 TNO

The research for this Master’s thesis has been conducted at TNO, an independent Dutch research
institute. TNO is contracted by, among others, the Netherlands’ Ministry of Defence to perform
their defence research. Furthermore, TNO, as Dutch representative, has been part of multiple
NATO Modelling and Simulation task groups. This thesis is motivated partly by the work
TNO is doing for one of these task groups: MSG-0852. MSG-085 is responsible for evaluating
the Coalition Battle Management Language (C-BML), which is a standardized language for
communication of orders between military C2 systems and simulation systems (Bronkers et al.,
2011). For a previous NATO task group, MSG-0482, TNO and FFI (Norway3) have co-developed
a C-BML interface for their C2 systems. This interface allows the C2 systems to communicate
using C-BML. However, current simulators can not directly process C-BML orders from the
C2 systems yet. While C2 systems issue high-level orders, simulators act on low-level orders,
e.g. they need an order for single units instead of groups. To bridge this gap, both research
institutes are developing a multi-agent system (MAS) to translate the orders from high-level to
low-level. This MAS has been modelled by the two countries using two different agent models:
TNO is using the Belief-Desire-Intention (BDI) paradigm, while FFI uses the Context-Based
Reasoning (CxBR) paradigm. In the future, a comparison between the two different approaches
is to be made (Bronkers et al., 2011).

1http://www.defensie.nl/english/army/materiel/communication_and_information_systems/

information_systems/command__control_workstation
2http://www.cso.nato.int/activities.aspx
3http://www.ffi.no/en/Sider/default.aspx

Introduction 10

1.1.2 Command Agents

The TNO MAS, which is named Command Agents by Bronkers (2011), has to replace part of
the military command hierarchy to transform the high-level orders. For this reason, a similar
hierarchy of agents has been implemented: the Battalion agent, the Company agent and the
Platoon agent. This should allow for a realistic simulation of how an order actually traverses
down the command hierarchy to the soldiers in the field. Moreover, expert knowledge used by
these command echelons can be transferred to their respective agent.

The Command Agents can let the simulator perform three simplified orders: Attack, Defend
and Seize. Here Attack is a task where a position is given, towards which the units should
travel, and the unit’s rules of engagement (ROE) are set to fire at will. The simulation then
concludes from these ROE that the unit should fire upon all enemies in sight. Defend is similar
to Attack, but the ROE are set to fire when fired upon. Seize is a combination of these two:
first the Attack order is given, and after completion of this Attack, the Defend order is given
for the same area.

However, the agents do not yet exhibit a large amount of autonomy, intelligence or realistic
behaviour. They respond to the commands provided by the user by channelling simplified
versions through to the simulator. While already admirable, there are a lot of situations on
the simulated battlefield where autonomous tactical decision making is required. In further
development of the Command Agents, we want more of this reactive and proactive behaviour.

1.2 Solution Range

Recently, TNO started looking for an application of their Command Agents. This application
in the C2 domain could be either in training or in decision support.

In military training, simulation is already a heavily used alternative to the expensive live
training. To allow the commanders to train as they fight, a multitude of human operators
is needed behind the scenes to translate the commands given by the trainee to orders in the
simulator and to report the results back. The Command Agents could automate part of the
activities of these human operators, cutting on costs and making it easier to initiate these
training sessions.

As military decision support, simulation could be used to compare multiple plans by pro-
viding the users with repeatable, objective, evidence-based results on the wargaming situation.
Currently, military plans (courses of action or COAs) are tested subjectively by the commander
and his staff, or not tested at all. Using a simulation decision support system might also allow
usage during an operation, where new events on the battlefield could quickly be analyzed in the
simulator to see if the current COA is still feasible.

For this project, we have opted for identifying a simple decision support case to show the
potential of the Command Agents. This decision was made because the scope can be smaller
and thus results can be obtained faster in a decision support application than in a training
application.

In interviews with military experts, and in a review of related literature, requirements for
this case will be acquired. According to these requirements, a decision support system (DSS)

Introduction 11

will be built that uses the agent-powered simulation to provide some relevant results to its users.
Furthermore, increased realism will be required from the Command Agents to make these results
more useful. The agents replace command echelons where a lot of tactical reasoning is employed
to specify the received command to lower-level units. This reasoning should now be executed by
the agents, while the simulator only takes care of replacing the individual soldier’s or vehicle’s
behaviour on the battlefield. Adding increasingly realistic behaviour to the Command Agents
is also part of this Master’s project.

1.3 Research Question

Our main research question is:

”How can we create a useful decision support system for military planning, using
the combination of simulation and C2?”.

To create a useful decision support system (DSS) using simulation, the system needs to be
usable for military commanders and the results provided need to be realistic. Thus, the multiple
subquestions, entailed in our main research question, are divided into two categories:

• Usability

• Realism

1.3.1 Usability

The usability problem is present in every decision support system (DSS): if the user is to be
supported, the system has to fit in with the user’s actions and environment. The benefits of
using the DSS should outweigh its costs, otherwise the system actually does not support decision
making. Therefore, we will answer: how can we make a usable DSS in the C2 domain?

To this end, we will figure out requirements of a DSS for C2 from related work on this
matter. Furthermore, we will pick a part of military planning from C2 that is applicable for
DSS support. This allows questions such as what DSSs have previously been used in this area
of C2? Finally we will figure out from these requirements, related work and expert information,
what the user interface of the DSS should be like. This entails how results from our simulation
will be represented by the DSS. For interoperability, the DSS will need to interact with the
simulator and the agents, so we will find a way to connect it to the current system framework.

1.3.2 Realism

Even if a DSS is usable, it can only be useful if it has some substance, if the information it
provides is realistic. Realism of the DSS is based on the results from the simulation. For this
reason, we also need to answer the following question in our project: how can we make the
simulation results more realistic?

Introduction 12

The factors influencing the simulator’s realism are its own models, the agents providing the
orders and the context or scenario created during setup. The first depends on the simulator
used, but the latter two are modifiable.

We have identified three distinct ways of showing realism in the agent: response to orders,
environment and enemy actions. More realistic response to orders might include comprehension
of more than three orders or allowing more detailed orders. For example, allow one order that
is conditional on the success of another. More realistic response to the environment might
include more realistic path planning, where the agent could take into account the type of roads,
visibility, expected danger, and more. More realistic response to enemy actions concerns itself
with the dynamic changes in the environment caused by opposing forces. If fired upon, the
agent might want to adjust its current plan, starting with a hasty retreat.

Finally, a more realistic context can be created by using e.g. realistic names, command
hierarchies and unit types. This should allow for a quicker comprehension of results by the
military user.

1.4 Thesis Outline

In Chapter 2 we will discuss the background information needed to understand what is written.
Then Chapter 3 will explain the methods we used, Chapter 4 will provide the model we have
created and Chapter 5 will describe how we implemented this model. This setup will of course be
followed by Chapter 6, in which we will show the results we have obtained. Finally, a discussion
of the results can be found in Chapter 7 and our conclusions in our final Chapter 8.

Chapter 2

Background and Related Work

13

Background 14

In this chapter, we shall provide extra information on the subjects needed to comprehend the
rest of this thesis. The outline is as follows: In section 2.1, information about military command
& control principles is provided. Then in section 2.2, we discuss the simulation technologies
and agents used in this project. Finally, in Section 2.3, decision support system requirements
are discussed.

2.1 Command & Control (C2)

”The exercise of authority and direction by a properly designated commander over
assigned and attached forces in the accomplishment of the mission. Command and
control functions are performed through an arrangement of personnel, equipment,
communications, facilities, and procedures employed by a commander in planning,
directing, coordinating, and controlling forces and operations in the accomplishment
of the mission. Also called C2.”
(Joint Education and Doctrine Division, J-7, Joint Staff, U.S. Department of Defense, 2011)

Military command & control contains the planning of the operation and the coordination of
the troops by the military commanders. It is a concept of centralized decision making, where
a commanding staff needs to manage a diverse collection of units and equipment in order to
obtain a particular effect, usually against the will of an opposing force.

2.1.1 Command Hierarchy

Figure 2.1: The Operational Unit Diagram from
U.S. Army (2011)

A modern army is divided into multiple levels
of command (called echelons), creating a com-
mand hierarchy. For example, look at such
a command hierarchy for the U.S. Army in
Figure 2.1. Note that the Royal Netherlands
Army (RNLA), our target audience, can only
field 3 Brigades (Royal Netherlands Army,
Ministry of Defence, 2011), so its hierarchy
is a subsection of Figure 2.1. In the
previous work done by TNO (Bronkers, 2011),
the command hierarchy has been limited to
the battalion, company and platoon levels.
Instead of the squad level, individual tanks
were used (i.e. each platoon consisted of 4
tanks). As the RNLA has disbanded all
cavalry due to budget cuts1, other vehicles
might be simulated. However, the actual soldiers and equipment (including vehicles) that
make up these echelons in a particular situation are given in an order of battle (ORBAT). For

1http://www.defensie.nl/english/latest/news/2011/05/26/48183133/Dutch_tank_history_ends_

with_a_bang

Background 15

an increasingly realistic context, automatically connecting the ORBAT from the C2 system to
the simulator shall be considered in this project. This would allow the Command Agents to
automatically create the correct agents for the current scenario and the simulator to simulate
the correct equipment.

2.1.2 Military Decision-Making Process (MDMP)

Figure 2.2: The Military Decision-Making Process, see Figure 5-1 in FM 101-5 Staff Organization and
Operations (1997)

The MDMP is a planning method for military decision-making. It shows on a high level how
the military command staff should plan their operation. Its steps are receipt of mission, mission
analysis, course of action (COA) development, COA analysis (wargaming), COA comparison,
COA approval and orders production. Since this is the method used in C2 decision making, our
DSS should naturally fit into one (or more) of these levels before it can be useable. The middle
three COA steps are where the plan for a mission is made and thus these are most suitable for
decision support using simulation.

2.1.3 Course of Action (COA)

Figure 2.3: A Course of Analysis sketch (Stolt,
2007)

A course of action (COA) is a combination of
orders for different military units that should
lead to the accomplishment of the mission. Its

Background 16

creation is a part of the MDMP. As can be seen in the example COA in Figure 2.3, a COA
might be sketched on an abstract (digital) map using high-level units. The commanding staff
of the higher echelons only concern themselves with the grand layout of the operation (e.g.
company level). These commands are propagated downwards to the soldiers on the field by the
commanders of the lower echelons in the hierarchy, as seen in section 2.1.1.

2.1.4 Integrated Staff Information System (ISIS)

Figure 2.4: Military personnel using ISIS (RNLA,
2011)

ISIS is a command & control information sys-
tem (C2IS), used by the RNLA and TNO,
providing the commanding staff with an inter-
active environment to exercise their command
and control. According to RNLA (2011), ISIS
consists of three systems: Geographic
Information System (GIS), Order of Battle
(ORBAT) and Operational Order Template
(OpOrder). GIS shows a digital map con-
taining the Common Operational Picture
(COP), e.g. real-time updated positions of
friendly and enemy units, towns, buildings
and bridges, shared by all command levels
using this system. The ORBAT allows the
commanding staff to input a military hierar-
chy in the system (e.g. which units make up
which platoons, companies and battalions). OpOrder allows the commander to formulate its
orders in a uniform manner using a Word template provided by the NATO. In the current setup,
orders are provided by an overlay on GIS and then translated to C-BML (see Section 2.2.1.1)
when sent to the agents.

2.2 Simulation Technologies

In this section we will discuss information related to the simulation side of this project. This
includes CGF, agents, C2-simulation interoperability standards and the architectures from
Bronkers (2011).

2.2.1 Simulation Standards

Standards allow for reuse and interoperability of software components across multiple projects
and people. Therefore, this project’s architecture also uses standards from the simulation
field. In fact, the NATO MSG-085 project that TNO is working on is part of evaluating the
C-BML standard. The main maintainer and updater of simulation standards is Simulation
Interoperability Standards Organization2 (SISO), which is responsible for most of the following

2http://www.sisostds.org/

Background 17

standards.
Below I shall describe some of the standards that are used in our architecture: C-BML for

the orders sent from a C2 information system (C2IS) to the agents; MSDL for the setup of the
scenario (units, terrain, et cetera) in the simulator; and HLA as the transport bus and means
of communication between the C2IS, the agents and the simulator.

2.2.1.1 Coalition Battle Management Language (C-BML)

C-BML is a language standardized and maintained by SISO to be able to describe orders given
in a COA, so that the orders provided in the C-BML language are universally understood by
all simulators. When completed, C-BML should allow the tactical ideas in the head of the
commander to be transferred to a computer-understandable format, without loss of information
or ambiguity. The orders given in ISIS are translated to C-BML, in an XML format, and
transferred to the agents. Reports generated by VR-Forces and the agents are also translated
to C-BML before they are sent back to ISIS. In a future best-case scenario agents would not
be needed as an intermediary, as the simulator would understand and comply with the C-BML
language, executing orders as they are given by a C2IS.

Communication of orders and reports between the agent and the simulator is not part of a
standard, and have been called low-level BML, as opposed to the (high-level) C-BML standard.

2.2.1.2 Military Scenario Definition Language (MSDL)

MSDL is a language standardized and maintained by SISO, used to enable description of, among
others, the ORBAT in a uniform way. This way all simulators should be able to understand the
provided ORBAT when it is written using MSDL. MSDL can then be used to automatically
synchronize the setup (number, type, etc.) of units in VR-Forces and the C2 system ISIS. A
MSDL file is written in XML (Extensible Markup Language), and a XML schema3 has been
provided by SISO that describes the elements that should be adhered to. In Appendix D you
can find examples of MSDL used during this project and descriptions of some elements of the
MSDL XML schema.

Currently in use is the ORBAT provided in the MSDL file: military echelons are provided
as Units, including their echelon level, their name, their superiors, et cetera. Other units are
provided as Equipment, e.g. a tank with its crew, or an individual soldier.

2.2.1.3 High-Level Architecture (HLA)

HLA is the High-Level Architecture that, when adhered to by all systems, provides interop-
erability between these systems. This means that the simulators will be able to share data
effectively and interpret data from other simulaors effectively (Dahmann et al., 1997). It is used
as a communication line for common understandability in this project’s system architecture,
connecting ISIS (gateway), the agents and VR-Forces, transferring the C-BML and low-level-
BML messages. These include all the updates about entities in the simulator and the orders
provided from the C2 system.

3http://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryId=30830

Background 18

FOM Specifications of what can be transferred via HLA are recorded in an XML file, referred
to as a the Federation Object Model (FOM). It is the ontology shared between the different
simulators to understand what is received from and sent to HLA. When additional information
is required from a simulator, the FOM will have to be adjusted so that other users of the HLA
bus will be able to receive this information.

There is a FOM standardized by SISO since 1999 called the real-time platform reference
FOM or RPR FOM, providing a common ontology for simulators. The FOM used in this project
is the RPR FOM extended with low-level BML. More detailed description of (adaptions to) the
FOM in our project will be provided in Chapter 4, Chapter 5 and Appendix E.

HLA Evolved During this project, an update of HLA, called HLA Evolved, has been taken in
use. This newer version of HLA allows for modular FOMs, allowing for example the separation
of the RPR FOM and our low-level BML extensions into two modules. When working properly,
this should allow communication between simulators while they do not share the exact same
FOM, as all FOM modules are added to the current HLA ontology. An example of its usefulness
is that our simulator and agent, working with our extended FOM, can still communicate with
a simulator from a coalition partner who, for example, only employs the RPR FOM.

2.2.2 Computer Generated Forces (CGF)

In this subsection, we will present the basics about computer generated forces (CGF). A de-
scription of this term, given by M & S Office, U.S. Army (2011), is provided below.

“A generic term used to refer to computer representations of entities in simulations
which attempts to model human behaviour sufficiently so that the forces will take
some actions automatically (without requiring man-in-the-loop interaction).”

(M & S Office, U.S. Army, 2011)

CGF are the automated forces provided in the simulations, whether ally or enemy. Some-
times the simulators themselves are also referred to as CGF. They are an attempt to model
the behaviour of the human operators they replace. Techniques used to model and implement
behaviour of these CGF are generally taken from other fields of work, e.g. Artificial Intelligence
& Computer Games, where similar entities occur in different forms.

In the field of Artificial Intelligence, autonomic entities that model some behaviour are called
(intelligent) agents. These can be used to automate a multitude of different entities such as
elevators, washing machines and air traffic controllers (Rao and Georgeff, 1995). The agent is
a model that should be able to reason on his knowledge and input from sensors, so that it can
provide automatic output without the need for human interference. A lot of agent-architectures
have already been researched and successfully implemented in industrial applications. Moreover,
agents are used to model human behaviour realistically and effectively, so they are a good fit
for substituting human operators in CGF. More information will be provided in Section 2.2.3.
However, an agent is a much larger concept, applicable to almost all autonomic software (and
even non-software phenomena). One could model an elevator as an agent, responding to stimuli
from its environment with the action of moving up or down, opening doors et cetera. However,

Background 19

an elevator is not generally taken as part of any military forces (whether computer generated
or not).

In the field of Computer Games, the autonomic artificial entities are generally referred to as
Non-Player Characters (NPC) or Bots. Real-time Strategy (RTS) games are similar to military
simulations, since they both depict a battlefield filled with automated forces and opposing forces
will fight a simulated battle if they encounter each other. As such, a game engine can be a decent
starting ground for a simulator. However, the goals of simulations and games are very different.
In computer games, excitement and fun have top-priority, generally opposing the realism that is
needed for simulations. In contrast, the agent architectures from the AI community have realism
as a high priority, with the ultimate challenge of mimicking (or surpassing) human intelligence.
Furthermore, a connection between military simulations and intelligent agent architectures has
been there from the start. Rao founded the prominent agent paradigm Belief-Desire-Intention
(BDI) (Rao and Georgeff, 1991, 1995), and applied it soon thereafter in SWARMM (Rao, Lucas,
Morley, Selvestrel and Murray, 1992), one of the first behaviour models supporting (air-)combat
simulation.

For a more in-depth comparison between these different types (agent, bot, CGF), consult
Sandercock et al. (2004).

2.2.2.1 CGF Requirements

Figure 2.5: Requirements for CGF AI as shown in Abdellaoui et al. (2009)

Numerous scientific articles have been written in the CGF domain, including some stating
requirements that should be adhered to if CGF are to become realistic simulated entities (Tidhar
et al., 1999, Brandolini et al., 2004, Abdellaoui et al., 2009). A recent set of requirements, from

Background 20

Abdellaoui et al. (2009), can be found in Figure 2.5. They reason that requirements for entity
AI in military simulation are not only realistic individual behaviour, but also the organization
of multiple entities, the architecture possibilities, autonomous operation and learning. However,
realism is still an important aspect and they divide it up in physical modeling and doctrine. In
our project, phsyical modeling is left up to the simulator, but doctrine could be a new addition
to the agents.

Brandolini et al. (2004) provide multiple additional motivational requirements such as a
stress level indicator, survival instinct and moral/ethical motivations, providing extra realistic
behaviour since doctrine training is not the only factor in human behaviour. Furthermore, the
CGF’s organizational requirements should include relevant military hierarchy, force aggregation
and military report and feedback capabilities, similar to some of the requirements stated in
Abdellaoui et al. (2009). Tidhar et al. (1999) also named similar concepts but in broader terms.
This includes requirements such as emotions (motivational), social awareness (military hierar-
chy), explanations (feedback) and innovation (learning). Situational awareness or prediction
capability is also named by Tidhar et al. (1999) and Abdellaoui et al. (2009), with the latter
concluding that no such behaviour can yet be found in CGF.

2.2.2.2 VR-Forces

VR-Forces is a simulation environment created by VT MÄK (2011b) specifically created to
support CGF simulation. New versions of VR-Forces also provide a 3D view, but in the previous
versions it only provided a top-down 2D view, similar to ISIS. In previous work on this TNO
project, VR-Forces has been used as the CGF simulator and, while possible, this has not changed
for this project. Moreover, Abdellaoui et al. (2009) provide a comparison of the currently
available CGF and VR-Forces was found to be the overall winner of their evaluation. As such,
it had scored best among its peers on the requirements from Figure 2.5.

B-HAVE The AI navigation module for VR-Forces is called B-HAVE (VT MÄK, 2011a). This
means that B-HAVE takes care of the path-planning needs of the CGF. It is created using
Autodesk’s Kynapse technology4 and plans paths for individual units.

Unit Types Units in VR-Forces will be set up based on the information provided in the MSDL
ORBAT file and information provided in the scenario editor (the latter is still needed because
enemy units are not setup with MSDL instructions). Since the agents will reason on the infor-
mation sent from VR-Forces about these units, we will need to know the distinctions. First of
all, a group in VR-Forces is called an aggregate, while an individual unit is an entity. So the
military command echelons will be represented by an aggregate in VR-Forces and the equipment
by entities. Aggregates have extra capabilities such as forming a formation, but they depend
on their subordinate entities or aggregates to achieve their goals. Entities are capable of mov-
ing and firing their weapons on their own. Furthermore, VR-Forces is capable of simulating

4For more information, see http://gameware.autodesk.com/kynapse

Background 21

many different types of these entities, like the tank M1A25, or human soldier with a RPG-76 as
weapon.

Updates concerning these aggregates and entities are sent in reports over HLA, thereafter
intercepted by our agents.

VR-Forces 4.03 During this project, an update has been applied to VR-Forces. Most of the
implementation has been done using VR-Forces 3.12, the same Bronkers (2011) used, but with
some conversion (on the VR-Forces plugin side of the project) the update has been accomplished
as well.

2.2.3 Agents

Agent-based modeling is a modelling paradigm from the Artificial Intelligence field, used for
autonomic entities that are capable of rational reasoning and communicating. As such, the weak
notion of agency states that an agent’s behaviour should be autonomous, responsive (reactive),
pro-active and social (able to communicate) (Wooldridge and Jennings, 1995). However, as shall
be seen later on with the Command Agents, not all agents adhere even to this weak notion.
On the other hand many researchers have proposed more specific requirements in particular
domains. In the domain of military simulation, Lucas and Goss (1999) provide a list of key
characteristics for intelligent agents, as shown below:

• autonomy

• high-level representation of behaviour - easy to define command and control architectures

• flexible behaviour, combination of pro-activity and reactivity

• real-time performance

• suitability for distributed applications

• ability to work cooperatively in teams

This list already entails part of the criteria required for the CGF, thus agent-based technol-
ogy should be an excellent fit. Next to translating the orders to an understandable level for the
simulator, agents can be used to obtain more of the AI requirements from Section 2.2.2.1.

There are several different agent paradigms, the one used by TNO to support the CGF is
the BDI agent. The Norwegian research institue FFI implements a Context-Based Reasoning
(CxBR) agent system instead, which should allow for future comparison of agent paradigms.
This also shows that similar behaviour might be implemented with different paradigms, with
the only difference being the way in which it is written down. Section 2.2.3.1 provides an
explanation of the BDI paradigm.

Background 22

Reasoner

External Environment
(Model of the battlefield)

Agent

Belief database
(Current state of the environment

as perceived by the agent)

Intentions
(Commitment to achieve a

particular goal)

Plans
(Tactics for achieving

particular goals)
Goals

Form a new intention

Select plans that
are applicable

Generate events from
executing intentions

Generate events
from beliefs

Figure 2.6: BDI reasoning framework.

2.2.3.1 Belief-Desire-Intention (BDI) model

Here we will discuss the Belief-Desire-Intention model (BDI) from Rao and Georgeff (1995),
implemented by TNO in their Command Agents. This model has been used extensively in
industrial and scientific applications and frameworks implementing BDI are numerous. BDI
is a paradigm for (agent) software engineering with its roots in folk-psychology. Using beliefs
about the environment and desires about what should be achieved, BDI provides the means
for agents to be modelled in a way related to human thinking. See Figure 2.6 for an abstract
representation of reasoning in a BDI agent (represented by the box). Here observations from
the external world (the simulator) are turned into beliefs, after which internally goals (desires)
are triggered and chosen. The agent then has to possess some (pre-built) plans that can fulfill
the chosen goal. One of these plans (tactics) will be picked by the reasoning engine and this
plan will initiate an intention, either changing a belief or executing an action in the external
environment.

For example, assume an obedient BDI agent has a desire to execute every order it receives.
When a commander then provides an order, the agent will belief it has received an order.
Because it is an obedient BDI agent, it will want to execute the order it received, thereby
creating the intention to execute the order. If the agent then believes a plan exists that can
currently accomplish this intention, (the first action in) this plan will be executed.

Further in this section I shall explain the different elements of BDI in more detail, pro-
vide a review of this paradigm and discuss a framework, used for the Command Agents, that
implements this paradigm.

5http://en.wikipedia.org/wiki/M1a2
6http://en.wikipedia.org/wiki/RPG-7

Background 23

Beliefs Knowledge gained by the agent from reasoning or sensing are stored as beliefs: these
are the facts the agent subjectively believes to be true. An agent can respond to new beliefs,
e.g. by performing actions. Thus beliefs allow for the agent to react to its environment, an
important feature.

Desires However, the agent can also act in a goal-driven fashion because of the agent’s desires,
which are the goals that the agent wants to achieve. These desires might be defined in the form
of multiple sub-desires / sub-goals to be achieved or basic actions to be performed. Desires can
also be triggered or deactivated based on certain beliefs and they are generally accomplished
by executing an action or adjusting a belief.

Intentions The third element of the BDI framework is the intention, the deliberative state of
the agent. When the agent has a desire and believes it knows a plan (a sequence of actions to
achieve this desire) it will create the intention of performing this plan. Then, when the agent
believes that the current environment allows the intention to be fulfilled, it will perform the
first intended action. This extra step allows for the agent system to commit to its course of
actions as late as possible, also called the least-commitment approach. This allows the agent to
respond to changes in its environment occuring while performing an action, something that is
not possible in most planning methods. Thus in an ever-changing environment with imperfect
information and bounded resources, the BDI agent can still function properly.

Review BDI has been used in military applications numerous times already, e.g. (van Doesburg
et al., 2005, Mcilroy et al., 1996, Tidhar et al., 1999, Rao et al., 1992), and there are many
extensions available as well. Having ample examples and frameworks to build on makes it
easier to develop a military application with BDI agents. Another positive point is that BDI
agents can reason in real-time because the plans used are provided in advance, yet they are
still adaptable because plans are only chosen on the last possible moment. The representation
using beliefs, desires and intentions provides a natural way of modelling human decision making,
making it easier to get the required CGF behaviour. Easy creation of CGF behaviour by using
plans allows for the easy addition of doctrine, one of the requirements from Abdellaoui et al.
(2009). This should make the BDI agent an excellent addition to the simulation environment.

Jadex Jadex is a BDI framework in which agents can be modelled using Java and XML files.
Instead of intentions (and actions), Jadex provides the agents with plans, in which the sequence
of actions to be taken / modifications to be made (internal or external) are written. The
XML files are a description of an agent’s beliefs, goals (Jadex’s desires) and plans and how they
interconnect. Multiple (similar) agents can be created based on one XML file, or multiple agents
can each have their own XML file. This allows, for example, an easy creation of multiple Platoon
agents, which have their own specific set of beliefs, but share the same reasoning capabilities as
the other Platoon agents.

Background 24

2.2.4 TNO Architectures

2.2.4.1 System Architecture

C2 Agent SystemC2 Agent System

Agent
Framework

Agent
Framework

Sim
gateway

Sim
gateway I/FI/F

HLA

C‐BML orders

C‐BML reports Low level
BML order

Low level BML reports

I/FI/F

C‐BML interface
component

CGF interface
component

COTS
CGF

COTS
CGF

Unit positions (Ground truth)

C‐BML reports

C‐BML orders

Figure 2.7: System architecture (Bronkers et al., 2011)

The system architecture created during the previous TNO project (Bronkers, 2011) is shown
in Figure 2.7. Note that ISIS would be located at the left end of Figure 2.7, sending C-
BML orders and receiving C-BML reports from the Sim gateway. The Sim gateway is the
communication link between the current C2IS (ISIS) and the simulation (agent system and
CGF). C-BML orders come in from ISIS in the Sim gateway, after which they are sent to the
C2 Agent System, which is discussed in more detail in Section 2.2.4.2. The C2 Agent System
outputs the Low level BML orders to the current CGF (VR-Forces), so that the simulation
can take place. During the simulation, reports, e.g. the successful completion of an order or
the damage received by a unit, are sent to the agents and unit positions are sent to ISIS from
the CGF. The C2 Agent System then translates these low-level orders to high-level (battalion)
reports which are finally provided to the gateway.

2.2.4.2 Agent Architecture

The C2 multi-agent system created by Bronkers (2011) consists of 6 BDI agents, which are
shown in Figure 2.8. The middle 2 agents are purely functional: the StartAgents agent and the
Stub agent.

StartAgents agent The StartAgents agent is a functional agent only used in Bronkers (2011)
to initiate all the other agents needed in the current scenario. In this way, only one agent has
to be started in Jadex. In the same way, all agents can be stopped by sending a message to the
StartAgents agent.

Background 25

Battalion

Agent

Company Platoon

Stub

Low level BML
tasks

Low level BML
reports

HLA

Start Agents
Agent

C2 Agent System

Command Agents

Agent Agent Agent

HLA Manager

C-BML orders

HLA

C-BML reports

Figure 2.8: Agent architecture as used in Bronkers et al. (2011), Bronkers (2011).

Stub agent The Stub agent is a functional agent created by Bronkers (2011) for increased
testing speed. It subscribes to the BML orders received by the HLA Manager. However,
the Stub agent also allows the developer to send predefined orders to the C2 Agent System
without needing a connection with ISIS. The idea is that the Stub agent can also be used for
further interpreting the BML orders before they are sent to the battalion agent. This might, for
example, be useful when the BML order consists of multiple orders and these have to be sent
individually to the Battalion agent. The Stub agent also receives reports from the Battalion
agent and sends these to the HLA Manager.

HLA Manager agent The HLA Manager agent is the communication agent on both ends of
the C2 Agent System, sending messages to and receiving messages from HLA. Different agents
subscribe to certain information from the HLA manager, e.g. a Platoon wants to receive low-
level BML reports, and the HLA manager will forward messages of this type to subscribed
agents. The HLA Manager will also send acquired reports over HLA to ISIS. For example,
when an entity changes its position in VR-Forces, the entity will be forwarded to HLA, from
where the HLA Manager intercepts the message. In the HLA Manager, this entity will be cast
into one of the applicable Java classes, e.g. the GroundVehicleObject, and forwarded to the
Platoon agent, who will store or update this entity in its beliefs.

Tank Battalion agent The Tank Battalion agent represents the commander of a battalion and
listens to the orders provided by the Stub agent. Based on the name provided by the StartAgents

Background 26

agent and the ORBAT from the MSDL file, the Tank Battalion agent also gets a number of
Company agents assigned to it. After receiving an order, the Tank Battalion agent will delegate
it to its subordinate Company agents whenever appropriate. However, additional reasoning
might also be used for more complex orders. Once the Tank Battalion agent receives the same
task report from every of its subordinate Company agents, it will send this report to the Stub
agent.

Tank Company agent The Tank Company agent represents the commander of a company unit
and receives commands from a Tank Battalion agent. These commands are then delegated to
its subordinate Platoon agents, provided to the Tank Company agent by the StartAgents agent
upon initialization. Similar to the Tank Battalion agent, additional reasoning is used to form
the orders it sends towards the Platoon agents. Moreover, the Tank Company agent will send
a task report to its superior once it has received one from all of its Tank Platoon agents.

Tank Platoon agent The Tank Platoon agents used by Bronkers (2011) are on a direct level of
communication with the aggregate unit in VR-Forces. Previously, the Platoon agent had to send
orders for individual tanks to VR-Forces, but an update to the simulator allowed commands on
the aggregate level (a combination of tanks, the platoon level for VR-Forces). This means that
the Platoon agent will provide the simulator with the actual low-level commands that it needs
to execute. The Tank Platoon agent will subscribe to the reports sent from VR-Forces to the
HLA Manager and report these to its superior Company agent.

2.3 Decision Support System for Command & Control

”A DSS is an interactive computer-based system intended to help decision-makers
utilize data and models to identify problems and make decisions.”

(Sprague Jr, 1980)

Some work related to our DSS for C2 is shown in this section, indicating the possibilities of
such a system and possible requirements or lessons that we can reuse.

2.3.1 Previous C2 DSS projects in literature

There have been a multitude of decision support systems for the C2 domain in countries and
military forces all around the world, some of which may be in use, discarded or still in develop-
ment. We shall discuss a few recent systems and what their plans or successes are, showcasing
possible use-cases for a DSS in C2.

Figure 2.9: DARPA’s Deep Green concept

First and with the grandest imagination,
Deep Green (Surdu and Kittka, 2008a,b) is a
project from the Defense Advanced Research
Projects Agency (DARPA). As seen in Fig-
ure 2.9, Deep Green is to be a decision support
system that helps the commander by analyz-
ing possible future states of the battlefield,

Background 27

using ”Blitzkrieg”, dependent on the COAs of friendly and enemy forces. Only those future
states that are becoming more likely based on the current state, updated using ”Crystal Ball”,
should be developed further. This should allow for anticipatory planning, so that a new COA is
ready before the situation occurs. As stated, this is as of yet only envisioned, but it does indicate
the future vision of C2-Simulation-DSS interoperability. Deep Green is supposed to support the
commander during mission execution with the use of simulation, without intervention needed
from a staff of experts. The decision support system will intelligently plan simulation sessions
and retrieve its results based on the current state so that the commander can access possible
future states and be notified if new game-changing opportunities arrive for either himself or his
enemy. The main difference between DARPA’s Deep Green and past projects is how this DSS
is to support during mission execution instead of merely be used as training help or mission
preparation. Hereby it showcases the possibilities and future use of DSSs as they are created in
projects like ours.

Other recent projects have provided results of their experiments, possible useful information.
One of these is Herbinet et al. (2010), who describe a recent experiment in C2 & Simulation
coupling performed by the Commission Electronique et Optronique Ad-Hoc Working Group
Modeling and Simulation (COMELEC AHWG M&S), a cooperation between the French and
German military forces. Being a part of the MSG-085 group, they were also tasked with
validating the use of C-BML in C2-simulation interoperability. According to Herbinet et al.
(2010), one of the use-cases in the experiment was Planning. In this use-case, French and
German officers created 3 friendly COAs that were all simulated by their CGF, APLET, against
one predefined enemy COA. Apparently, the second COA was chosen as the best one. More
importantly, Herbinet et al. (2010) conclude that the officers reported both a lack of control
and a lack of information. This has been attributed to a lack of explanation from the agents;
a limited number of possible orders and information used by the agents; being designed for a
lower command hierarchy level; non-standardized graphical symbols across the different used
systems; employment of a C2 surrogate system; and a GUI not designed for operational use.
Most of these problems inevitably seem to be related to the system being a prototype, as ours
shall be, such as the limited number of orders and user interface. However, other problems
such as the graphical symbols, C2 system and command hierarchy seem solvable in our project.
This project showcases the use of a DSS (the simulator) in C2 as a help during the analysis and
comparison of COAs, as preparation for a mission.

CASA (Hanna et al., 2005), or Course of Action Simulation and Analysis, shows an effort
that has been made for a DSS in C2 for comparison of COAs, based on Effect-based Operations
(EBO). EBO is the discipline focussed on an abstraction of effects where not only direct military
effects cause a mission to be accomplished. Instead, secondary and tertiary effects are to be
considered where the lower levels cause cascading effects in the later levels. For example, the
commander’s intent might be to get the support of the local population in an area. One course
of action to fulfill the commander’s intent might be to disrupt the enemy’s influence over the
town by destroying the enemy’s stronghold. However, repairing a destroyed bridge near a village
might cause a major improvement in the local economy and that might cause a shift in the town’s
support of enemy forces towards support of our own forces. CASA has created an ontology where
the commander’s intent can be broken down into smaller measures, until at the bottom low level

Background 28

characteristics (or actions) can be found that are directly measurable in the environment and
that can be aggregated (and weighted) to describe any measure needed at higher levels. This
should allow means for comparison of disparate COAs for the same commander’s intent, as
in our example. The focus of the project is on the effect the commander’s intent has on the
value of actions that are executed. Destroying all enemy resistance is not as important in all
plans. Considering secondary and tertiary effects focusses greatly on the motivational part of
entities as described previously in CGF requirements (Section 2.2.2.1). Show of heavy force
might cause opponents to be scared and flee instead of fight. In the end, they conclude that the
ontology is too limited for a fully developed system, partly because displaying the large amounts
of data affecting the COA results created a cluttered and hard to navigate DSS GUI. Thus, for
supporting COA analysis and comparison the DSS should provide a well-founded score, but it
is also vital that it presents this information in a usable way. This project shows us another
side to possibilities of COA analysis and the pitfalls it brings along, as once again the problem
seems to be a DSS GUI that does not match well with the needs of the C2 process.

Back in 2000, Shu-hsien and Liao developed a learning framework for a DSS for C2. The
commander’s intent, based on the current situation, was classified as one of the predefined cases.
At that point the user would work through the MDMP and create COAs for wargaming. If
there was a significant difference in implementation at the end of the decision-making process,
a new case could be created. No further information is given about specifications of the DSS.
The system was tested on 200 Taiwanese officers, where one group would use the DSS and the
other would not, and the results showed that those that used the system had an advantage in
the wargaming scenario compared to those who did not. This DSS showcases another use-case
for a DSS in C2, as it does not help in analysing COAs like the previous ones, but provides
an interpretation of the commander’s intent. One of the main differences is of course that no
simulation is used in this DSS, yet the DSS still provides additional value as the experiment
showed.

As is shown by this subset of DSSs for the command & control domain, there is a great
application area in the MDMP of C2 for such systems. Be it as preparation before creation of a
COA, as help during analysis and comparison of COAs or as support during the execution and
real-time adaption of a COA, DSSs show promise. However, the use of simulation to support
the DSS is assuredly in the section of COA analysis, on which a DSS can be built for COA
comparison. As such, we shall follow in the footsteps of Hanna et al. (2005) and Herbinet et al.
(2010) to provide TNO a prototype DSS for COA comparison.

2.3.2 DSS Requirements

”Tools must complement human COA development and analysis, not try to replace
it.” (Hazen, 2011)

Another subset of the literature on command & control systems discusses the use and the
requirements of previously discussed DSS systems for C2, such as Davidson and Pogel (2010),
Lafond et al. (2010), Hazen (2011) and Prelipcean et al. (2010). Since we are trying to create
our own prototype DSS, we should learn from these requirements.

Background 29

Most importantly, according to Lafond et al. (2010), DSS might do more harm than good
if they are not in tune with the cognitive aspects in C2. This is similar to what Hazen (2011)
describes in the quote above, who writes about the challenges that are faced with the C2-
simulation interoperability. According to Hazen, there is a mismatch between what simulations
have provided and what C2 needs. Generally, the simulations do not provide enough added
value to the already-expert knowledge of the commanders, or the simulations take too much
time to setup and/or run. Hazen also provides a table in which combinations are stated of
C2 requirements and the simulation research needed to accomplish these. One of the main
points concerns standardization, using research like CBML and MSDL, which are being tested
in the our current project. Other points concern the interface and usability of the tool, the
speed, the transfer of experiential knowledge, the addition of non-military scenario information,
extra visualization tools, tools that work across all platforms and a better explanation of the
effects that input parameters have on the simulation. Mainly, Hazen states that ”tools must
complement human COA development and analysis, not try to replace it”, providing possibilities
for the use of simulation if they:

• Fit the timescale of decision-making;

• Incorporate and provide access to experiential knowledge as it is developed by other
commanders;

• Provide value added such as exploratory analysis of variations on candidate COA;

• Provide results that are intuitively understandable by military operators, and are credible
in known situations;

• Provide means of identifying important decision points and conditions to assist in the
development of Commander Information Requirements.

Another useful paper is Prelipcean et al. (2010), who provide us with pointers towards
designing a decision support tool for course of action analysis, exactly what we are aiming at.
They reiterate that the DSS should support the following functions:

• Description of the event;

• Development and description of possible COAs;

• Identification of criteria to be used in the evaluation process;

• Evaluation of the COAs according to the selected criteria;

• Analysis and comparison of these COAs;

• Post-execution analysis.

Description of the event includes assumptions about the enemy forces and COAs and own forces
capabilities et cetera, which can all be modelled in the MSDL standard that we are going to use.
Development and description of the candidate COAs is already possible in our setup thanks to

Background 30

our C2 connection and the C-BML standard for communicating this COA. The other steps are
of value to our DSS model, as we will need criteria for the comparison, we will need to simulate
the COAs and evaluate them according to the chosen criteria. Furthermore, the DSS will need
to allow the comparison of these results.

Criteria related to these supporting functions are described by Prelipcean et al. (2010) as
such:

• Show all the assumptions taken;

• Integrate with other information, planning and decision systems;

• Enable creation of new COA;

• Enable updating existing COA;

• Enable verification of COA feasibility;

• Propose different criteria to be considered in the evaluation process;

• Allow staff to choose other criteria interactively;

• Show all information about the quality of each COA together with a ranking;

• Allow dominance check ;

• Allow post-analysis facility for feedback from officer about how effective the CoA really
was (learning);

• Allow user-profiles for different staff;

• Provide natural interface;

• Users should be aware of the limitations and the level of trust;

• Explanation facility providing explanations adapted to user’s knowledge/background/ex-
perience and time available;

Certainly not all of these criteria can be met in this project, but they do guide us in a certain
direction. Interesting for the usability of our DSS is the interaction requirements that the staff
should be able to select criteria in a natural interface, which coincides with the requirement
from Hazen (2011) that the humans should not be replaced but supported.

Chapter 3

Methods

31

Methods 32

In this chapter, we shall describe how we set up our research, what tools we used and how
we are going to answer the research questions.

3.1 Expert Information Solicitation

First we shall discuss how we got the expert information needed to properly implement military
tactical doctrine into the agent and what our DSS should be like. As can be seen in Section 2.3,
literature provides ample discussion on the needs of a DSS in the C2 domain. However, TNO is
specifically interested in what the RNLA, the stakeholder of this research, would like to see. For
this reason, we have held meetings with subject matter experts (SMEs), related to the RNLA,
on different occasions to discuss the possibilities for this project and what options would be
preferred. Below, a quick overview will be given for every meeting, shortly explaining what was
discussed and concluded.

Brainstorm session - November 9th, 2011

On Wednesday November 9th from 10:30 till 13:00, we held a brainstorm session with 4 SMEs
from RNLA’s Simulation Center (SimCen). The purpose of this session was to find out what
kind of DSS the RNLA would be interested in. Our idea of a DSS in table-form was confirmed,
in which the rows would indicate different routes to be compared and the columns would provide
different measures of effectiveness (MOEs). Furthermore, a number of MOEs were provided by
the SMEs.

Discussion - November 22th, 2011

In a discussion with 1 SME from TNO, on Tuesday November 22th from 13:00 till 15:00, we
asked for feedback on the Artificial Intelligence possibilities in the DSS and how interesting
these might be to potential customers. We proposed the idea of either intelligent path planning
or intelligent agent behaviour. It was concluded that intelligent agent behaviour might be more
promising to start with.

Discussion - December 9th, 2011

In a later discussion with the same SME, on Friday December 9th from 10:30 till 12:00, we talked
about what intelligent agent behaviour should be implemented. Having access to several Combat
Instruction Sets (CIS), we proposed three options: Assault, Blocking Position or Formations. In
the end, we concluded that we should start with Assault, working backwards to a Road March
(using Formations) that could then be interrupted, allowing the Blocking Position to be used.
This should allow modular development of agent behaviour.

Discussion - May 15th, 2012

At this point, we had implemented the basic behaviour shell from the provided CISs as far as
we could determine. However, the CIS descriptions do not discuss every detail, so assumptions

Methods 33

had to be made during the implementation. Therefore, we traveled to RNLA’s SimCen in
Amersfoort again, to find answers to a set of pending questions on this matter. We had a
discussion with 2 SME’s from the earlier session on November 9th, and later in the day another
discussion with a new SME who had played a part in the creation of the CISs. Based on these
discussions, we implemented the final parts of the agent behaviour.

3.2 Hardware & Software

All the software related to the simulation was installed on a Dell XPS M1710 laptop with an
Intel Centrino Duo dualcore-processor, running Windows XP Professional. However, when we
used VR-Forces 4.0.3 instead of 3.12, we needed to use 2 of these laptops, where one ran the
simulator and the other ran the agents and RTI to connect both.

Jadex Because we are extending the BDI agents created by Bronkers in Jadex1, we have also
used the Jadex framework to implement these extensions. For more information on Jadex,
consult Section 2.2.3.1.

Java The DSS was created using the Java programming language. Furthermore, the agent’s
plans in the Jadex environment are also written in Java.

Eclipse The source code of our agents and of the DSS was edited using the open source Inte-
grated Development Environment (IDE) Eclipse2.

C++ The plugin of the simulator requires code in C++.

Microsoft Visual Studio 2008 The simulator’s plugin has been built under Microsoft Visual
Studio 2008.

3.3 Validation

To answer our research questions, we will validate our prototype’s behaviour. There is no
time in this project to perform experiments on the cognitive usability aspects of the decision
support system or for expert’s review of the DSS’s usability and simulation’s realism. Instead,
we will compare our resulting demo of both the simulator and the decision support system to
the requirements discussed in Chapter 2. Further validation will be required as one of the next
steps in future work.

1http://jadex-agents.informatik.uni-hamburg.de/
2http://www.eclipse.org/

Chapter 4

Model

34

Model 35

In this chapter, we will discuss the model we have designed for this Master’s project and how
it has been implemented. We will chronologically guide you through the development of this
model: first we show the extension we chose for our agents in Section 4.1, then in Section 4.2 we
show how our new system architecture works out, followed by the new agent model in Section 4.3
and finally the model for the decision support system in Section 4.4.

4.1 Increasing Realism

As discussed in Section 2.3, we have chosen to focus our decision support system on analysing
simulated courses of action (COAs). To this end, the Command Agents connecting the C2
system and simulator are to be used to compare measures of effectiveness (MOE), or criteria, of
multiple routes, providing feedback to the commander about the simulated results. This should
provide the commander with a quick overview of the possible benefits of each route. However,
before we can provide a realistic overview, we need a realistic simulation.

We have identified three possibilities in this setting for increasing the realism:

• Agent Behaviour

• Path Planning

• Enemy Behaviour

There is a certain overlap between these three and in the end all will be needed for a realistic
simulation. However, due to time constraints, the current project can only focus on (a subsection
of) one. After a discussion with a TNO SME (see Section 3.1), we decided to focus on Agent
Behaviour. The other ideas are thus for future work, however, initial ideas can be found in
Appendix A.

4.1.1 Agent Behaviour

Currently, the agents only act as order distributors, providing a simplified order from the
commander to the units in VR-Forces. Instead, we would like to refine the behaviour of the
agents (and the units in VR-Forces), to enable more autonomy. The subordinate commanders
(agents) should provide intelligent implementations of the commander’s order. To this end,
extra knowledge of doctrine and formations can be added, allowing the units to react more
realistically in the simulation. For example, when currently fired upon, a company will keep
driving towards its goal while shooting back at the enemy. Instead, we might like to see the
company backtrack to a previously safe position to devise a new plan, based on a.o. the enemy’s
expected power, current mission objectives and terrain properties. Furthermore, the new plan
should depend on the commander’s intent: is the goal to get to a location as fast as possible or
to clear the whole area of enemy resistance. This change in behaviour would effect the MOEs
of a chosen route in a more realistic manner, e.g. increasing the amount of time but decreasing
the amount of casualites taken when enemy is encountered.

By making the units respond to the environment (more realistically), the possibility of
wargaming within the simulation might also be enabled. For example, the user could add

Model 36

enemy artillery during the simulation, to see how that would impact the MOEs of the current
route. Currently the agents would not respond to this, while we might want them to devise a
new plan to stay out of reach of the artillery. As such, we will implement a set of doctrines that
showcase a variety of realistic agent behaviour like planning, reacting and coordinating.

4.1.2 Combat Instruction Sets (CISs)

Documents designed for TACTIS1 are available that describe military doctrine on the company
and platoon level, which can be turned into intelligent agent behaviour. Such a document is
called a Combat Instruction Set (CIS). The agent will then reason on when to use what CIS
based on its beliefs about the environment and its own mission. In a second discussion with
the TNO SME, see Section 3.1, we decided upon a specific subset of these CISs, which will be
explained next. For a list of all the CISs used during this project, consult Appendix B. We
shall describe the main CISs in more detail further on in this section.

We have chosen 3 main CISs to be implemented:

1. Assault an enemy position (short: ”Assault”)

2. Tactical Road March (short: ”March”)

3. Hasty occupation of a blocking position (short: ”Blocking Position”)

The Assault showcases how a seize (the most intelligent behaviour the agents could provide
before this project started) is realistically performed. The March allows our agents to move
realistically along the terrain with coordination, unlike the individualistic movement it show-
cased before. The Blocking Position finally provides reactive behaviour that has not been seen
before, as the military forces react to enemy behaviour.

4.1.2.1 Scenario

These CISs were fit together in the following scenario, which will be implemented for our final
demo:

A company is tasked with an Assault. This company will March towards a start line, where
it will initiate the Assault. During the Assault, unexpected enemy behaviour is discovered and
this company is tasked to create a Blocking Position agains this enemy. Once the enemy is dealt
with, the company will continue on its Assault and seize and destroy the enemy positions.

Further in this section we shall provide descriptions of these main CISs as we interpreted
them. Each CIS description will contain the general description as provided in the CISs, a
summary of the CIS as we interpreted it, figures concerning the CIS and possible sub-CISs used
by the CIS.

1Tactical Indoor Simulation from Thales. Tailored for combined forces instruction and training, see http:

//www.thalesgroup.com/Portfolio/Defence/D3S_product_simu_tactis/?pid=1568

Model 37

4.1.2.2 Assault

Our current assault is uncoordinated: single units (tanks) move towards their destination at full
speed while firing at enemy targets. However, to minimize casualties taken, maximize damage
done and allow more realism in the simulation, military doctrine should be followed. Among
the CISs we found the CIS ”Assault an Enemy Position” that describes doctrine during such
an assault. Although this CIS is on the platoon level and there was no equivalent on the
company level, we assume a linear transformation to the company level. This is supported by
the description stating that platoons rarely assault individually.

This Section is divided into the following sub-sections: first, a general description of the task
is provided as they are written in the CISs; this is followed by a summary of the information
provided in the CIS, as it is applicable to our agents and we interpret it. Finally, all Sub-CISs
are named that are used during the Assault.

General description of task

The assault is the actual overrunning and seizing of an enemy position. The platoon
is operating in an assault as part of a company team and will hardly operate indepen-
dently because of its limited combat power. To be successful the combat ratio of an
assault has to be 3 : 1, so a company team can assault a (reinforced) enemy platoon.
Basically the assault will take place by fire and movement of the company team,
supported by indirect fire and/or air support. After crossing or on the start line (±
1500 m from objective) at H-hours, the platoons will disperse (line formation) and
move forward (traveling) in the direction of the objective. When enemy is firing, the
company team will move forward by fire and movement (platoon bounds and/or sec-
tion bounds). When the final phase of the assault begins (± 600 m from objective),
all vehicles move with maximum speed in the enemy direction while firing on enemy
positions. Tanks will cross the objective and take in positions 300 – 500 m beyond it,
to secure the seized objective from counter attacks. Aifvs will dismount aggressively
at the edge of the objective and vehicles and firing teams will move forward by fire
and movement. After cleansing the objective the armored infantry platoon(s) will
also take in positions 300 – 500 m beyond the objective and, with the tank platoon(s)
consolidate and reorganize.

Assault an enemy position - Mechanized Infantry Platoon

An assault is the culmination of an attack that closes with and destroys the enemy;
it is the actual overrunning and seizing of an occupied enemy position. Normally
the assault force is composed of tanks and infantry elements under the control of
company (team) commander. The assault force moves by fire and movement (See
CIS “Platoon fire and movement”) along covered and concealed routes to the enemy
position until it reaches the assault position (the last covered and concealed position
before the objective). Typically, tanks lead, with Aifvs following to protect against
dismounted infantry and provide suppression to the flanks. The assault elements
move rapidly in a line formation, under cover of direct and indirect fires to the

Model 38

objective, moving through it to the far side and consolidate and reorganize. Infantry
dismounts to mop up resistance and clear objective.

Assault an enemy position - Tank Platoon

Summary

See Figure 4.1 for a schematic view of this CIS. Below is a summary of our interpretation of
this CIS.

• Preconditions

– Combat ratio of 3:1,

– Start-line at ± 1500 m from objective.

• Phase 1: Preparation

– Company moves towards the assault start-line (or to 1500 m from objective).

– At the start-line, company and its platoons move into Line formations.

• Phase 2: Fire & Movement

– Company executes CIS – Line formation traveling.

∗ Company moves to 600 m from objective in Line formation.

– When fired upon, company executes CIS – Fire and movement instead.

∗ Company and/or its platoons move with bounds instead of in one line.

∗ Successive bounds: one element bounds towards the next position and is followed
by the rest after a time period.

∗ Company/Platoon bounds: the whole company or platoon bounds towards the
next position at the same time.

– Bounding along covered and concealed routes.

• Phase 3: Attack objective

– Company executes CIS – Execute final phase of attack.

∗ Company moves in Line formation (for maximum fire power in front),

∗ Company moves at maximum speed towards objective,

∗ Company fires at will on enemy positions.

– Infantry mops up remaining resistance at the objective area.

• Phase 4: Consolidate & Reorganize

– Company executes CIS – Consolidate and reorganize.

∗ Company crosses objective and takes in positions 300 – 500 m beyond it.

∗ Platoons execute CIS – Hasty occupation of a battle position.

Model 39

Phase 1:

Preparation

 P3

Start‐line: ‐1500m.
Line formation or
Bounding

Phase 2:

Fire &

Movement

Phase 3:
Attack

position

‐600m.
Line formation
and Fire at Will

Enemy
Position

Phase 4:

Consolidate &

Reorganize

March to start‐line.
Column formation or
Tactical Road March

+400m.
Line formation

P2

P

2

P

3

P

2

P

3

P

1

P

2

P

3

P

1

P1

P

1

Figure 4.1: Schematic overview of the Assault an enemy position CIS, divided in 4 phases. The top of
the figure shows the current phase, the middle shows a schematic view of the platoons during this phase,
the bottom shows a description of this schematic view.

Sub-CISs

This CIS consists of the execution of the following CISs:

• Assault an Enemy Position (Platoon CIS available2)

– Fire and Movement (Platoon CIS available2)

∗ Line Formation Traveling (Company & Platoon CIS available), or

∗ Line Formation Traveling Platoon/Team Bounds (Company & Platoon CIS
available), or

∗ Line Formation Traveling Successive Bounds (Company & Platoon CIS available)

– Final Phase of Attack (Platoon CIS available2)

– Consolidate and Reorganize (Platoon CIS available2)

∗ Hasty Occupation of a Battle Position (Platoon CIS available2)

4.1.2.3 March and Formations

The military also provides doctrine on movement towards objectives. As part of the scenario,
the ”Tactical Road March” CIS could be implemented to provide a more realistic coordinated

2Should be used as the Company CIS as well

Model 40

mode of transportation. Currently all tanks are individually tasked by VR-Forces’ B-HAVE
module to move towards some position, yet behaviour in military scenarios is rarely on an
individual basis. With these CISs, we hope to provide some coordination between tanks and
platoons.

The Tactical Road March CIS is available for both the company level and the platoon level.
The same is true for the formations that can be traveled in: the Line formation and the Column
formation. We will provide the general descriptions as taken from the CISs and after that our
own interpretation in the summary. The company CISs of the formations provide no information
on when to use what formation, or what their use is. Instead only the platoon level description
is provided for the formations.

General description of task

A tactical road march is normally used to move a company (team) along roads
from rear areas to assembly areas in preparation for a mission. A company (team)
may conduct a tactical road march as a separate unit or as part of a battalion task
force. A road march differs from other forms of movement in that the purpose is to
relocate rapidly, not to gain or make contact, and it is conducted at fixed march speed
and time intervals. The tactical road march is conducted when speed is essential,
company (team) integrity must be maintained, road nets are available, and chance
of enemy contact is limited. Tactical Road March - Company

A tactical road march is normally used to move platoons along roads from rear
areas to assembly areas in preparation for a mission. It differs from other forms of
movement in that the purpose is to relocate rapidly, not to gain or make contact,
and it is conducted at fixed march speed and time intervals. Although a platoon may
be required to conduct an independent tactical road march, it normally moves as part
of the company team. The tactical road march is conducted when speed is essential,
platoon integrity must be maintained, road nets are available, and chance of enemy
contact is limited. Tactical Road March - Platoon

Formations are used to establish vehicle positions and sectors of responsibility during
operations. The line formation traveling is used when the platoon:

• Is moving and is required to assault an enemy position/force.

• Has to engage an enemy force while the platoon is moving forward or backward.

• Has to cross open terrain or a danger area as quickly as possible with maximum
firepower to the front.

The line formation traveling is formed with all vehicles continuously moving in a
line, vehicles 2 and 3 are moving abreast and slightly behind vehicles 1 and 4.

Line formation

Formations are used to establish vehicle positions and sectors of responsibility during
operations. The column formation traveling is used when enemy contact is not likely

Model 41

and speed is essential. It is formed with all vehicles in the platoon in trail moving
continuously. The formation provides excellent control and fire to the flanks but
permits less fire to the front. Column formation

Summary

Tactical Road March The Tactical Road March is the method of transportation used when
no danger is expected and the company’s or platoon’s goal is to get to a location as soon as
possible. In this formation, as can be seen in Figures 4.2a and 4.2b, all vehicles follow with a
short 50 meters distance behind one another. This march is to be used to move towards the
staging area in our demo scenario.

Column formation The Column formation is similar to the Tactical Road March, in fact the
formations for platoons are the same as can be seen in Figure 4.3b. However, in the Column
formation enemy resistance is not entirely unexpected while traveling. Therefore the first pla-
toon in the column rides as a reconnaissance a great distance in front of the rest, as shown in
Figure 4.3a. As a Tactical Road March is to be driven on a road, we would use the Column
formation in our scenario when we drive towards a staging area without roads.

Line formation The Line formation is the army’s fighting formation against enemies who are
engaged head-on, see Figures 4.4a & 4.4b. The firepower of the whole company or platoon is
pointed to the front, while a formation like the column would only be able to point one tank
at a frontal enemy. As such, the Line formation will be used to engage enemies as a collective,
unlike how currently the enemies are engaged by each individual tank

Pos 1: Maneuver
platoon 1

Pos: 2 Maneuver
platoon 2

Pos 3: Maneuver
platoon 3

Pos 18:

Pos 19: Combat train

Pos 20:

Route

...

Pos 4: Maneuver
platoon 4

50 m

50 m

50 m

50 m

50 m

(a) Tactical Road March formation for Tank &
Mechanized Infantry companies

(b) Tactical Road March formation
for Tank & Mechanized Infantry
platoons. Default interval between
vehicle is 50 meters.

Figure 4.2: The tactical road march formations for the different hierarchies.

Model 42

Pos 1: Maneuver
platoon 1

Pos: 2 Maneuver
platoon 2

Pos 3: Maneuver
platoon 3

Pos 18:

Pos 19: Combat train

Pos 20:

Route
500 m

...

100 m

100 m

100 m

100 m

Pos 4: Maneuver
platoon 4

(a) Column formation for Tank & Mechanized In-
fantry companies. Default interval between positions
1 and 2: 500 m. Default interval between 2 – 20: 100
m.

(b) Column formation for Tank &
Mechanized Infantry platoons. De-
fault interval between vehicle is 50
meters.

Figure 4.3: The column formations for the different hierarchies.

Pos 1: Maneuver
platoon 1

Pos: 2 Maneuver
platoon 2

Pos 3: Maneuver
platoon 3

Pos 4: Maneuver platoon 4

Pos 18:

Pos 19: Combat train

Pos 20:

Route

100 m 100 m

500 m

100 m

100 m

Pos 5: Maneuver platoon 5

Pos 6: Maneuver platoon 6

...

100 m

100 m

100 m

(a) Line formation for Tank & Mechanized In-
fantry companies. Default interval between 1
and 4: 100 m to the left. Default interval be-
tween 1 and 7: 100 m to the right. Default in-
terval between 1 and 10: 500 m behind. Default
interval between 10 – 20: 100 m

4 1

2 3

 Route

30 meter

50 meter

(b) Line formation for Tank & Mechanized In-
fantry platoons. Default offsets are 50 meters
between each tank and 30 meters between front
and back

Figure 4.4: The line formations for the different hierarchies.

Model 43

4.1.2.4 Blocking Position

General description of task

A blocking position is a shallow position in one direction. A blocking position
obstructs the enemy’s progress in a particular direction. In order to eliminate the
enemy, the bulk of the company (team) means are positioned in front. Normally
hasty occupation of a battle position is ordered to block not foreseen enemy actions.

Hasty occupation of a blocking position - Company

When the platoon is conducting offensive or defensive operations and it must defend
when insufficient time exists to go through the stages of deliberate occupation, it
establishes a hasty battle position. The vehicles of the platoon move from the platoon
dispersion point to the firing position and occupy the hasty BP. Orient itself properly
on the likely direction/avenue of enemy attack and/or assigned engagement area
(EA) ensures survivability of the platoon and it’s firing position.

Hasty occupation of a battle position - Platoon

Summary

The ”Hasty occupation of a blocking position” is another CIS that can provide visible intelligent
agent behaviour. The hasty occupation of a blocking position is used to put a halt to the enemy’s
advance, when the enemy breaks through the defense line or if delaying combat is used. Either
way, the blocking position is an attempt to save time by delaying the enemy. This could allow
reinforcements to arrive in time. The delay is achieved because the enemy will need to unfold
into its firing positions (e.g. line formation) to engage the blocking position. At this moment,
the blocking unit should disengage and retreat to the following blocking position. In essence,
the blocking position is the reverse ”Fire and Movement” (phase from the Assault), eventually
wearing down the enemy. In Figure 4.5 the positioning of the units during the blocking position
is showed, which is in essence a stretched-out line formation. This CIS is on the company level,
a platoon can not produce a blocking position on its own. Instead, a platoon is tasked with
Hasty occupation of a battle position, which is also the task used for consolidation after the
assault and is shown in Figure 4.5b.

Pos 1: Maneuver
platoon 1

Pos 2: Maneuver
platoon 2

Pos 3: Maneuver
platoon 3

Combat train

100 m 100 m

1000 m

500 m 500 m 500 m

Frontage; Depends on number of maneuver platoons

(a) Blocking position for company. Default
frontage is 500 meters per platoon. Default dis-
tance between platoons is 100 meters.

Frontage (500 m)

166 m 166 m 166 m

30 m

(b) Battle position for platoon. Tanks are
evenly divided over the frontage.

Figure 4.5: The blocking position formations for the different hierarchies.

Model 44

4.2 System Architecture

HLA (Evolved)

Multi-Agent System
(Command Agents)

Commander

C2 framework

C2 gateway Sim gateway

C-BML orders Simulator
(VR-Forces)

MSDL

Plugin

MSDL
Convertor

C-BML reports
C2 Information

System (ISIS)

Decision Support System
(Table w/ MOEs)

Figure 4.6: System architecture

In Figure 4.6 you can see the new system architecture. Like in the system architecture from
Bronkers et al. (2011), shown in Figure 2.7, the C2 information system communicates its orders
in C-BML to HLA. Our Command Agents pick up the C-BML order, process it and output a
number of Low-level BML orders over HLA to (the plugin of) the simulator. Reports, including
task reports, locations of units and data for our MOEs, are sent back from the simulator to the
agents and eventually the C2 system.

New to our system architecture is the additional standard in use: MSDL, see Section 2.2.1.2.
The MSDL file is created from the scenario in the C2 workstation and then used as input for the
Command Agents and the simulator, synchronizing all systems. Furthermore, the new decision
support system is added with a connection to our multi-agent system, which provides it with
its data. The only human in the loop is the commander working on the C2 workstation, who
can now also access the DSS for a quick overview of simulated results.

In the future, the C-BML orders and reports and the MSDL file will be transferred through
web-services, which are provided in MSG-085, instead of the direct gateway connection.

4.3 Conceptual Design - Agent

In this section the updates to the Command Agents from Figure 4.6 will be discussed. First the
architecture of the multi-agent system will be explained, followed by descriptions of the updates
that have been made to the agents.

Model 45

4.3.1 Agent Architecture

Battalion Company Platoon

Low level BML
tasks

Low level BML
reports

HLA

Information
Manager

C2 Multi-Agent System

Command Agents

Agent Agent Agent

HLA Manager

C-BML orders

HLA

C-BML reports

MSDL file

Sim Gateway

MSDL ORBAT

Decision Support System

DSS data &

interactions

VR-Forces
Plugin

Figure 4.7: Agent architecture

Our agent architecture started out as shown in Figure 2.8, created by Bronkers (2011). The
general description of these agents can be found in Section 2.2.4.2. Subsequently, we adapted
the agent architecture to incorporate the decision support system, as can be seen in Figure 4.7.
The other change that has been made to this architecture is that there is only one agent
between the Command Agents and the HLA Manager, the new Information Manager. This
Information Manager has replaced (most of) the Stub agent and the StartAgents agent, next
to its new capabilities. In the following sections, only the differences from Bronkers’ agents will
be discussed, not each agent’s entire BDI systems.

4.3.2 HLA Manager

The HLA Manager agent, described in Section 2.2.4.2, has been adjusted to provide the Com-
mand Agents with more information from VR-Forces so that they could act more intelligently.
Previously, the HLA Manager only provided GroundVehicleObjects, AggregateEntityObjects and
TaskReportEvents to the agents3. Now, GroundVehicleObject has been extended to its super-
class PhysicalEntityObject, allowing a.o. humans to be received from HLA as well. Internally,
every PhysicalEntityObject is transformed into an Equipment4 object, a self-made java class
which will be used throughout the multi-agent system when referring to single units.

Furthermore, the HLA Manager’s communication with HLA has been extended to support
the new required behaviour and the new DSS. See Appendix E for more information on this
extension in the (HLA) FOM and Section 5.1 for implementation in the simulator’s plugin.

3These object are HLA RPR-FOM standards, see Section 2.2.1.3
4Equipment is the type provided in MSDL for tanks and soldiers. Since we initiate the agents from MSDL

now, we kept the name.

Model 46

4.3.3 Information Manager

The Information Manager is a new agent that incorporates all abilities of the previous StartAgents
agent and Stub agent from Bronkers (2011), which can be found in Section 2.2.4.2. The In-
formation Manager is able to initialize the correct agents based on a provided ORBAT in an
accompanying MSDL file, instead of having the numbers and types of agents to be started hard-
coded in the StartAgents plan. For example, if the ORBAT is made up of 1 Battalion with 3
Companies, which each have 3 Platoons, the Information Manager will start 1 Battalion agent,
3 Company agents and 12 Platoon agents, and connect the subordinates to their superiors.

Subsequently, the Information Manager stores the ORBAT in its beliefs by creating a new
OrbatMap (java class) in which Aggregates and Equipments are stored in a tree of HashMaps, as
the military hierarchy dictates. The OrbatMap allows storage of new Aggregates (agents) and
Equipments, retrieval and updating of stored Aggregates and Equipments. Therefore, updates
from the simulator are now sent from the HLA Manager to the Information Manager instead of to
all Platoon agents. The Information Manager then updates the OrbatMap accordingly, thereby
supporting a single centralized storage. When an Equipment is updated, its superior Platoon
agent will be informed about this update. When an Aggregate is updated, the corresponding
agent will be informed about this update. By centralizing this management of information, it
only has to be stored in one place, taking less memory space and the information will always be
synchronized between the agents. The downside to the centralization of information is that new
communication lines will have to be added to retrieve this information from the Information
Manager any time one of the other agents wants to reason on this information.

4.3.4 Stub agent

Even though the Stub agent is no longer strictly part of the agent architecture, it is still in
use in certain situations. It used to receive the BML orders from the HLA Manager before it
was sent to the Battalion agent, but this task has been taken over by the Information Manager.
Therefore, the stub agent has been excluded from the multi-agent system when a C2 information
system (C2IS) is attached. Only when the MAS and simulator are connected without C2IS,
e.g. during development of the agent, the Stub agent is used to act as a proxy, allowing test
orders to be sent into HLA.

4.3.5 Battalion agent

The Battalion agent has been updated to respond and take the decisions for the CIS Hasty
occupation of a blocking position. It will decide whether a blocking position should be ordered
based on enemy behaviour, and what company will have to block this enemy. Other CISs do
not require input from the Battalion agent, so this is the only coordination on company level
that is used in this project.

4.3.6 Company agent

The Company agent has been extended the most with the additions of the CISs. All CISs
require coordination between platoons, and this coordination is to be handled on the Company

Model 47

agent level. The Company agent is now able to:

• coordinate the platoons into the different phases of the assault at the same time;

• translate the assault phase behaviour to platoon behaviour;

• interrupt the assault for the hasty occupation of a blocking position, when ordered to;

• continue with the assault at the correct phase, when ordered to;

• choose the formations to be used;

• coordinate the platoons into formations (the simulator is not tasked on the company level,
so the company agent has to enforce & create the formations);

4.3.7 Platoon agent

The changes for the platoon agent are in its in- and output. Now it receives new tasks like
MoveIntoFormation to forward to the HLA Manager, where previously it only processed Attack,
Defend and Move tasks. However, the platoon agent still needs not reason on these tasks because
they can directly be forwarded to the aggregate in VR-Forces. The reasoning on what tasks to
sent to VR-Forces is done primarily on the Company agent level and coordination of tanks is
done by the simulator.

Also, as discussed earlier, the platoon agent does not receive updates for all Equipment
anymore, these are only sent to the Information Manager. One reason for this change was that
it was not possible to only receive the subordinate Equipment; all equipment would be received.
Now that it is centralized, the Information Manager can send the subordinate Equipments to
their superior Platoon, keeping all data up to date, while not storing every Equipment in every
single Platoon agent. The platoon will also receive the status of its Aggregate counterpart
anytime the Information Manager notices a change to it.

4.4 Conceptual Design - Decision Support System (DSS)

The decision support system (DSS) should be a system which will help the military commander
during the comparison and evaluation of his course of actions (COAs). We have researched
requirements for a DSS in the command & control domain from related literature and we have
discussed with the military experts about their vision for such a system. The following sections
will discuss the concepts we started with.

4.4.1 Initial concept

See Figure 4.8 for the initial sketch and idea for the DSS. Two COAs are given on the C2IS, for
example one longer route and one shorter route, but with expected enemy resistance. The DSS
would have a row for each COA and columns for the different MOEs, while allowing more MOEs
to be added (as columns) and more COAs to be added as rows. There might also be an option
to add a computer generated alternative route to compare to the user supplied COAs, but we

Model 48

have already chosen to focus our attention on doctrine instead. After running the simulation,
the DSS table would then be filled with values for all these COAs and MOEs, allowing the
commander a quick overview of the expected effects the candidate COAs.

4.4.2 Measures of Effectiveness (MOEs)

The DSS is to be used to compare user provided COAs. These COAs will need to be compared
on certain measures of effectiveness (MOEs), or criteria, based on the events that transpired in
the simulator or agents. In the brainstorm session on November 9th, see Section 3.1, we came
up with the following possible criteria for comparison of COAs:

• Time

• Survival Rate

• Fuel usage

• Ammunition Usage

• Enemies destroyed

• Enemies encountered

• Weather

• Bridges

• Roads

• Off-road

• Forests

• Alternative / Fallback options

Time is the time taken for completing the COA; survival rate is the percentage of friendly
units that have survived; fuel usage is the percentage of fuel left; ammunition usage is the
percentage of ammunition left; enemies destroyed and encountered is similar to survival rate
but for the enemy units; weather is rain or sun or fog, which can influence the operation; bridges
is the number of them that have to be crossed, since bridges are chokepoints; roads are an easy
and fast mode of transport; off-road is a more difficult and costly mode of transport, thus road
and off-road comparison might favor a COA; forests make for good cover yet provide smaller line
of sight, so the meters of forest crossed might impact a COA; Alternative or fallback options in
a COA would show how versatile it is, e.g. if there would be multiple directions from which to
attack. This set of MOEs is still only a subset of the criteria for COA analysis and comparison.

Model 49

Target

Unit

Enemy

1

2

Compare Routes

MoE1 MoE2 MoE3 MoE4 MoE5

1

2

...

...

+ADD MoE

+ADD
New Route

+GENERATE
Alternative Route

...

MoE6

MoE7

Figure 4.8: Concept of the DSS: C2IS shown above, with 2 routes towards a target. DSS shown below,
with 2 rows representing the routes and columns filled with data retrieved from the simulator.

Chapter 5

Implementation

50

Implementation 51

In this chapter we shall describe what part of our model has actually been implemented and
how we accomplished that. We shall start with the new communication additions that have
been made towards VR-Forces, in Section 5.1, and to C2 information system in Section 5.2.
Thereafter, we shall discuss the implementation of all the CISs in the agents in Section 5.3.
Finally, the chapter shall finish with the implementation of the DSS and its MOEs in Section 5.4.

As discussed in Section 4.1.2, we have chosen 3 main CISs to be implemented:

1. Assault an enemy position (or ”Assault”)

2. Tactical Road March (”March”)

3. Hasty occupation of a blocking position (”Blocking Position”)

All of these, and the Line and Column formations, have been implemented. Furthermore, we
have been able to input the following MOEs to our decision support system:

• Friendly survival rate

• Fuel usage

• Enemy survival rate

5.1 Communicating to VR-Forces: New in- & output requirements

We need extra in- and output from VR-Forces for the correct implementation of CISs and for
the measurement of the MOEs. These input and output requirements were not yet available
for the agents from the plugin to VR-Forces. All information available from the plugin to VR-
Forces to the agents is provided via HLA and the specification of what can be sent over this link
is written in an ontology called the FOM, see Section 2.2.1.3 for more information, currently
shared by TNO and FFI. So, we needed to add our new interactions to this FOM, after which
it was possible to generate code based on this FOM for the plugin. After generation, we had
to adjust parts of this code, on the VR-Forces plugin side, to get the right information from
VR-Forces into these interaction messages. The plugin allows for the low-level BML sent by
the agent to be acted upon in the simulator, and the needed information to be sent back to
the agent. The generated code sets up the sending and receiving mechanisms and parameters,
as is described in the FOM, but it is up to the engineer to get the correct information into
and from these messages. Some of these requirements were already available in VR-Forces, so
a 1-on-1 connection could be created between the message and the information or action from
VR-Forces. However, others would require a lot more work; if they were not vital to the success
of this project, they were discarded. In Appendix E, you can find the new FOM and the table
of changes it has undergone.

The following list shows what was required (”R”) or wanted (”W”) from VR-Forces for the
CISs and MOEs to be implemented succesfully. Wanted requirements were not vital to the
successful implementation of the CISs, and can generally be hard-coded or otherwise assumed
in the agents. The CIS or MOE for which it is required or wanted is also mentioned.

Implementation 52

Output to simulator

• Set unit’s heading

(R; CIS: Block)

• Set unit’s speed

(R; CIS: Assault, Block, March)

• Abort current order

(R; CIS: Block, Assault)

• Move into formation: Line,
Column

(W; CIS: Assault, March)

or, alternatively, Follow unit with dis-
tance X,Y

(W; CIS: March)

Input from simulator

• Time elapsed
(R; CIS: Assault; MOE: Time)

• Unit’s amount of fuel
(R; MOE: fuel usage)

• Unit’s amount of ammunition
(R; MOE: ammunition usage)

• Terrain type currently driving on
(W; CIS: March; MOE: Roads, Off-road,
Bridges)

• Weather Conditions
(W; CIS: March)

• Nearby forest areas
(W; MOE: forests)

The following is the list of what has been implemented in the end:

Output

• Set unit’s heading

• Set unit’s speed

• Abort currently executing order

• Move into formation: Line, Column

• Follow unit with distance X,Y,Z

Input

• Entity’s amount of fuel

• Entity’s amount of ammunition

In the following sections we shall describe how all of these have been implemented.

5.1.1 Set Heading, Turn To Heading & Set Speed

Set Heading and Set Speed are both a set, which means that they take effect immediatly, unlike
Turn To Heading, a task, which has to be simulated. However, these three are all related since
their implementation is mostly similar. We needed these to set speed of our traveling formations
and the heading of formations. In Code 5.1, 5.2 and 5.3, you can see excerpts of the definitions
from the FOM. The name of the interaction is provided together with a parameter that the
agents have to attach: the heading or speed. The superior classes in the FOM already provide
ways for the agents to provide the target object who’s heading or speeds is to be adjusted.

Implementation 53

Code 5.1: XML code from the
FOM for Set Speed

1 < i n t e r a c t i o nC l a s s>
2 <name>SetSpeed </name>
3 . . .
4 <semant ics>Change the

ordered speed o f
a un i t .
</ semant ics>

5 <parameter>
6 <name>Speed </name>
7 <dataType>HLAfloat . . .

</dataType>
8 <semant ics>Determines

the ordered
speed to s e t
f o r a unit , in
m/ s .
</ semant ics>

9 </parameter>
10 </ i n t e r a c t i o nC l a s s>

Code 5.2: XML code from the
FOM for Set Heading

1 < i n t e r a c t i o nC l a s s>
2 <name>SetHeading

</name>
3 . . .
4 <semant ics>Change the

heading o f a
un i t . </ semant ics>

5 <parameter>
6 <name>Heading

</name>
7 <dataType>HLAfloat . . .

</dataType>
8 <semant ics>Determines

the heading to
s e t f o r a unit ,
in rad ians .
</ semant ics>

9 </parameter>
10 </ i n t e r a c t i o nC l a s s>

Code 5.3: XML code from the
FOM for Turn To Heading

1 < i n t e r a c t i o nC l a s s>
2 <name>TurnToHeading

</name>
3 . . .
4 <semant ics>Tasks a

un i t to turn to
the g iven
heading .
</ semant ics>

5 <parameter>
6 <name>Heading

</name>
7 <dataType>HLAfloat . . .

</dataType>
8 <semant ics>The

heading f o r the
un i t to turn
to , in rad ians .
</ semant ics>

9 </parameter>
10 </ i n t e r a c t i o nC l a s s>

In the VR-Forces GUI, one can manually task the units. By matching what tasks are already
possible in the GUI to the behaviour we want, we get an easier implementation of our behaviour
in the simulator’s plugin. For example, the implementation for the Set Heading is given in
Code 5.4. This method is called whenever the plugin receives a SetHeading interaction. It then
just retrieves the entity that is to be adjusted, creates a VR-Forces’-provided SetHeading request
to which the interaction’s parameter (the heading) is added. Finally the set is processed in the
simulator with VR-Forces’ sendSetDataRequest() method. The SetSpeed interaction is handled
in the same way, using a SetSpeedRequest. The TurnToHeading interaction is handled a little
differently, since it is a task instead of a set. However, basicly VR-Forces’ TurnToHeadingTask
is retrieved and the parameter (heading) from the interaction is added to this task. Finally
this task is (planned to be) executed by the entity by wrapping the task in a TaskMessage and
tasking the entity with that task. For every task, an ID is stored as well, which will be used to
send a report to our agents when the task is tasked or completed later on.

Code 5.4: C++ code for executing Set Heading in VR-Forces plugin

1 void rece iveSetHead ing (BML::DtSetHeadingInteract ion ∗ i n t e r , void ∗ usr) {
2 DtVrfObject∗ en t i t y = getCommandedObject (i n t e r) ;
3
4 DtSetHeadingRequest r eque s t ;
5 DtReal heading = (DtReal) i n t e r−>heading () ;
6 r eque s t . setHeading (heading) ;
7
8 myCgf−>sendSetDataRequest (ent i ty , r eque s t) ;
9 }

Implementation 54

5.1.2 Abort executing task

Abort executing task is a task that we needed to stop tasks that the simulator is executing.
Previously every new task from the agent would have to wait until the current executing task
was completed. However, our reactive blocking position possibly requires a simulated company
to interrupt its current task, which is now possible due to Abort executing task, see Code 5.5.
Just as the FOM addition is very simple, essentially only a name, the implementation of Abor-
tExecutingTask is simple too: every entity has a taskManager in VR-Forces and this manager
allows the skipTask() operation, causing the entity to stop executing its current task.

Code 5.5: XML code from the FOM for AbortExecutingTask

1 < i n t e r a c t i o nC l a s s>
2 <name>AbortExecutingTask</name>
3 . . .
4 <semant ics>Stop the task the un i t i s cu r r en t l y execut ing .</ semant ics>
5 </ i n t e r a c t i o nC l a s s>

5.1.3 Move into formation

Move into formation is the biggest addition to the agent’s new behaviour and is used in every one
of our implemented CISs. Luckily this formation function was already available in VR-Forces,
so once again we just mimicked the parameters needed in the VR-Forces GUI, see Code 5.6.
This task consists of a formation reference, which is just a name like Line; coordinates of the
location where to initialize this formation; and, the heading of the formation.

Code 5.6: XML code from the FOM for MoveIntoFormation

1 < i n t e r a c t i o nC l a s s>
2 <name>MoveIntoFormation</name>
3 . . .
4 <semant ics>Tasks an aggregate un i t to move in to the g iven format ion with the

g iven heading .</ semant ics>
5 <parameter>
6 <name>Formation</name>
7 <dataType>HLAASCIIstring</dataType>
8 <semant ics>The category o f p o s i t i o n a l arrangement o f the e n t i t i e s with in the

aggregate .</ semant ics>
9 </parameter>

10 <parameter>
11 <name>Locat ion</name>
12 <dataType>WorldLocationStruct</dataType>
13 <semant ics>The l o c a t i o n (x , y and z) to move to .</ semant ics>
14 </parameter>
15 <parameter>
16 <name>Heading</name>
17 <dataType>HLAfloat . . .</dataType>
18 <semant ics>The heading o f the format ion in rad ians .</ semant ics>
19 </parameter>
20 </ i n t e r a c t i o nC l a s s>

Implementation 55

The implementation is once again relatively straight-forward, as can be seen in Code 5.7.
The interaction that triggers this method provides it with the previously discussed parameters,
which can be added to VR-Forces’ MoveIntoFormationTask. The only change made to the
parameters is that the received location is clamped to the ground, i.e. the height value is
automatically retrieved from the simulator. Eventually the task is executed by the tasked
entity, causing the simulator to move it into formation at the provided location and heading.
The formation is a name that is specific to the simulated entity: each M1A2 tank and M1A2
tank aggregate (platoon / company) has a configuration file used by the simulator to check
what that formation name refers to. We have adjusted these configuration and formation files
so that we could task them with the formations from our CISs, by providing a simple name
such as CIS Line.

Code 5.7: C++ code for executing MoveIntoFormation in VR-Forces plugin

1 void receiveMoveIntoFormation (BML::DtMoveIntoFormationInteraction∗ i n t e r , void ∗
usr) {

2 DtVrfObject∗ en t i t y = getCommandedObject (i n t e r) ;
3
4 // Create the task
5 DtMoveIntoFormationTask moveIntoFormationTask ;
6
7 // Clamp the g e o c en t r i c p o s i t i o n from the i n t e r a c t i o n to the t e r r a i n
8 // F i r s t convert i t to the l o c a l po s i t i on , then change the z−value and f i n a l l y

convert i t back to
9 // a g e o c en t r i c c lampedPos it ion that can be used as the l o c a t i o n .

10 DtVector p o s i t i o n = DtVector (in t e r−>l o c a t i o n () . x () , i n t e r−>l o c a t i o n () . y () ,
i n t e r−>l o c a t i o n () . z ()) ;

11 DtVector c lampedPos it ion ;
12 . . .
13 moveIntoFormationTask . s e tLoca t i on (c lampedPos it ion) ;
14
15 // Set the format ion heading as provided
16 moveIntoFormationTask . setHeading (in t e r−>heading ()) ;
17
18 // Set the format ion name as provided
19 . . .
20 moveIntoFormationTask . setFormationName (format ion) ;
21
22 // Wrap the task in a task message and i n i t i a l i z e the task message
23 . . .
24
25 // Execute the task
26 ent i ty−>taskManager ()−>executeTask (taskMsg) ;
27
28 // Retr i eve and s t o r e the VR−Forces task ID f o r the as s i gned task
29 . . .
30 }

Implementation 56

5.1.4 Follow

The follow task is added to the FOM as FollowEntity, a task native to VR-Forces as well.
Follow was wanted to implement formations of the company, by ordering platoons to follow
each other at specified distances. This task requires four parameters: AffectedWho, the entity
to be followed; Behind; Right; and Above. The latter three are the distances at which to follow
the affected entity. Eventually we implemented this similar to MoveIntoFormation, however it
turned out that in VR-Forces an aggregate can not follow an aggregate. In other words, we can
not task a platoon or company to follow another platoon or company. Add to this the fact that
we only task the simulator on the platoon (aggregate) level, thus we could not use follow.

5.1.5 EntityFuel & EntityAmmunition

EntityFuel and EntityAmmunition are interactions that VR-Forces sends to the agents, after
the agents have registered to receive them. They are used to provide the agents with infor-
mation about the fuel and ammunition levels of an entity in the simulator, which the agent
can eventually turn into a MOE for our DSS. Most information regarding entities is received in
one entity object with some parameters like a name, ID, speed, heading. However, none of the
available objects included fuel or ammunition levels, and it was not possible for us to adjust
these objects, only to add new interactions that will be sent. As such, we created these two
interactions, which are very similar, see Code 5.8 for entityFuel. As can be seen, VR-Forces will
report to the agents the type of fuel and the percentage it is at for this entity. For ammunition
this is the same.

Code 5.8: XML code from the FOM for EntityFuel

1 < i n t e r a c t i o nC l a s s>
2 <name>EntityFuel</name>
3 . . .
4 <semant ics>Represents a r epor t from an uni t about the amount o f f u e l i t has

l e f t .</ semant ics>
5 <parameter>
6 <name>FuelType</name>
7 <dataType>HLAASCIIstring</dataType>
8 <semant ics>The type o f f u e l</ semant ics>
9 </parameter>

10 <parameter>
11 <name>FuelPercentage</name>
12 <dataType>HLAfloat32BE perc per fecta lways</dataType>
13 <semant ics>The amount o f f u e l the en t i t y has not yet used , in

percentages .</ semant ics>
14 </parameter>
15 </ i n t e r a c t i o nC l a s s>

The implementation of these interactions concerns itself with triggering these reports, which
in VR-Forces is not trivial. When do we want the simulator to send these reports? Every
millisecond? When asked? When the value of fuel or ammunition changes? The latter seemed
most useful to us, but such a trigger did not exist. Instead, we found the possibility in VR-Forces
to create a Predicate, which is a condition trigger that allows us to compare the current value

Implementation 57

of a resource, such as fuel, to a predefined value. As such, we implemented our desired trigger,
by creating such Predicates for a set of percentages. As a result, this Predicate now triggers
when the value of our desired resource drops below a certain set of threshold percentages, and
then a report is sent back to our agents using the code in Code 5.9. In the first block of code,
parameters from the Predicate are retrieved, such as what threshold is currently triggered. Then
in the second block of code, starting at resourcePercentage->find(...), line 10, we check if we
already sent a report for this threshold, since a value of 85% fuel is always going to be below
90% and thus trigger that Predicate while we only want to receive this report once. Finally, if
we did not send a report yet, we send the report to our agent.

Code 5.9: C++ code for sending EntityFuel reports to our agents

1 void ent i tyFue lCa l lback (DtVrfObject ∗obj , DtVrfObjectPredicateEvaluator
∗ pred icateEva l , void ∗userData) {

2
3 IntToBoolMap∗ r e sourcePercentage = s t a t i c c a s t<IntToBoolMap∗>(userData) ;
4 BmlEntityFuelPredicate ∗ pr ed i c a t e = (BmlEntityFuelPredicate ∗)

pred icateEva l−>pr ed i c a t e () ;
5 DtStr ing fuelType = pred i cate−>r e s ou r c e () ;
6 DtReal fu e lPe r c en tage = pred i cate−>comparisonValue () ;
7 DtStr ing fue lOper = pred i cate−>oper () ;
8 bool fue lPercBoo l = pred i cate−>percentFlag () ;
9

10 IntToBoo lMap: : i t e ra tor i t e r = resourcePercentage−>f i nd (fue lPe r c en tage) ; // f i nd
the comparisonValue in userData

11 i f (i t e r != resourcePercentage−>end ()) {
12 // Found the percentage . Check s to r ed s t a t e
13 i f (i t e r−>second) {
14 // I f the boolean = true , we have a l r eady sent t h i s r epor t .
15 } e l s e {
16 // How did i t get added to the userData without t rue boolean ?
17 obj−>objectConsoleWarn () << obj−>objectName () << ” has ” << fuelType << ”

below ” << f u e lPe r c en tage << ” . I t was a l r eady on the percentage l i s t ?”
<< s t d : : e n d l ;

18 sendEntityFuelReport (obj , fuelType , f ue lPe r c en tage) ; // th r e sho ld
percentage reached

19 // Store the comparisonvalue
20 re sourcePercentage−> i n s e r t (IntBoo lPa i r (fue lPercentage , t rue)) ;
21 }
22 } e l s e {
23 // The percentage was not s to r ed in the userData yet
24 obj−>objectConsoleWarn () << obj−>objectName () << ” has ” << fuelType << ”

below ” << f u e lPe r c en tage << s t d : : e n d l ;
25 sendEntityFuelReport (obj , fuelType , fu e lPe r c en tage) ; // th r e sho ld percentage

reached
26 // Store the comparisonvalue
27 re sourcePercentage−> i n s e r t (IntBoo lPa i r (fue lPercentage , t rue)) ;
28 }
29 }

Implementation 58

5.2 Communicating with C2IS: Processing the MSDL ORBAT

Figure 5.1: The BDI reasoning after starting the Information Manager agent, leading to the start of
the other agents from MSDL and the creation of the DSS afterwards.

On the other end of our system architecture, Figure 4.6, we have the new communication
with the C2 information system in the form of the MSDL file, now used to create the correct
agents. The processing of the MSDL file is done by the Information Manager after it has been
initiated, see Figure 5.1 for the BDI representation of its reasoning. It starts with the triggering
of the start plan, which sets up the values for four different beliefs: DSS, in which a newly cre-
ated DSS is stored; orbat string, in which the MSDL file is stored as a string; and DSS started
and orbat received, which are booleans set to true. The booleans trigger the creation of new
goals process DSS and process received orbat in the agent. The process received orbat goal
is acted on first since it inhibits the process DSS goal, which will be acted upon only if pro-
cess received orbat is not active anymore. At this point, the process orbat plan is triggered,
which will take the orbat string from the agent’s beliefs, decypher the XML with Java’s JAXB1

1JAXB: http://www.oracle.com/technetwork/articles/javase/index-140168.html

Implementation 59

and then retrieve useful information from it. Consult Appendix D for more information about
the XML structure of an MSDL file. In the MSDL file we can find Units and Equipment, where
Units represent groups of entities, such as a company or platoon. The Units that belong to
the agent force are then turned into new agents and Aggregate objects. The Aggregate object
will be updated from VR-Forces and is subsequently needed to communicate with VR-Forces.
Equipment hold our actual entities, the tanks, for which no agents are created. Instead, they
are turned into Equipment objects, which will also be updated from and communicated to VR-
Forces. Once the whole MSDL file is processed, the process received orbat goal has succeeded
and the agent will continue with initializing the DSS.

5.3 Agent Behaviour: Implementation of the CISs

In this section of the implementation chapter we shall discuss the main part of our implementa-
tion: the combat instruction sets. We shall start with the Assault CIS in Section 5.3.1, followed
by Tactical Road March in Section 5.3.2, the Blocking Position in Section 5.3.3 and finally the
Line and Column formations in Section 5.3.4. For each CIS, we will provide a short rehash
before we go into details of implementation.

5.3.1 CIS: Assault on Enemy Position

The assault on an enemy position consists of several phases, and these have been implemented
as well. Once tasked with the assault, the company agent will create the assault goal, triggering
the ProcessAssault plan. This plan will keep track of the phases and start up the assault. By
building the assault in phases, we create a modular design, in which parts can be more easily
replaced if needed. Furthermore, more in-depth implementations of particular phases can later
on be added while the overall behaviour already works. But most important of all, by keeping
track of the phases, the agent will be able to interrupt and continue the assault later on without
having to start all over. See Figure 5.2 for the BDI approach taken by the Company agent to
select the correct part of the Assault. The Assault will start when the assault goal is dispatched
(created) and the assaulting belief is set to true. As long as the assaulting belief is true, the
agent will act in the context of assaulting. As such, whenever it receives a completed task
report in the ProcessOrderStatusCompany plan, only while it is assaulting, it will trigger the
ProcessAssault plan, which takes care of setting the correct phase.

5.3.1.1 Phase 1 : Preparation

Phase 1 consists of the march towards the start-line, so it starts with the computation of the
start-line location. The location taken as the start-line is the closest location that is 1500 meters
away from the target location (of the assault). Afterwards, a March goal is dispatched for the
start-line location and the belief assaultPrep is set to true, allowing the agent to remember that
this is the current assault phase. Once a successful task status report is received, assumed to be
the march, the march is triggered once more by changing a belief. This is required because the
march consists of two parts. When the march to the start-line is completed, the assaultPrep
belief is turned to false, the assaultMarch belief is turned to true (signifying the success of the

Implementation 60

Figure 5.2: The BDI processing of the assault phases in the Company agent. The blue blocks are goals,
the green blocks are beliefs and the red ovals are plans. The beige ovals are actions (intentions) in plans.

Implementation 61

march) and a move into formation goal is dispatched for line formation at the start-line. The
next time the ProcessAssault plan is called upon, which is after every successful task status
report while assaulting, the next phase of the assault is initialized by setting assaultMarch to
false and assaultFireandMovement to true.

5.3.1.2 Phase 2 : Fire and Movement

Once the company agent’s belief assaultFireandMovement is set to true, a new plan is triggered:
the assaultFireAndMovement plan. In this plan, the final assault line, 600 meters from the target
location, is computed in the same way the start-line was computed. Afterwards, the company
agent dispatches a new move into formation goal for a line formation at this final assault line.
Furthermore, the agent sets the rules of engagement (ROE) to fire when fired upon. This will
simulate the defensive movement from the start-line to the final line.

Bounds The CIS states that, if fired upon during this phase, movement should be changed
from one line to bounding lines. However this has not been implemented during this project.
The detection of fire would have to be added and then this could be used in a belief to trigger
a new bounding fire and movement plan, which would abort the current action and impose its
own way of movement.

Completion A successful task status report from this move into formation will trigger the
initial ProcessAssault plan once again. This time, assaultFireandMovement is set to false while
assaultFinal is set to true.

5.3.1.3 Phase 3 : Final attack

The positive assaultFinal belief will trigger the assaultFinalPhase plan. This plan will set the
speed to maximum, the ROE to fire at will and dispatch a move into formation goal for a
line formation at the assault’s target location. Similar to the previously implemented attack
(Bronkers, 2011) , this will simulate the tanks attacking the enemy position, yet this time in
an orderly coordinated line with maximum fire power in front. As was previously the case,
the completion of this task will cause ProcessAssault to trigger again. This time, the belief
assaultFinal is set to false and the belief assaultConsol is set to true.

5.3.1.4 Phase 4 : Consolidate and Reorganize

The company agent’s belief assaultConsol will trigger the Consolidate plan. This plan will
compute a location with 400 meters distance from the assault’s target location, set the ROE to
fire when fired upon and dispatch the goal to setup battle position (with 500 meters frontage
per platoon) formations at that location.

5.3.1.5 Finalizing the assault

If consolidate returns a successful task status report, the ProcessAssault plan will be triggered
for the final time. At this point in time, it will clear the agent’s beliefs of all those related to the

Implementation 62

execution of the assault task. This will cause future completeds to not trigger the ProcessAssault
plan anymore.

5.3.2 CIS: Tactical Road March

The Tactical Road March is a march along roads towards the assembly area, but our agents do
not receive road information from the simulator. However, the agents assume that the march is
conducted along a road. In future work, this might also be implemented. We have implemented
the Tactical Road March as a move in formation towards a destination. As a counterpart,
we have also created an off-road march. When ordered, or desired, the company agent will
create a March goal, to travel to a destination either on- or off-road at march speed. The
TacticalRoadMarch plan can then be used to execute this goal.

5.3.2.1 TacticalRoadMarch plan

The company agent’s TacticalRoadMarch plan dispatches a move into formation goal for a road
march formation at the agent’s current location. The road march formation has been stored as a
.frm file for use by the agents and simulator, see also Figures 4.2a and 4.2b. Before dispatching
the goal, the agent creates a marching belief, a Boolean set to true. If the agent receives
confirmation from the simulator that the formation has been achieved at the desired location,
it sets the marching belief to false, thereby triggering the TacticalRoadMarch plan again. This
time, the plan dispatches its final move into formation goal for a road march formation at the
destination, and turns marching back on. When processed, this will cause the simulator to move
the platoon aggregates in their road march formations to the destination. When marching is
once again turned to false, the plan and the March goal that triggered it succeed.

This use of the marching belief is a work-around that is needed because of the delay in
executing a plan and receiving the result of the plan. In Jadex, a performgoal (which all our
goals are), like the tactical road march and the move into formation, will be successful if a plan
has successfully been employed on its behalf. As such, when we dispatch a move into formation
goal in the TacticalRoadMarch plan for the first part of the plan, this part will have succeeded
when the company agent has ordered its platoon agents to move into formation. At that point,
it will want to carry on with the TacticalRoadMarch plan and dispatch the second move into
formation goal (for moving from the starting point to the destination). However, there probably
has not been any action in the simulator yet at this point because the platoon agents are still
processing their move into formation plans. Therefore, the move into formation would already
overwrite the previous while that has not yet been executed or completed in the simulator.
This is a definite misconnection between our system architecture and the jadex framework; our
agents do not receive immediate responses from their plans. So instead we had the work-around
belief that has been used to make the TacticalRoadMarch plan wait for a completed task report
first, before it moves onto step 2.

Implementation 63

5.3.2.2 OffRoadMarch plan

The off-road march is exactly the same as the Tactical Road March, except that the formation
to be moved in is set to a column formation.

5.3.3 CIS: Hasty Occupation of a Blocking Position

5.3.3.1 Distance threshold

The hasty occupation of a blocking position is a CIS reacting to unforeseen enemy progress,
hence our agents also need to activate this plan as a reaction to such an observation. To represent
not foreseen enemy progress, we decided to monitor expected enemy locations and the distance
from these expected locations of observed enemy equipment in our battalion agent. If the enemy
equipment’s distance from expected locations is greater than some threshold, it is considered
to show unforeseen enemy progress, and it should be reacted to with the hasty occupation of a
blocking position from the nearest company agent. While a lot more reasoning could be used
before a blocking position is applied, this distance threshold was chosen as it seemed to be
the easiest and quickest implementation, while still showing the reactive capabilities that these
agents can provide.

5.3.3.2 Expected locations

For our expected locations, we chose the positions from orders previously provided to the agents.
When the order to assault a location is given, we can expect there to be enemy activity around
this location. Furthermore, since the order to apply a blocking position now also records that
location-to-be-blocked as an expected location, the distance threshold automatically ensures
that the blocking position is not ordered numerous times for the same entity. If this was not the
case, every time the update of the enemy’s location is provided to the agents, if it still passes the
distance threshold, a new blocking position would be ordered and executed. To fine-tune this
reactive behaviour, at the start of a scenario, certain locations could already be provided to the
agents as expected locations. Moreover, the distance threshold could be adjusted beforehand.

5.3.3.3 Blocking positions

The positions of the platoons and their tanks during a blocking position ordered to the superior
company has been provided to the agents and the simulator as a formation. The CIS provides
some default distance values for this formation: the frontage of a platoon measures 500 meters;
the distance between two platoons measures 100 meters from side to side; and the equipment
of a platoon are equally distributed over this frontage in a line-like formation, as can be seen in
Figure 4.5b. As such, the distance between our platoons (aggregates) is 600 meters, as measured
from their centres of gravity. The platoon’s line formation is extended to a 500 meters length,
thus providing a horizontal distance of 166 meters between the every other platoon. Once
ordered to occupy the blocking position by its superior battalion agent, the company will order
its platoons to set-up this formation, facing towards the position-to-be-blocked. This reuses the
heavily used move into formation task that the agents can send to the simulator. Furthermore,

Implementation 64

each entity’s rules of engagement shall be set to fire at will, so that the threat is eliminated as
soon as possible.

5.3.3.4 Suspension of other tasks

The ordered company agent might already be executing a task at the time of the reactive block-
ing positions. Normally, new tasks are put on hold until the current task has been completed.
To circumvent this structure, the abort executing task task has been added to the agents’ reper-
toires. As such, the superior battalion will first send the abort executing task task. This will
abort execution of the current task and suspend tasks that were put on hold. However, because
we might not want to discard these tasks entirely, we have introduced the continue task as well.
Effectively negating the abort executing task tasks sent before, the agent is ordered to continue
with any suspended or aborted tasks.

Figure 5.3: An activity diagram showing the events leading up to a blocking position. The green path
shows how an update from the simulator of a formerly unknown enemy equipment causes the Information
Manager to Update Commander (Battalion Agent) about the new unit. The black path shows what happens
when friendly units are detected.

Implementation 65

5.3.3.5 Ending the blocking positions

The occupation of a blocking position is started as a reaction to enemy behaviour, and should
be ended once this enemy behaviour has seized. This decision could be made by either the
ordered company agent or by the superior battalion agent. We have chosen to let the battalion
agent make all the decisions in this matter, because this agent already has all the requisite
background knowledge on which it based the initial order. The blocking position is ended once
the blocked units are destroyed. As such, when the battalion agent observes that the equipment
it ordered to be blocked has been destroyed, it will send a continue task to the ordered company
agent. This structure allows room for future extra reasoning.

5.3.3.6 Diagrams

In Appendix C, you can find extended, more detailed, versions of the UML activity diagrams,
Figures 5.3 and 5.4, accompanying this implementation description.

In Figures 5.3 and 5.4, we can see the discussed implementation as UML activity diagrams.
Our blocking position is initiated in Figure 5.3, along the green path. A moving unit in the
simulator causes a unit status update to be sent from the simulator to the HLA Manager. The
HLA Manager then forwards this update in an agent-understandable way to the Information
Manager. This Information Manager checks the allegiance of the received Equipment: friendly
Equipments get stored with other friendly units and updated to their commanding agents, while
enemy units get stored with other enemy units and the commanding agent gets updated. In
our setup, the Battalion agent is the commanding agent.

In Figure 5.4, the green line shows us how the Battalion agent responds to the update from
the Information Manager. First it is checked whether the received Equipment is still alive. If so,
distances from the Equipment to expected locations are measured and compared to a predefined
expected distance. If the Equipment is too far from expected locations, a blocking position is
required and the Battalion agent initiates this by sending both the ABORTEXECUTINGTASK
and BLOCKINGPOSITION tasks to a Company agent. Furthermore, data is stored to stop
the Battalion agent from blocking this unit again at the next update. The Company agent then
continues with the execution of these tasks.

In case the Equipment update received by the Battalion agent shows that an Equipment
is destroyed, which was previously ordered to be blocked, the Battalion agent sends the CON-
TINUE task to the Company agent instead. This indicates that the blocking position, set up for
the destroyed Equipment, was successful and that the agent can continue with previous tasks.
This ending of the blocking position is indicated with the red lines in Figure 5.4.

5.3.4 CIS formations

The formations available in VR-Forces are stored in FRM configuration files, one for each
formation. Furthermore, every type of aggregate can use a different subset of these formations,
described in their OPE configuration file. The aggregate types we use are the platoon of M1A2
tanks and the company of M1A2 tanks. Therefore, the OPE configuration files linked to these
aggregate types have been extended to allow our newly defined formations.

Implementation 66

Figure 5.4: The blocking position reaction from the Battalion agent shown in an UML activity diagram.
The green path shows the decisions that lead up to ordering the company agent to apply a Blocking
Position. The red path shows how a CONTINUE task is sent to the company agent, ending a previous
Blocking Position.

To move our platoons into formation, we have created the move into formation task in
the FOM. Our platoons are ordered to move into formation at a location with a heading and
a formation, after which they just forward this to the HLA Manager and, subsequently, the
simulator. However, this does not work for our company agents, as we provide the simulator
orders at the platoon aggregate level. For the company level formations, we have also created
FRM files, but we cannot task our company aggregates. However, from the simulator’s GUI,

Implementation 67

the company aggregate can be tasked to move into formation using these FRM files.
To achieve these formations for our company agents as well, we need to task our platoon

agents to move into formation at certain locations, and with certain headings, so that the
company formation is formed. To this end, we have created extra Java classes to determine the
correct locations and headings for each platoon, based on the FRM files as its input.

5.3.4.1 Positional offset

Just as the move into formation task provides the simulator with positional offsets, in the form
of the .FRM file, our company agent needs to provide these move into formation tasks with
positional offsets. As such, we have created additional formation files (.FRM) for the company
level, and the new Formation Java class capable of reading and storing these formation files and
transforming input positions. Note that the company formation has to consider the platoon
formation used, because distances between its platoons are measured from the edges of those
platoon formations. As such, the positional offset in a company column formation will be
different if the platoon is in a column formation compared to a platoon’s line formation. For
this thesis, we have assumed that the platoons occupy the same formation as their superior
company, partly because we do not have the expert information needed to decide otherwise.
Therefore, offsets could be and were calculated beforehand and stored in a specific FRM file.

The Formation class provides the offset, compared to the starting location, for the next
platoon in a HashMap, mapping from String to Double. The values in this HashMap are
“right” for the offset (meters) to the right, “inFront” for the offset to the front and “above”
for the offset in altitude. If the heading is towards the north, 0◦, an offset can be directly
applied to our UTM coordinates. Our offset “right” will extend the x-coordinate, “inFront” the
y-coordinate, and “above” the z-coordinate. Therefore, we shall refer to the offsets as offsetx

for ”right”, offsety for ”inFront” and offsetz for ”above”. So an offset of

 offsetx
offsety
offsetz

 on UTM

coordinates

 x
y
z

 will result in new UTM coordinates

 x+ offsetx
y + offsety
z + offsetz

. Note that negative

values provide offsets to the left, behind and below and that the z coordinate for altitude is
omitted in future references, since our agents only work with ground objects.

However, if the heading is not 0◦, along the y-axis, the offset cannot be directly applied
to our Cartesian UTM coordinates. Consider for example, that if the heading is set to 90◦,
the object’s front would be along the x-axis and an offset to the right would be a negative
offset on the y-axis. The actual offset location can now be calculated with a multitude of
methods, among others: polar coordinates, vectors, corners and the Pythagorean Theorem or
transforming coordinates using a rotation matrix. After comparing methods, we chose to use
the rotation matrix in our agents. It computed the results faster than other tried methods.

Rotation Matrix An easy way to understand this method is to see the offset as part of its own
coordinate system, similar to the Cartesian UTM coordinate system, but centred around the
starting location P1 and tilted along the desired heading θ. The offset-y-axis is for the meters

Implementation 68

x

y

of
fse

t y

offsetx

ro
ta

te
 h

ea
din

g

co
un

te
r c

loc
kw

ise

heading

p2

p1

Figure 5.5: Example for the transformation matrix. Offset coordinate system shown in red, cartesian
coordinate system in black. Coordinates offsetx and offsety are known and can be translated to x and y
by rotating the offset coordinate system counter clockwise with the heading θ.

in front of the object, the offset-x-axis for the meters to the right of the object. When the

heading is 0◦, the two coordinate systems overlap and offset-coordinates

[
offsetx
offsety

]
can be

directly translated to UTM coordinates

[
x
y

]
. If not, the offset-coordinate system will have

to be rotated through the counter clockwise heading θ. This is accomplished by the matrix
multiplication of the offset coordinates and the rotation matrix R′:

R′ =

[
cos θ sin θ
− sin θ cos θ

]
−−−→
P1P2 =

[
x
y

]
= R′

[
offsetx
offsety

]

Implementation 69

=

[
offsetx · cos θ + offsety · sin θ

offsetx · − sin θ + offsety · cos θ

]
This vector

−−−→
P1P2, the rotated offset, can then be added to position P1 to get position P2.

P2 = P1 +
−−−→
P1P2

5.3.4.2 Heading

θ

r sinθ

r cosθ

r

x

y

Figure 5.6: By converting from cartesian coordinates to polar coordinates, we can get our direct angle
and heading θ.

The heading of the formation is taken as the direction directly facing the target location (or
entity). When we already know the current location and the target location, the heading (or
angle / azimuth) to be turned to is found by translating from Cartesian coordinates to Polar
coordinates and taking the azimuth θ, or the angle of the vector from P1 to P2.

θ = atan2(y, x)

Here atan22 is a common variation of the arctangent function, found in Java and other
programming languages, that takes the quadrant into account.

5.3.4.3 CIS: Column Formation (Tank Company)

The Column formation is a formation for the company level and the platoon level. The company
Column formation, shown in Figure 4.3a, is stored in CIScompanyColumnPlatoonColumn.frm.
From the simulator’s GUI, the company aggregate can be tasked to move into the Column
formation using this frm file.

5.3.4.4 CIS: Column Formation (Tank Platoon)

The platoon Column formation, shown in Figure 4.3b, is stored in CISplatoonColumn.frm.

2Atan2: http://en.wikipedia.org/wiki/Atan2

Implementation 70

5.3.4.5 CIS: Line Formation Traveling (Tank Company)

The Line formation is a formation for the company level and the platoon level. The company
line formation, shown in Figure 4.4a, is stored in CIScompanyLinePlatoonLine.frm. From the
simulator’s GUI, the company aggregate can be tasked to move into the line formation using
this frm file. The CIS Line Formation Traveling for the Tank Company prescribes a formation
where, relative to leading platoon 1, platoon 2 is 100 meters to the left, platoon 3 is 100 meters
to the right and other platoons start at 500 meters behind platoon 1, with a 100 meter (behind)
interval between each of those platoons. Actually, Line Formation Traveling indicates positions
for the Company commander, the Ltnt forward observer, the Executive Officer, the Sgt forward
Observer and the Combat train, but these are omitted from our scenario, replaced by platoon
positions.

Further platoons will be automatically positioned 100 meters extra behind the last platoon
by VR-Forces (meaning we could have stopped the file at entry-4 instead).

5.3.4.6 CIS: Line Formation Traveling (Tank Platoon)

The platoon Line formation, shown in Figure 4.4b, is stored in CISplatoonLine.frm, shown in
Code 5.10. Every entry is filled by a tank, with an offset from the leader’s location (who has
promotion-id 0).

Code 5.10: Line formation for platoons in an FRM file

1 (l i n e−format ion
2 (entry−0
3 (promotion−id 0)
4 (l eader−promotion−id −1)
5 (po s i t i on−o f f s e t 0 .000000 0.000000 0 .000000)
6)
7 (entry−1
8 (promotion−id 1)
9 (l eader−promotion−id 0)

10 (po s i t i on−o f f s e t −30.000000 −50.000000 0 .000000)
11)
12 (entry−2
13 (promotion−id 2)
14 (l eader−promotion−id 0)
15 (po s i t i on−o f f s e t −30.000000 −150.000000 0 .000000)
16)
17 (entry−3
18 (promotion−id 3)
19 (l eader−promotion−id 0)
20 (po s i t i on−o f f s e t 0 .000000 −100.000000 0 .000000)
21)
22 . . .
23)

Implementation 71

5.4 DSS

In this implementation section about the decision support system we will describe how this
system has been implemented. This starts with the creation of the GUI, a Java table, in
Section 5.4.1, followed by explanation of the computation of the MOEs that will be displayed
in the DSS in Section 5.4.2.

5.4.1 Implementing the GUI

As stated in Section 4.3, the Information Manager agent is the connection from our system
architecture to the new DSS. At startup, it initiates the DSS creation, as shown in Figure 5.1,
and further processing of the MOEs and adjusting the DSS’s GUI is also controlled by the
Information Manager agent.

The DSS GUI has been made as a Java table, according to the DSS model, more specifically
a Java class DSS which extends JPanel, a window component of Java’s Swing which can be
used to create graphical user interfaces (or GUI). Inside this JPanel we can place components,
which shall be our table.

5.4.1.1 Table

The table that we place in our DSS is a JTable (Java table from the Swing set), initialized
with a customized MyTableModel. In this model, a table is created with as many columns
as there are column names provided to it. Thus, we provide the name of each MOE we want
to this table model, after which the JTable in our JPanel will be able to show these columns.
More importantly, we also provide the table with a column model that will allow us to hide the
columns in the table. By hiding appropriate columns, the user can select only those criteria for
comparison that are desired. The column model used is the XTableColumnModel from Stephen
Kelvin, available at http://www.stephenkelvin.de/XTableColumnModel/.

After the table has been created, it is added to our JPanel together with the actions to
add a row, to show or hide all columns and to retrieve the results from the agent. For more
information on creating or adjusting such a table GUI in Java, see Oracle’s tutorials at http:

//docs.oracle.com/javase/tutorial/uiswing/components/table.html.

5.4.1.2 Listening to the DSS

The agent has a plan ProcessDSSGUI that implements Java’s TableModelListener and Action-
Listener. This provides the plan with the tableChanged() and actionPerformed() methods.

TableModelListener The tableChanged() will trigger whenever a user adjusts our DSS table,
i.e. by adding a new row. In Code 5.11 we can see the small piece of Java code that is executed
at that point. All it actually does is set beliefs newCOA and rowCOA to true and the row that
has been added, causing the next order to be matched to this new row, plus it outputs some
warnings to the user. If newCOA is still true by the time this new row is added, it means that
no order has been matched to the previous row(s) yet. This might be noteworthy.

Implementation 72

Code 5.11: Java code for the tableChanged() method in the Information Manager’s ProcessDSSGUI
plan

1 case TableModelEvent . INSERT:
2 //The i n s e r t e d rows are in the range [f i rstRow , lastRow]
3 f o r (i n t r=f i r s tRow ; r<=lastRow ; r++){
4 // Row r was i n s e r t e d
5 i f ((Boolean)bb . g e tB e l i e f (Bat ta l i on .newCOA) . getFact () == true) {
6 St r ing warn = new St r ing (”Note: One or more p r ev i ou s l y added rows did not

have a COA l inked yet . \nThe l a s t added row w i l l i n s t ead l i n k to the
next COA. ”) ;

7 mLogger . warn (warn) ;
8 JOptionPane . showMessageDialog (dec is ionSupportSystem . tab le ,
9 warn ,

10 ”Overwrit ing prev ious row” ,
11 JOptionPane .WARNINGMESSAGE) ;
12 }
13 bb . g e tB e l i e f (Bat ta l i on .newCOA) . se tFact (t rue) ;
14 bb . g e tB e l i e f (Bat ta l i on . rowCOA) . se tFact (r) ;
15 }
16 break ;

ActionListener The actionPerformed() method will trigger whenever the user presses one of
the buttons on the DSS, such as the one to retrieve the results. This is currently the only
action that’s possible to be performed which triggers this action listener. When pressed, the
Information Manager will retrieve results for every column from its beliefs.

5.4.2 Computing the MOEs

As discussed, the computation of the MOEs is triggered by the action listener after the user
presses a button on the DSS. The following columns (MOEs) have been added and shall be
discussed in this section:

• Survival rate

• Fuel percentage

• Ammunition percentage

• Completed

• Enemy survival rate

5.4.2.1 Survival rate

The survival rate measure of effectiveness is the ratio of friendly units that are still alive com-
pared to the number of units the mission started with. In Code 5.12 we show the Java code used
to retrieve the MOE and put it in our DSS. This section of code will be triggered once per press
of the button. The agent retrieves all friendly battalions from its beliefs (friendlyForces is an
already-retrieved belief), after which it can just ask each battalion Aggregate for its strength,

Implementation 73

which is continuously updated as the simulator provides new information to the agent. The
strength of a battalion has been taken as the mean strength of its subordinate companies. Their
strength is the mean strength of their subordinate platoons, who’s strength is the number of
subordinate equipment that are still active divided by the total number of equipment. So in
effect, the battalion’s strength is the percentage of tanks that are still active in its battalion.

Code 5.12: Java code for retrieval of the survival rate MOE in the DSS

1 i f (columnName . equa l s (Bat ta l i on . columnSurvival)) {
2 columnSurvival = i ;
3 Vector<Aggregate> ba t t a l i o n s = f r i e nd l yFo r c e s . g e tA l lBa t t a l i o n s () ;
4
5 f o r (Aggregate ba t t a l i o n : b a t t a l i o n s) {
6 ba t ta l i onS t r eng th = ba t t a l i on . getSt rength () ;
7 St r ing bat ta l i onSt r engthPerc =

NumberFormat . ge tPercent Ins tance () . format (ba t t a l i onS t r eng th /100 .0) ;
8 model . setValueAt (bat ta l i onStrengthPerc , row , columnSurvival) ;
9 break ;

10 }
11 }

5.4.2.2 Fuel percentage & ammunition percentage

The fuel percentage is, like the survival rate, a mean percentage of an attribute of every Equip-
ment / tank in the battalion. In fact, it is retrieved in the same way as the survival rate, except
this time by calling battalion.getResourceAmount(”fuel”). The fuel percentages are updated to
our Equipment objects from the event updates we receive since we added the entityFuel event
to the FOM, instead of directly from the tank object we receive from VR-Forces. The ammu-
nition percentage has not been implemented on the agent-side during this project. Unlike fuel,
ammunition has multiple types per unit, as a soldier might carry a machine gun and a pistol and
some grenades. It is less clear if these should then be represented as one percentage (the mean
over all possible ammunition), or if the MOE should be spread out over multiple sub-columns
with percentages for each ammunition type.

5.4.2.3 Completed

Completed is a basic criterium of a mission: did the COA actually come to completion or was
it stopped by the enemy resistance? In Code 5.13 we can see the code used to retrieve this
criterium. First the agent retrieves from its beliefs the set of status reports it has gotten from
its company agents and then the set of orders that it has been tasked by the C2 system. These
are matched to see if the order from the C2 system has a completed task report. If so, the
criteria is set to true, else it will be false. There has been no check implemented to see if the
order belongs to the current COA (row), so this only works in our current setup where the
agents can actually only perform one COA at a time.

Implementation 74

Code 5.13: Java code for the retrieval of the completed criteria in the DSS

1 i f (columnName . equa l s (Bat ta l i on . columnCompleted)) {
2 columnCompleted = i ;
3 boolean completed = f a l s e ;
4 OrderStatus [] o r d e rS t a t i = (OrderStatus [])

bb . g e tB e l i e f S e t (Bat ta l i on . ordersCompleted) . getFacts () ;
5 Order [] o rde r s = (Order []) bb . g e tB e l i e f S e t (Bat ta l i on . o rde r s) . getFacts () ;
6
7 f o r (OrderStatus orderStatus : o r d e rS t a t i) {
8 f o r (Order order : o rde r s) {
9 i f ((order . getOrderId () . equa l s (o rderStatus . getOrderId ())) &&

10 (o rderStatus . ge tStatus () . getName () . equa l s (Bat ta l i on . complete)))
11 {
12 completed = true ;
13 }
14 }
15 }
16 model . setValueAt (new Boolean (completed) , row , columnCompleted) ;
17 }

5.4.2.4 Enemy survival rate

Finally, the enemy survival rate is retrieved by taking the enemyForces belief (the set of enemy
Equipment) from the agent’s beliefs, and then checking the number of Equipment that are
destroyed in this list. Then the number of non-destroyed Equipment divided by the total
number of Equipment provides the enemy’s strength and is set to as the column value. See
Code 5.14 for this method. This set of enemy Equipment is updated whenever an Equipment
is updated from VR-Forces.

Code 5.14: Java code for the retrieval of the enemy survival rate for our DSS

1 i f (columnName . equa l s (Bat ta l i on . columnEnemy)) {
2 columnEnemy = i ;
3 Vector<Equipment> enemyForces = (Vector<Equipment>)

bb . g e tB e l i e f (Bat ta l i on . enemyForces) . getFact () ;
4 f l o a t destroyed = 0 ;
5 f l o a t t o t a l = (f l o a t) enemyForces . s i z e () ;
6
7 f o r (Equipment enemy : enemyForces) {
8 i f (enemy . ge tS ta t e () . equa l s (Bat ta l i on . s ta teDest royed)) {
9 destroyed++;

10 }
11 }
12 f l o a t a l i v e = t o t a l − destroyed ;
13 f l o a t enemyStrength = a l i v e / t o t a l ;
14 St r ing enemyStrengthPerc =

NumberFormat . ge tPercent Ins tance () . format (enemyStrength) ;
15 model . setValueAt (enemyStrengthPerc , row , columnEnemy) ;
16 }

Chapter 6

Results

75

Results 76

In this chapter we shall show how our systems turned out and what the new capabilities
are. As told before, our implementation concerns two systems: the multi-agent system and the
decision support system. Therefore, this chapter shall consist of two sections, one for each of
these systems.

Our results in this document will be supported by screenshots from the simulator during
execution of the CISs and monitoring of the DSS. Furthermore, for video demos you can visit
YouTube channel TorecLuikProjecten at http://www.youtube.com/user/TorecLuikProjecten.
There are seven demos in total as shown below, the first three of the list were used in the pre-
sentation of this project.

• Demo of Command Agents - Assault, showcases the execution of the Assault.

• Demo of Command Agents - Blocking Position, showcasing the execution of Blocking
Positions.

• Demo of Command Agents - Decision Support System (DSS), showcasing the DSS as it
records data during the Assault.

• Demo of Command Agents - Decision Support System (2), which shows similar behaviour
as Demo of Command Agents - Decision Support System (DSS), but now with increased
visual quality.

• Demo of Command Agents - Decision Support System (Multiple tables), showcasing how
a second DSS table can be used for comparison.

• Demo of Command Agents - Attack (old), in which the old Attack order is shown.

• Demo of Command Agents - Attack (old, random start setup), which also shows the
Attack, yet now with different positions, emphasizing that no formations are held during
the Attack.

6.1 DSS Behaviour

Figure 6.1: The Decision Support System on startup.

Results 77

Our decision support system has been implemented based on the initial concept from Sec-
tion 4.4. As such, we have created a table that is launched by the Information Manager on
startup, after launching all other agents. See Figure 6.1 for a view of the DSS when initialized.

6.1.1 Connecting DSS with an order

Rows can be added with the add row button, after which the name of the new COA row (first
column) has to be provided. If a duplicate name is provided, the system will notify the user and
automatically add an enumerator to the name. See Figure 6.2 for the DSS with a row added.
Whenever a row is added to the table, it is automatically connected to all the next orders. This
means that the MOEs, generated for the row’s columns, will be based on the events happening
afterwards.

(a) The Decision Support System, asking for a name for the new row / COA.

(b) The Decision Support System with the new row added.

Figure 6.2: The Decision Support System as we add a new row.

6.1.2 Hiding MOEs

The table is initialized with columns for all measures of effectiveness, and one example row.
After this point, the columns can be hidden (if there is no interest in a particular MOE) and
later revealed again. See Figure 6.3 for the same DSS as in Figure 6.1 but with a column hidden.

Results 78

(a) The Decision Support System, selecting what columns we want to see.

(b) The Decision Support System after we have hidden a column (fuel rate)

Figure 6.3: The Decision Support System as we hide a column (fuel rate).

6.1.3 Retrieving MOEs for the order

The data for in the columns is retrieved and/or calculated from the Information Manager’s
beliefs, when the button Retrieve results is pressed. The new data then overwrites the old
data in the newest row. As such, any type of MOE can be updated in this way. During this
project, we can only retreive up to date results concerning survival rates (%), fuel rate (%) and
completed. See Figure 6.4 for the DSS with retrieved results.

Results 79

(a) The Decision Support System, after results are retreived at the start of the scenario.

(b) The Decision Support System, after results are retreived near the end of the scenario.

Figure 6.4: The Decision Support System after results are retrieved.

6.1.4 Comparing MOEs

During this project we did not yet try to connect one DSS to multiple simulation runs, which
should be possible after some adjustments, in theory. Instead, comparing MOEs can be done in
one simulation between different time points, by adding a new row. Also, different COAs could
be compared by starting a new set of agents and a new simulator. This way, you would get two
DSS windows showing results from two different simulator runs. See Figure 6.5 for an example
of two DSS screens from two different simulations.

Results 80

Figure 6.5: The Decision Support Systems after results are retrieved in two separate simulations, with
two disparate COAs.

6.2 CGF Behaviour

We have implemented CISs that describe CGF behaviour in our agents. In this section, we will
show what behaviour in the simulator is the result of the implementation of these CISs. For
each CIS, we will show screenshots from a video and describe the shown behaviour according to
our implementation. Furthermore, we shall contrast these with similar behaviour, if that was
available from the previous project.

Legend To better understand what is going on in the video and its stills, see our starting
positions in Figure 6.8. In the bottom left we see the friendly forces in blue and in the top
right we see the enemy forces in red. The figures from the simulator, as seen in the video, are
standard figures used in NATO militaries and thus used by VR-Forces. For more information,
see Department of Defense (2005). In Figure 6.6 we show the icons as used in the 2D view of
the simulator and in Figure 6.7 we show the 3D versions of the units we are simulating.

Results 81

(a) Friendly tank icon. (b) Friendly platoon icon. (c) Friendly company icon.

(d) Destroyed tank icon (e) Enemy unit icons.

Figure 6.6: The icons for different units used in our scenario.

(a) Friendly tanks in 3D, corresponding to the icon in Figure 6.6a.

(b) Enemy units in 3D, corresponding to the icons in Figure 6.6e. From
left to right: DI-RPG4, TechTr 2 (car), DI 3 and RPG 2.

Figure 6.7: The 3D versions of the units used in our scenario.

Results 82

Figure 6.8: Friendly companies’ starting positions at the south west corner, south east corner and north
west corner. Enemy positions in the north east town. Blue fields at the aggregate icons indicate the area
covered by its subordinate tanks.

Results 83

Figure 6.9: The objective from the enemy’s perspective.

Figure 6.10: The objective from company B’s perspective.

Results 84

6.2.1 Marching

We have implemented several new methods of transportation, generally referred to as marching.
Previously, only one method of marching was possible, the Move. Our implementations provide
the Tactical Road March, the Column formation and the Line formation methods of marching.
In effect, these are formations that the platoon or company moves in, whereas the previous
Move did not use any formation. All four methods shall be shown next.

6.2.1.1 Previous Behaviour - Move

In Bronkers (2011), the previous version of this MAS, there was one way of movement, using
VR-Forces’ B-HAVE. This Move is shown in Figure 6.11 as a comparison to the doctrinal march
behaviour implemented during this project.

(a) A starting position for the Move. (b) The Move after a short while, tanks have individ-
ually moved to the north east in a relatively straight
line since no path planning is being used.

Figure 6.11: The Move command from Bronkers (2011).

6.2.1.2 Tactical Road March

One of our new implementations from a CIS was the Tactical Road March, see Chapter 4.1.2.3.
The Tactical Road March implementation is shown in Figure 6.12a.

6.2.1.3 Column Formation

One of our new implementations from a CIS was the Column formation, see Chapter 4.1.2.3.
The Column formation implementation is shown in Figure 6.12b.

Results 85

(a) The Tactical Road March CIS in action. (b) The Column Formation CIS in action.

Figure 6.12: The Tactical Road March CIS and Column Formation CIS in action. Note that the
Column formation requires a lot more space, so the scales are not equal.

Results 86

6.2.1.4 Line Formation

One of our new implementations from a CIS was the Line formation, see Chapter 4.1.2.3. The
Line formation implementation is shown in Figure 6.13 and Figure 6.14.

Figure 6.13: The Line Formation CIS in action.

(a) The Line Formation CIS on the platoon level in
action, with icons.

(b) The Line Formation CIS on the platoon level in
action, in 3D.

Figure 6.14: The Line Formation CIS in action on the platoon level, with icons and in 3D.

6.2.2 Assault on a enemy position

The Assault is the doctrine that contains the attack on enemy position, together with the prior
and post behaviour. As such, it can be seen as the extension or improvement of the previous
Attack or Seize behaviour, where Seize includes a defensive position after the Attack. For this
scenario, our company of 3 M1A2 tank platoons shall assault a fortified enemy position in a
town to the north east, with their starting position shown in Figure 6.8. See also the demo video
Demo of Command Agents - Assault on YouTube, from which some of the following images are
taken.

6.2.2.1 Previous Behaviour - Seize

Previously implemented behaviour that is similar to our new Assault is the Seize behaviour.
The Seize consists of two phases: first an Attack is executed on the target position, following
by a Defend on that same position. The Attack is made up of a Move and the setting of ROE
to fire at Will, while the Defend is made up of a Move and the setting of ROE to fire when fired
upon. In Figure 6.11, we can see the company moving towards the enemy town for their attack.
In Figure 6.15a, fire is exchanged between the friendly and enemy troops. Then in Figure 6.15b,
the company has entered the town and finally the company takes up a defensive position in the
town, which doesn’t actually show any difference to Figure 6.15b, as only the ROE changes to
fire when fired upon.

Results 87

(a) Company firing upon enemy resistance. (b) Company entering and seizing the enemy
town.

Figure 6.15: The Seize in action.

6.2.2.2 Phase 1: Preparation

The assault doctrine contains a lot more steps than shown in the previous section. The first
of all is the preparation: moving towards the start-line. The preparation starts with moving
into their march formation as in Section 6.2.1.2. From this position, they march, as shown
in Figure 6.16a, to the start-line. This start-line has been determined by the company agent,
based on the 1500 meter distance from the final location. When they arrive, the company and
its platoons move into the Line formation, see Figure 6.16b, concluding Phase 1.

(a) Company marching towards the start-line. (b) Company at the start-line, in the Line formation.

Figure 6.16: The Preparation phase of the Assault in action.

Results 88

6.2.2.3 Phase 2: Fire and Movement

Phase 2 consists of the movement between the start-line and the final assault line. When not
under fire, the company will march in Line formation from the start-line to the final assault line,
600 meters from the target. In Figure 6.17a we can see the company during this movement. In
Figure 6.17b, the company has reached its final position at 600 meters from the target.

(a) Company marching towards the 600 meters line. (b) Company in Line formation at the 600 meters
line.

Figure 6.17: The 2nd phase of the Assault in action.

6.2.2.4 Phase 3: Final Attack

Once the company has reached the last line, a final attack on the target position will take place.
This means that its rules of engagement are set to fire at will as the company moves towards
its target position. We can see how fire is opened in Figure 6.18a, how the company moves into
the enemy’s defensive position in Figure 6.18b and how the attack is concluded when the tanks
arrive at the center of the village and most of the enemies (and friendly tanks) are destroyed in
Figure 6.18c.

Results 89

(a) Company opening fire on enemy targets. (b) Company moving towards center of the town.

(c) Company completed the attack on the town.

Figure 6.18: The 3rd phase of the Assault in action.

6.2.2.5 Phase 4: Consolidation

When the attack has been completed, the company has to consolidate and reorganize in a
position beyond the target destination. This way, they can get ready for their next task. In
Figure 6.19 we can see the company consolidating and reorganizing at the edge of the town,
finalizing the assault. As can be seen, there are only 6 tanks left, divided over 2 platoons. One
of the platoons is positioned in the blackness beyond the city, where the ground type has not
yet been declared.

Results 90

Figure 6.19: Company finalized assault by consolidation at the edge of the town.

6.2.3 Blocking Position

The (Hasty Occupation of a) Blocking Position CIS provides the agent with reactive behaviour,
based on enemy presence at unexpected locations. In this section we shall show the different
parts of the blocking position.

In these results we have a scenario in which an Assault is ordered, but later interrupted for
a Blocking Position. See also demo video Demo of Command Agents - Blocking Position on
the YouTube channel, from which most of these Figures are taken. First, as in Figures 6.16a,
6.16b and 6.17a, we can see the company marching to and from the start-line.

6.2.3.1 Enemy Presence

Next, a (group of) enemy unit(s) is detected at a location with large distance from the expected
location (where the units will Assault), see Figure 6.20. If the calculated distance is too great,
a blocking position will be ordered, to keep these new enemies at bay.

Results 91

(a) Unexpected enemy presence, closest to assaulting
company B.

(b) Unexpected enemy presence, closest to company
A.

Figure 6.20: Enemy presence at a great distance from the expected enemy location.

6.2.3.2 Blocking Position occupied

As ordered, the company agent initiates the Blocking Position formation at its current location
and engages the enemy presence with fire at will. See Figure 6.21 for the blocking position of
company A. Assaulting company B does not occupy the Blocking Position formation because
the enemy is already destroyed before this stage would come.

Figure 6.21: Blocking positions occupied towards enemy presence and firing at will initiated.

6.2.3.3 Enemy destroyed

After some period of time, the unexpected enemy will be destroyed and the blocking position
successful. See Figure 6.22.

Results 92

(a) Enemy presence removed by the blocking
position from company A.

(b) Enemy presence removed by the blocking position from company B.

Figure 6.22: Enemy presence removed by the blocking position.

Results 93

6.2.3.4 Blocking Position completed

At this point, the Blocking Position is considered successful and the company is allowed to
continue on its march. See Figure 6.23, where company B continues with the next phase of the
Assault.

Figure 6.23: Company continuing towards objective.

Chapter 7

Discussion

94

Discussion 95

In this chapter we discuss our findings and how they relate to our objectives and those of
the field. Also, we discuss the limitations and implications of our methods and findings and
what further research could be conducted to solve some of these limitations.

As a reminder, our research question was:

”How can we create a useful decision support system for military planning, using
the combination of simulation and C2?”.

To create a useful decision support system (DSS) using simulation, the system needs to be
usable in the C2 process and the results provided need to be realistic before it can provide any
support. Thus we can divide our answer into two parts that will both need to be solved:

• Usability

• Realism

As such, we shall show how our results relate to these categories in Section 7.1 and 7.2. To-
gether, these two categories define the usefulness of the DSS application and answer our research
question.

7.1 Usability

The usability issue mostly concerns the decision support system’s interface: if the system’s
interface is not intuitive, it will hardly support the user. Luckily, other researchers have al-
ready delved into this subject, allowing us to provide requirements for DSS usability in C2 in
Section 2.3.2. Furthermore, we have discussed the possibilities of a DSS with military experts
from the RNLA, as discussed in Section 3.1. The results we can see in Section 6.1 relate to this
usability problem of our original research question. It shows how we created a usable prototype
of our decision support system. In the following subsections we shall describe our findings based
on the requirements from the experts and literature.

7.1.1 Expert desires

In Figure 4.8 we captured the desire of the experts for a DSS in C2. In Section 6.1 our version
is shown. How do these compare?

Table Multiple courses of action (COAs) would be provided in the C2 system, to be compared
in the DSS table based on chosen measures of effectiveness (MOEs). True to form, our DSS
provides a table in which COAs are represented in the rows and MOEs in the columns, as can
be seen in Figure 6.1.

Adding MOEs & COAs The initial concept (Figure 4.8) also shows options for adding new
MOEs, from a list, to the columns and new COAs to the rows. In Figures 6.3 and 6.2 we can
see how our DSS allows hiding of MOEs (and inversely the adding of MOEs) and adding of new
COA rows.

Discussion 96

7.1.2 Literature requirements

Other researchers reported requirements for decision support systems to which we can compare
our results, see Section 2.3.2. We shall discuss these requirements here, separated in a paragraph
for every requirement.

Standards One subset of usability is also interoperability between simulation and C2 with the
use of standards, so that the simulation (and DSS) can communicate with other applications
(Hazen, 2011). We have delivered on that requirement with the integration of the 3 main
standards in our simulation: C-BML for our orders, MSDL for the definition of the scenario for
C2, agent and simulation, and HLA to allow distributed systems to connect and communicate
using the other standards. Prelipcean et al. (2010) also highlight this need for integration with
other information, planning and decision systems.

Timescale Usability of a C2 support system like our DSS also includes fitting the timescale of
the decision making process (Hazen, 2011). Running our simulation scenario can be done in
around 10 minutes real-time, but the simulator can also run a lot faster. Retrieving the results
in our DSS nearly only requires the simulator to have run the scenario since the postprocessing
of the MOEs does not take more than a couple of seconds. It remains to be seen whether setting
up the scenario, the systems and pushing the commands down to the line takes too much time,
but the time taken by our agents and the DSS is so little that it shall definitely not be the
driving force behind this requirement. Indeed, setting up the agent goes automatically as well,
as the agents are created based on the provided MSDL. Moreover, the agents automatically
process the C-BML order in a short amount of time and no human input is required during this
process.

Expert knowledge Expert knowledge developed by other commanders should be provided to
the simulation according to Hazen (2011). We have provided expert knowledge as developed
by RNLA commanders to our agents in the form of the Combat Instruction Sets containing
doctrine. As this knowledge evolves, engineers can adjust the agents and provide them with
new beliefs, goals and plans to mirror this. Any change in this expert knowledge will of course
represent itself in the DSS as well, as all its results are based on the agents acting on the
simulated battlefield. Any C2 user that then joins the simulation setup with its C2 system
(using HLA) will be able to reuse this experiential knowledge by sending his orders to the
agents. Of course, loads of expert knowledge will still have to be added, but the framework is
now available. Once engineered and available within the military organisation, any commander
could potentially use the simulation and tap the expert knowledge of the agents, diminishing the
need for a large staff of experts during his plan analysis and thereby opening up opportunities
for increased autonomy on lower levels in the military hierarchy and cost-reduction.

Added value Simulation has to provide added value to the C2 process (Hazen, 2011). In this
project we have added some value in the form of the DSS. No longer does the C2 - Simulation
interoperability project focus only on the connection of standards, now we also provide the C2

Discussion 97

users with measures of effectiveness taken from the simulation. The decision support system
provides a quick overview of results that are not intuitively gatherable from merely looking at
the simulator or C2 system. Although the DSS only shows a few MOEs at the end of this
project, it provides the framework for future expansion to provide the C2 user with all the
information that is wanted. Hazen (2011) provides the idea of exploratory analysis of variations
on the provided COA, which we have decided not to implement during this Master’s project,
but it was one of our ideas as well, as can be seen in Appendix A.

Intuitive results A DSS should provide results that are intuitively understandable by military
operators, and are credible in known situations (Hazen, 2011). This requirement is close to
our research question, as we wanted to create an intuitively understandable (usable) DSS with
credible (realistic) results. According to the previously discussed desires from experts we have
created results that are intuitive to understand because we used simple MOEs that are generally
part of COA evaluation. Furthermore, we only provide a single value for these MOEs, such as
fuel percentage, instead of values for each individual unit. This allows for a quick overview,
as alternatively the commander would have had to abstract from the individuals to the whole
COA on its own. To obtain credible results we have introduced increased CGF realism based
on requirements from other researchers and doctrine from the military.

Another important requirement from Prelipcean et al. (2010) about the usability of the DSS
is the natural interface. We have provided a natural interface with our DSS table based on the
expert’s ideas, as discussed previously. However, as in Lafond et al. (2010), the optimal natural
interface that fits in the C2 process should be based on the cognitive functions that benefit the
most from it. We have seen that in CASA (Hanna et al., 2005), the DSS was extremely well-
founded, but its interface made made it less usable. One of their problems was that there was
no filtering of information, thus creating a cluttered interface, the opposite of intuitive results.

COA analysis According to Prelipcean et al. (2010), the following set of functions would be
needed in a DSS for COA analysis: description of the event, development / description of the
possible COAs, identifications of criteria for evaluation, the actual evaluation of these COAs ac-
cording to these criteria, analysis and comparison afterwards. Description of the event includes
assumptions about the enemy and friendly forces, and thus it is basically equal to the standards
for event description we use, called MSDL and C-BML. Since this project, MSDL and C-BML
have been in use for the description of the scenario.

• Development/description of the COA
This, in this project, is exactly the same as it is during an actual battle or training because
the same C2 system is connected to the simulator. Furthermore, the COA is sent with the
C-BML standard towards our agents, providing the optimal ability for COA description
and development. It should only be noticed that not all COAs are possible for the agent
to execute of course. We have only implemented a small subset of the possible doctrine as
time and manpower allowed. For a fully functional system, some more years of engineering
would be required.

Discussion 98

• Identification of criteria to be used in the evaluation process
Another related requirement from Prelipcean et al. (2010) was to allow the staff to choose
other criteria interactively after first providing our selection. This has already been dis-
cussed in previous Section 7.1.1, where we indicate how we can see in the results that
criteria can be chosen. Our chosen criteria also match future work from Hanna et al.
(2005), where they state that munitions and fuel expended could be a part of the COA
scoring.

• Evaluation of the COAs according to the selected criteria
This is our main selling point. The DSS will provide results for all the chosen MOEs as
can be seen in Figure 6.4 from the previous chapter.

• Analysis and comparison of the COAs
As stated in the previous chapter, comparing COAs is a bit more difficult in the current
setup, because the agents should also be reset before acting upon a new COA. Since the
DSS is linked to our Information Manager agent, it will also be reset. One possibility is
shown in Figure 6.5, where the agents are started twice, providing two DSS windows for
two different simulation runs. However, as shown in Figure 6.2b, the table does provide
opportunity for comparison if there would be two different COAs in there. Each MOE
column can be sorted and the columns can be switched around, essentially allowing full
freedom for the user to rank COAs according to his or her wishes. Furthermore, the
problem with resetting the agent and not the DSS should not be a difficult one to solve,
allowing full advantage to be taken of the DSS.

Lessons learned from other researcher’s problems In Section 2.3 we describe some other DSS
projects and what their experiments resulted to. In Herbinet et al. (2010) we find problems
with the lack of control and information. We also have some of their problems, like the limited
number of orders and explanation from the agents, the information used by agents and a GUI
(DSS) that is not designed for operational use. However, other problems that they discuss are
solved in our setup: our system is designed for the battalion commander level, where the only
interaction needed from the user is to provide orders to the battalion level, not to any lower
level. Furthermore, we have used the ’train as you fight’ paradigm throughout the experiment:
the graphical symbols are all standardized NATO symbols and the C2 system in use is ISIS, as
used by RNLA.

We show in our DSS prototype here that it is possible to connect C2 and simulation and
provided added value by analysing the effect of the C2 order based on evaluation criteria. The
connection to our agent is not yet optimal, as it inhibits restarting of the agents for a new
order, but that could be solved by creating it as a standalone, similar to the C2Stub, which
connects to the HLA bus and communicates to our agents in that way. This would also allow
other users to create their own DSSs which use the same data but provide them with their own
preferred interface. Besides that, according to all the recent literature on C2 - Simulation - DSS
requirements, our new system uses most of the ideas that are currently flowing around about
the C2 DSS. We allow creation of a COA, identification and selection of criteria and a quick

Discussion 99

analysis in real time or faster of the agent’s interpretation of this COA and provide the results
in a simple and intuitive table view.

7.2 Realism

In Section 1.3.2, we discussed our initial research questions concerning realism in the simulator.
The main question being: ”How can we make the simulation more realistic?”.

To get this realism, we have taken the expert knowledge of RNLA military doctrine, that
was stored in the documents we refer to as Combat Instructrion Sets (CISs). These docu-
ments describe how the RNLA would perform certain orders realistically. By implementing the
behaviour set out in these CISs, we have implemented realistic behaviour in the agents and
simulator and thereby provide the missing link in the chain of commander’s intent, C-BML,
agent reasoning and simulator behaviour. Furthermore, the increased realism in the simulator
also increases the realism of the results in the DSS because they are directly linked.

C-BML One of the reasons for this project was to support C-BML, the standardized language
for commands from humans to simulators. Because of C-BML, all thoughts and intentions of the
commander should be translatable to machine language. This should allow the simulator to do
that which the commander requires of it, so it provides an extra layer of realism. Now note that
the other side of this medallion is that the simulator actually has to understand how to perform
these C-BML commands. In the previous project from Bronkers, the Command Agents were
set up, creating a framework in which C-BML orders could be translated from the high level
to the low level. However, the C-BML orders implemented were not realistically translated, so
the behaviour of the simulator was still not what would be intended by the commander. To
solve this, our project injected a dose of realism in the translation of some C-BML orders to
simulator behaviour.

7.2.1 Level of realism

Note that, while we might want to get the results closest to the truth for our DSS, complete
realism on all levels is practically unattainable. Simply because of the hours of work and money
that would have to be put into a project to achieve this. Instead, a simulation’s desired realism
has to be based on the needs of the user. A commander of a battalion will not need, nor want,
to know if a soldier moves around an object past the left side or the right side. As such, knowing
the audience of the simulation is vital to the success of this simulation. Our level of realism was
tied to the company level as per the project’s description.

Increase of realism in the simulator depends on the chosen domain, and ours was the domain
of RNLA commanders providing orders on the company level. So, we found our answer to the
realism research question in the application of the RNLA’s company level military doctrine to
the agent’s behaviour. We have provided behaviour to the simulation that was not there before
on this level, because the orders the simulator could carry out were restricted to the lower
platoon level.

Discussion 100

7.2.2 Requirements

The answer to our question of how to make the simulation more realistic, lies in the CGF
behaviour. As such, we have conducted research into CGF requirements in Section 2.2.2.1. In
this section we shall describe what requirements we see accomplished in our project, along the
lines layed down by Figure 2.5 from Abdellaoui et al. (2009).

7.2.2.1 Architecture

As can be witnessed in Figure 4.6, we have injected the three major C2-Simulation interoper-
ability standards into our system. C-BML is used to transform the C2 command into a language
all systems can understand, HLA is used to transfer communication such as C-BML between
all systems and MSDL is the latest addition that sets up the scenarios for all systems.

7.2.2.2 Autonomous Operation

Deliberate Deliberate behaviour is the main sign of intelligence and was sorely lacking in the
Command Agents we started with. The order provided by a commander to his company is open
to a lot of interpretation or autonomous deliberate decision making. With our phased-version
of the Assault, that can even be interrupted for a blocking position, we have shown a great
example of the possibilities of such deliberate autonomous behaviour in the Command Agents.

Reactive The other part of autonomous behaviour consists of reactive behaviour. One can
mindlessly follow a plan, but certainly in military operations, reactivity is key to victory, and to
realism. Of course, internally the agents all exhibit reactivity, since they respond with certain
plans to orders and their own beliefs, but with autonomous reactive behaviour we mean actions
of CGF in the simulator, based on other activities in the simulator. We have provided an
example of showing reactive behaviour by implementing the Blocking Position CIS. As long as
the enemy is confined to known locations, this CIS will not trigger any behaviour. Yet when
enemies are advancing from unexpected locations, the Battalion agent’s reactive side triggers
and commands the nearest Company agent to apply a Blocking Position.

However, more reactivity is still required for more realism. In Appendix A, we have described
some of the other realistic behaviour that our AI should exhibit. For this project, we have chosen
to work with doctrine, which focusses on realistic deliberate proactive behaviour, so a lot of
ground still has to be covered on the reactive part. This includes realistic reactive behaviour
towards the terrain, e.g. a company cannot move into a line formation if there is not enough
room, and towards the enemy, e.g. when fired upon the agents should react appropriately.

7.2.2.3 Realistic Behaviour

Doctrine Doctrine is a requirement for correct behaviour for our CGF. Without doctrine, the
simulator cannot show behaviour that is realistic for the military. Doctrine is the rules of
behaviour under certain conditions for the military personnel. Our increase in realism has of
course been the implementation of this doctrine, from the well-discussed Combat Instruction
Sets.

Discussion 101

Motivational These include stress levels, survival instinct, moral motivations (Brandolini et al.,
2004) and emotions (Tidhar et al., 1999), which all impact the decisions made by low-level
entities. However, one could argue that the low-level decisions such as these motivational ones
are to be made by the simulator, as our Command Agents keep themselves at and above the
platoon commander level. Instead, more interesting might be an increased prediction capability,
as this could provide all levels of agents with a much greater level of reactivity.

7.2.2.4 Organization

Sociality, Military Hierarchy This section of organization has not changed much in this project,
since we already portrayed such realistic behaviour at the start. Our lower level agents will not
act on their own accord, only when ordered from above. With the blocking position order, we
do show the possibility to interrupt lower level agents. Furthermore, by moving our units in
formations, the planning of routes for individual tanks has seized, which adds extra enforcement
of this military hierarchy.

Interaction Interaction between the agents has increased vertically, since the Company agent
now commands the Platoon agents multiple times with the Assault CIS, where previously only
the Seize command showed more than a one-on-one interaction between agents. Also, the
reactivity of the Blocking Position CIS from the Battalion agent adds a level of interaction
there where there was only communication of orders before. Now, the Battalion agent will hold
the Company agent in a Blocking Position for as long as it wishes, but in the end releases it to
continue its previous job. As of yet there is no horizontal interaction, in fact agents are not even
aware that there are agents of their own type active, as such there is no interaction between
two Platoon agents or two Company agents even though the formations seem to indicate such.

Coordination With our implementation of the Combat Instruction Set Assault on enemy posi-
tion, we have shown a coordination between platoons that could not have been there without
our company level agent. The different phases of the assault depended on the successful execu-
tion of the lower platoon level behaviour, but it also required the coordination and centralized
control of the company level. Only when all platoons have successfully accomplished the actions
set out for them in one phase, can the company carry on to the next phase. Where currently
correct behaviour is automatically applied by our agents based on a single order, previously
all the different subactions required for an assault would have to be provided in succession by
the user of the system. Just as a commander will not waste valuable time on the battlefield
explaining the action steps to the lowest levels, so has this need been erased in the simulation
by our behavioural injections to these agents.

Cooperation As stated in the Interaction paragraph, there is no cooperation implemented as
of yet. All activity is initiated top-down, which is a form of coordination and interaction but
not cooperation.

Discussion 102

Communication, Military Reports, Feedback In the communication and feedback section, the
biggest change is the new decision support system. Internally, the communication between
agents has changed little. However, the decision support system takes our military reports
to a whole new level, as our agents now provide reports specifically intended to support the
commander in choosing what COA works best.

7.3 BDI agents for C2-Simulation interoperability - good approach?

As a sidenote during this project, we have had interaction with FFI Norway as they are creating
their own version of the Command Agents with the Context-based Reasoning framework. For
this reason we devote this short section to the pro’s and con’s of using BDI agents, specifically
those created with Jadex.

Pro’s

• Very adaptable and flexible architecture. In fact, one could probably create Context-based
Reasoning agents using BDI agents.

• Reusable plans (e.g. Move into formation, which is used for all the CISs we have imple-
mented).

• A lot of support and expertise available for BDI agents. An example is the Jadex software
system we could apply.

Con’s

• The behaviour of the agents quickly gets complicated, which is also reflected in diagrams
we have created. The inner-workings become difficult to explain.

• Communication between agents is not optimal. Sharing of knowledge between agents in
a multi-agent system is critical, yet communicating beliefs to each other is cumbersome
in Jadex. Other BDI implementations might have solved this problem though.

• The Jadex architecture and the Command Agents have a mismatch in capabilities.
Performgoals in Jadex are supposed to be successful if a plan has successfully completed.
However, when a plan of a Company agent completes, this probably means an order is
sent to a Platoon agent, which does not say anything yet about what the result of this
plan will be in the simulator. As such, goals might be prematurely successful, a problem
we encountered in our TacticalRoadMarch plan.

• BDI is still relatively low-level, as we need to define all beliefs and how they trigger
plans and what happens in the plans and what actions do, et cetera. It would be more
accessible for non-expert engineers if a drawing of a plan or a UML diagram could be
converted to correct behaviour automatically. For example, during my presentation of the
results to TNO employees, one asked me if Figure 5.2 was automatically turned into code

Discussion 103

/ behaviour, while another went even further by saying he would prefer Figure 4.1 to be
the only required implementation. In truth, even Figure 5.2 is already greatly abstracted
from the detail of implementation required for our BDI agents to work with the simulator.
We have noticed already how the CISs did not describe all behaviour, for example how
does a company move from one formation to another? All this low level behaviour is
required in our agents.

• Every behaviour has to be pre-planned or hard-coded in one of the agent’s plans. This
requires expert knowledge about every possible descision, which might not be available
or desired. Learning, or improvising or generalizing are all not part of the standard BDI
architecture.

In conclusion, BDI agents allow for a great amount of freedom and can implement almost
any behaviour, but this naturally entails that all behaviour will be required in detail and on
low levels. The more freedom, the greater the detail required and the greater detail required,
the greater the time, effort and expertise required.

However, one could argue that there is currently no way to circumvent this problem, as this
is not so much a problem concerning BDI but one concerning the connection and communication
between agents and simulator. In the end, the simulator will have to receive the low-level tasks
as our main problem is still the translation of orders from C2’s high-level to the simulator’s
low-level.

Yet, once this connecting layer is provided, perhaps a scripting language can be added on
top of our Jadex BDI agents, capable of turning a diagram into implementation, creating new
agent beliefs, communication between agents and a connection of pre-built plans. For examples
we can see at a high-level scripting language for agents in Huang et al. (2005) and an example
of turning UML diagrams into Java code in Usman and Nadeem (2009), so a combination of
such features could very well be a useful route to take in the future.

So while it certainly seems possible to implement all desired expert behaviour into BDI
agents, as is shown in this project, it also seems very plausible that there are other methods
that would allow implementation with perhaps less detail and less freedom but at much greater
speed or ease.

7.4 Future Work

7.4.1 Remark about level of realism and discussion with RNLA experts

Our final discussion with experts from RNLA’s Simulation Center concerned this level of realism.
While we had questions about the specific implementation of the provided CISs for our agents,
their concern was about the level of realism and what we wanted to accomplish. In their view,
it was not important how a platoon moved from one formation to another, because this level
of realism was not what they needed. If no one is going to look at the simulation, because
they only use its results, certain details of doctrine are already surplus. However, behaviour of
company aggregates in the simulation is entirely based on the actions of its platoons. So this
would indicate that for realistic company behaviour, realistic platoon behaviour is required.

Discussion 104

For example, if a platoon of tanks does not move, no company formation will be formed. If a
company formation is achieved, but one platoon moves somewhere else, the formation is broken
again. Therefore, the implementation of company level behaviour in our agents is based on
providing the platoon level with the correct behaviour. So to implement realistic behaviour on
the company level, we need to have detailed descriptions of this behaviour on both the company
and the platoon level.

On the same day of that final discussion with experts from SimCen, we talked to one of the
military experts behind the CISs. Here, we once again did not receive answers to our questions,
but got to see implementations of the platoon level behaviour in their simulator. This simulator
requires an operator to command the platoons, but the command options are numerous. The
detail of all these options is so great because soldiers are supposed to work together with the CGF
from the simulator and think that the CGF are actually (operated by) real soldiers. According
to them, anything above platoon level was just impossible to describe (and implement) in such
detail as they did with their platoon level. While we already discarded a ton of information
that was described in the Company-level CISs, compared to our implementation of them, they
would have required a lot more information to get the level of realism required. For example,
a gun turret of a tank is supposed to be pointed in a certain direction while in formation, e.g.
not pointed at friendly units. This level of realism is needed when a soldier stares outside his
virtual window and sees the gun turret of the CGF, but not when a commander is looking at
the battlefield and pondering what order to provide his companies.

What this boils down to is that there is no more detailed description of realistic company
behaviour available for us. However, what is not described might also not matter to the user.
As such, assumptions can be made for the, unknown, more detailed levels.

However, implementing assumingly realistic behaviour is not very scientific, so for the future
of this project, TNO should figure out for whom they are engineering these agents, what level
of realism these users want to work with and how they are going to get the expert information
required for this level and the levels below or above.

7.4.2 DSS

A next step in the DSS engineering should be to allow the simulator and agents to be restarted,
while the DSS table is maintained together with the data. This will allow multiple COAs to
be shown in the same table. To get this done, the Information Manager will have to reset all
but the table data. One way of doing this would be to store the table data in a database when
closed and retrieve table data from a database when opened. Another way would be to send a
message to the Information Manager to reset, upon which the agent will close all other agents
and clear its own beliefbase except for some beliefs. A third way would be to store the DSS
table on a different location, as is done with the C2Stub, and then let the Information Manager
connect to this DSS table, if it is already opened.

Perhaps it might even be better to send the data for the table through HLA, allowing any
DSS to receive the data if they are connected to the same HLA connection. This would bypass
the whole problem with resetting the agents and the simulator.

Discussion 105

Multiple runs for one COA Another important future update of the DSS is similar to what is
described in Hanna et al. (2005). The COA should be scored over multiple runs so that COAs
are not accepted because of rare results in one simulation run. Since the simulation is stochastic,
a new run will provide different results. We have not done any experiments for this problem, so
we cannot conclude anything yet, but the values we received in an Assault run could vary from
95% survival rate to 75% and for the enemy survival rate showed a similar 2̃0% gap. Logically,
this variance will be greater when a smaller army is used, as each destroyed tank will take up a
much greater part of the %. However, those are outliers and most of the time the survival rate
values are within 5% of each other. Furthermore, this variance shows only in survival rate, as
the fuel consumption does not display any significant difference in different runs, and completed
is binary and generally true in the end.

Perhaps the variation in results of one COA can even provide a metric of comparison in
robustness. Similar to this idea is that the COA should be matched against a multitude of
enemy COAs to see how robust it is against the enemy’s plans.

Cognitive aspects As was heavily discussed in Section 2.3, the cognitive aspects of the C2
process will heavily influence the usabilty of all C2 decision support systems. While we have
tried to match some cognitive aspects in our DSS, experiments with the end-users are needed
for further development of the DSS, to see where improvements are to be made and how to best
show results from the simulator runs of multiple COAs.

7.4.3 CGF requirements

Another interesting connection concerns the requirement, from Tidhar et al. (1999), that CGF
should be able to predict the intention of opposing forces. In (Bosse et al., 2011), theory of
mind capabilities for BDI agents are researched, using a.o. prediction of the intention of other
agents.

Chapter 8

Conclusions

106

Conclusions 107

In this study we wanted to find out how a useful decision support system could be created
for military planning, that was based on our C2 and simulation connecting Command Agents.
This problem was quickly divided into two disparate subjects: the usability of the decision
support system’s user interface and the realism of its results. For initial direction, we consulted
related studies on usability requirements of a decision support system in the C2 domain and on
realism requirements for the simulator’s computer generated forces.

Usability From the usability requirements, we found that a decision support system should ever
stay a support system, never a replacement system. Furthermore, both the decision support
system and its results should be intuitive, quick and easy to use and, most importantly, fit into
the decision making process. The decision making process in Command & Control is centered
around the creation, analysis and comparison of courses of action, plans that hopefully lead
to the accomplishment of the mission. While the creation of a course of action is a creative
process that no current computer can or should emulate, a simulator fits naturally in the analyser
role, setting the stage for a decision support system to help the commanding staff compare their
courses of action based on the simulator’s analyses. To stay supportive, the military staff should
be able to provide its own course of action and its preferred criteria on which evaluation of this
course of action should be based. This concept of our decision support system was also discussed
with experts from the Royal Netherlands Army’s Simulation Center, who thereby provided us
with a set of measures of effectiveness on which a commander might analyse a course of action
and a green light for our vision of a decision support system as a table with these measures as
columns and courses of action as rows. By allowing the user to add or remove these columns
containing the measures of effectiveness, we allow selection of analysis and comparison criteria.
Moreover, the staff can add a new row to the table for every new course of action that they
want to compare. By connecting this table to our Command Agents through the newly created
Information Manager, tasked with retrieving the measures of effectiveness from the simulation,
we provide a usable decision support system for military planning, while our agent-powered
simulation works on the background to provide the analysis of the courses of action.

Realism As stated before, the analysis of a course of action is only useful if the analyser,
our agent-powered simulator, provides a realistic environment. Influencing this realism are the
simulator’s models, our agents providing the interpretation of the commander’s orders and the
scenario in which both are set up.

To increase the realism shown by our agents, or rather by the simulator’s computer generated
forces, we turned to the related literature on this matter. According to Abdellaoui et al. (2009),
the main requirements for the simulator entities’ AI are deliberate and reactive behaviour,
synergy from military organization, architecture flexibility, ability to learn from experiences
and exhibiting correct & realistic behaviour. The latter is gained by physical modeling, a
feature of the simulator, and military doctrine, expert knowledge about realistic behaviour
sorely lacking from our Command Agents. Therefore, we turned to the Royal Netherlands
Army and were provided with a set of Combat Instruction Sets (CISs), documents containing
Dutch military doctrine. During this project we have implemented a subset of these CISs, each
exhibiting new behaviour related to the entity requirements: Assault an enemy position; Hasty

Conclusions 108

occupation of a blocking position; Tactical road march and the Line and Column formations.
The implementation of all this doctrine required a great increase in the available in- and output
from the simulator, made possible by adjusting the communication ontology of all systems and
the plugin of the simulator.

Assault an enemy position (or Assault) is a CIS that provides our agents with a great deal
of deliberate behaviour and realistic organization. The Assault can be seen as the expert,
or realistic, version of the previously implemented Attack. Instead of a single movement and
setting of the engagement rules, the Assault essentially consists of 4 distinct phases that have
to be coordinated within the company and platoons that are executing it. The management of
these phases is done by our Company agents without the need for any human intervention, as
it deliberately orders its subordinate platoons from one location and phase to the next.

Hasty occupation of a blocking position (or Blocking Position) is the CIS most notable for
the reactive behaviour it instills in our agents. The Blocking Position is a formation of platoons
set up by their company, in reaction to an unexpected enemy attack, in order to block this
enemy from moving any further. With the addition of this doctrine to the Command Agents,
we have created a reactivity that was not previously available, highlighted even more so when
it is applied during the Assault. In our results we can see how the Battalion agent can order
the assaulting Company agent to interrupt its Assault, apply a Blocking Position to suppress
an unexpected enemy, and finally continue with the Assault’s next applicable phase.

The Tactical road march and the Line and Column formations are essentially organization
doctrines, as the platoons and/or companies are ordered into predefined formations, where the
chosen offsets from each other of lower level entities provide emergent tactical benefits to the
military group as a whole. This provides our Command Agents with most of the organization
requirements put forward in the literature.

For the scenario setup we have turned to another SISO standard, MSDL or Military Sce-
nario Definition Language, which allows definition of the military scenario in XML so that all
simulators and C2 information systems can be initiated with the same scenario. Furthermore,
we have used MSDL, which also contains the units used in a scenario, to automatically set up
the correct amount and type of agents in our multi-agent system.

Audaces Fortuna iuvat (Virgil, 20 B.C.), or fortune favours the bold, as even the realism of
the simulator’s models has increased during this project. A new version of VR-Forces, version 4,
has been released, providing, among other improvements, 3D models. Together with the other
discussed improvements, we can only conclude that we have shown how to make the simulation
results, and thereby the decision support system’s results, more realistic.

Future Work We have shown improvements in architecture, autonomous operation, organiza-
tion and realism, which together make up the requirements from Abdellaoui et al. (2009), save
for learning. As such, future work on these computer generated forces’ realism should focus
on the ability to learn from experience. Beyond that, there are also other realism qualities
in the literature that have not yet been touch upon in this project: the motivational require-
ments. These include stress levels, survival instinct, moral motivations (Brandolini et al., 2004)
and emotions (Tidhar et al., 1999), which all impact the decisions made by low-level entities.
However, one could argue that the low-level decisions such as these motivational ones are to

Conclusions 109

be made by the simulator, as our Command Agents keep themselves at and above the platoon
commander level. Instead, more interesting might be an increased prediction capability, as this
could provide all levels of agents with a much greater level of reactivity.

Of course, this study of the usability of a decision support system in the Command &
Control domain cannot be viewed as conclusive. Though we have shown how an integration
of this system with simulation and agent technologies allows for evidence-based wargaming
and support in the critical comparison of courses of action section of the military decision
making process, all this work really begs the question: can the created DSS be usable for
a military commander? We have not provided empirical studies into the cognitive usability
aspects inherent to decision support systems. As such, one of the most important future lines
of research is to set up experiments to measure how such a decision support system best fits
in with the cognitive side of the military decision making process, to determine what will have
to be adjusted before such a prototype can be considered to be an asset to the commander’s
decision making.

However, if research and engineering efforts in these subjects continue, simulated-based
decision support systems will most assuredly play a major role in the future preparation and
execution of warfare.

Bibliography

Abdellaoui, N., Taylor, A. and Parkinson, G. (2009), Comparative analysis of computer
generated forces’ artificial intelligence, in ‘NATO RTO Modelling and Simulation Group
Symposium Proceedings, RTO-MP-MSG-069’.
URL: http://ftp.rta.nato.int/public//PubFullText/RTO/MP/RTO-MP-MSG-069///MP-
MSG-069-02.doc

Bosse, T., Memon, Z. A. and Treur, J. (2011), ‘A recursive bdi agent model for theory of mind
and its applications’, Applied Artificial Intelligence 25, 1–44.
URL: http://dx.doi.org/10.1080/08839514.2010.529259

Brandolini, M., Rocca, A., Bruzzone, A. G., Briano, C. and Petrova, P. (2004), Poly-functional
intelligent agents for computer generated forces, in ‘Proceedings of the 36th conference on
Winter simulation’, WSC ’04, Winter Simulation Conference, pp. 1045–1053.
URL: http://dl.acm.org/citation.cfm?id=1161734.1161911

Bronkers, R. (2011), Command agents using bml for tactical decision support, Master’s thesis,
Vrije Universiteit Amsterdam.

Bronkers, R., Henderson, H., de Reus, N., Alstad, A., Mevassvik, O. and Skogsrud, G. (2011),
‘Battle management language capable computer generated forces’.

Dahmann, J., Fujimoto, R. and Weatherly, R. (1997), The department of defense high level
architecture, in ‘Proceedings of the 29th conference on Winter simulation’, IEEE Computer
Society, pp. 142–149.

Davidson, J. and Pogel, A. (2010), ‘Tactical agent model requirements for m&s-based it -¿ c2
assessments’, The International C2 Journal 4(1).
URL: http: // www. dodccrp. org/ files/ IC2J_ v4n1_ 05_ Davidson. pdf

Department of Defense, U. (2005), ‘Mil-std-2525b’.
URL: http: // www. mapsymbs. com/ ms2525b_ ch1_ full. pdf

FM 101-5 Staff Organization and Operations (1997), Headquarters, Department of the Army,
Washington, DC.

Hanna, J., Reaper, J., Cox, T. and Walter, M. (2005), Course of action simulation analysis,
in ‘Proceedings of the 10th International Command and Control Research and Technology
Symposium (ICCRTS): The Future of C2’.

110

Bibliography 111

Hazen, M. (2011), C2 challenges for modelling and simulation, in ‘Proceedings of the 16th Inter-
national Command and Control Research and Technology Symposium (ICCRTS): Collective
C2 in Multinational Civil-Military Operations’.

Herbinet, J.-G., de Champs, P., Gautreau, B., Neugebauer, E., Thiel, A. and Khimeche, L.
(2010), ‘C2&simulation coupling - lessons learnt from german & french c-bml experimenta-
tion’.

Huang, Z., Eliëns, A. and Visser, C. (2005), ‘Step: a scripting language for embodied agents’,
Life-like Characters, Tools, Affective Functions and Applications .

Joint Education and Doctrine Division, J-7, Joint Staff, U.S. Department of Defense (2011),
‘Dod dictionary of military terms’.
URL: http: // www. dtic. mil/ doctrine/ dod_ dictionary/

Lafond, D., Vachon, F., Rousseau, R. and Tremblay, S. (2010), ‘A cognitive and holistic ap-
proach to developing metrics for decision support in command and control’.

Lucas, A. and Goss, S. (1999), The potential for intelligent software agents in defence simula-
tion, in R. Evans, L. White, D. McMichael and L. Sciacca, eds, ‘Proceedings of Information
Decision and Control 99’, Institute of Electrical and Electronic Engineers, Inc., Adelaide,
Australia, pp. 579–583.
URL: http://www.eleceng.adelaide.edu.au/ieee/idc99/abstracts/lucas1.html

M & S Office, U.S. Army (2011), ‘Army modeling & simulation glossary’.
URL: http: // www. ms. army. mil/ library/ glossary. html

Mcilroy, S. D., Mcilroy, D. and Heinze, C. (1996), Air combat tactics implementation in the
smart whole air mission model, in ‘In Proceedings of the First International SimTecT Con-
ference’.

Prelipcean, G., Boscoianu, M. and Moisescu, F. (2010), New ideas on the artificial intelligence
support in military applications, in ‘Proceedings of the 9th WSEAS international conference
on Artificial intelligence, knowledge engineering and data bases’, AIKED’10, World Scientific
and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, pp. 34–39.
URL: http://dl.acm.org/citation.cfm?id=1808036.1808044

Rao, A., Lucas, A., Morley, D., Selvestrel, M. and Murray, G. (1992), Agent-oriented architec-
ture for air combat simulation, in ‘Proceedings of Future Directions in Simulation Systems
Workshop’.

Rao, A. S. and Georgeff, M. P. (1991), Modeling rational agents within a bdi-architecture, in
R. Allen and E. Sandewall, eds, ‘Second International Conference on Principles of Knowledge
Representation and Reasoning’, Morgan Kaufmann, pp. 473–484.

Rao, A. S. and Georgeff, M. P. (1995), Bdi agents: From theory to practice, in ‘Proceedings of
the First International Conference on Multi-Agent Systems (ICMAS-95)’, pp. 312–319.

Bibliography 112

RNLA (2011), ‘Integrated staff information system (isis)’.
URL: http: // www. defensie. nl/ english/ army/ materiel/ communication_ and_

information_ systems/ information_ systems/ integrated_ staff_ information_

system

Royal Netherlands Army, Ministry of Defence (2011), ‘Organisation chart’.
URL: http: // www. defensie. nl/ english/ army/ organisation/ organisation_

chart/

Sandercock, J., Papasimeon, M. and Heinze, C. (2004), An agent, a bot and a cgf walk into a
bar..., in ‘Proceedings of SimTecT 2004 Simulation Conference, Canberra, Australia’.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.111.1594

Shu-hsien and Liao (2000), ‘Case-based decision support system: Architecture for simulating
military command and control’, European Journal of Operational Research 123(3), 558 – 567.
URL: http://www.sciencedirect.com/science/article/pii/S0377221799001095

Sprague Jr, R. (1980), ‘A framework for the development of decision support systems’, MIS
quarterly pp. 1–26.

Stolt, K. (2007), Sketch recognition for course of action diagrams, Master’s thesis, Massachusetts
Institute of Technology.

Surdu, J. and Kittka, K. (2008a), ‘Deep green: Commander’s tool for coa’s concept’, Computing,
Communications and Control Technologies: CCCT 2008 29.

Surdu, J. and Kittka, K. (2008b), The deep green concept, in ‘Proceedings of the 2008 Spring
simulation multiconference’, Society for Computer Simulation International, pp. 623–631.

Tidhar, G., Heinze, C., Goss, S., Murray, G., Appla, D. and Lloyd, I. (1999), Using intelligent
agents in military simulation or üsing agents intelligentlÿ, in ‘Proceedings of the sixteenth
national conference on Artificial intelligence and the eleventh Innovative applications of arti-
ficial intelligence conference innovative applications of artificial intelligence’, AAAI ’99/IAAI
’99, American Association for Artificial Intelligence, Menlo Park, CA, USA, pp. 829–836.
URL: http://dl.acm.org/citation.cfm?id=315149.315481

U.S. Army (2011), ‘Operational unit diagrams’.
URL: http: // www. army. mil/ info/ organization/ unitsandcommands/ oud/

Usman, M. and Nadeem, A. (2009), ‘Automatic generation of java code from uml diagrams using
ujector’, International Journal of Software Engineering and Its Applications 3(2), 21–37.

van Doesburg, W. A., Heuvelink, A. and van den Broek, E. L. (2005), Tacop: a cognitive agent
for a naval training simulation environment, in ‘Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems’, AAMAS ’05, ACM, New York,
NY, USA, pp. 34–41.
URL: http://doi.acm.org/10.1145/1082473.1082801

Bibliography 113

Vegetius Renatus, F. P. (390), Epitoma Rei Militaris, Vol. III.
URL: http://www.thelatinlibrary.com/vegetius3.html

Virgil (20 B.C.), Aeneid, Vol. X.
URL: http://www.thelatinlibrary.com/vergil/aen10.shtml

VT MÄK (2011a), ‘Artificial intelligence behavior modeling - b-have’.
URL: http: // www. mak. com/ products/ simulate/ artificial-intelligence-behavior-modeling.
html

VT MÄK (2011b), ‘Computer generated forces - vr-forces’.
URL: http: // www. mak. com/ products/ simulate/ computer-generated-forces. html

Wooldridge, M. and Jennings, N. R. (1995), ‘Intelligent agents: Theory and practice’, The
Knowledge Engineering Review 10(2), 115–152.

Appendix A

AI Upgrade Possibilities

114

AI Upgrade Possibilities 115

To support commanders in their decision making, we need a system capable of automating
part of the course of action (COA) creation and COA analysis processes. To this end, the
agent system connecting C2 system ISIS and simulator VR-Forces should be used to compare
measures of effectiveness (MOE) of multiple routes, providing feedback to the commander about
the simulated results. This should provide the commander with a quick overview of the possible
benefits of each route. However, before we can provide a realistic overview, we need a realistic
simulation.

We have identified three possibilities in this setting for increasing the realism:

• Agent Behaviour

• Path Planning

• Enemy Behaviour

There is a certain overlap between these three and in the end all will be needed for a real-
istic simulation. However, due to time constraints, the current project can only focus on (a
subsection) of one.

A.1 Agent Behaviour

Currently, the agents only act as order distributors, providing a simplified order from the
commander to the units in VR-Forces. Instead, we would like to refine the behaviour of the
agents (and the units in VR-Forces), to enable more autonomy. The subordinate commanders
(agents) should provide intelligent implementations of the commander’s order. To this end,
extra knowledge of doctrine and formations can be added, allowing the units to react more
realistically in the simulation. For example, when currently fired upon, a company will keep
driving towards its goal while shooting back at the enemy. Instead, we might like to see the
company backtrack to a previously safe position to devise a new plan, based on a.o. the enemy’s
expected power, current mission objectives and terrain properties. Furthermore, the new plan
should depend on the commander’s intent: is the goal to get to a location as fast as possible or
to clear the whole area of enemy resistance. This change in behaviour would effect the MOEs
of a chosen route in a more realistic manner, e.g. increasing the amount of time but decreasing
the amount of casualites taken when enemy is encountered.

By making the units respond to the environment (more realistically), the possibility of
wargaming within the simulation might also be enabled. For example, the user could add
enemy artillery during the simulation, to see how that would impact the MOEs of the current
route. Currently the agents would not respond to this, while we might want them to devise a
new plan to stay out of reach of the artillery.

Documents designed for TACTIS are available that describe military doctrine on the com-
pany and platoon level, which can be turned into plans for the agents. Such a document is called
a Combat Instruction Set (CIS). The agent will then reason on when to use what doctrine based
on its beliefs about the environment and its own mission.

AI Upgrade Possibilities 116

A.2 Path Planning

A commander only provides a set of waypoints that subordinate units should traverse. The
actual route taken by the units is decided on a lower level. Because we are using simulation
for these lower levels, this means that a path planning algorithm is needed to plan a path for
these units between the provided waypoints. Currently, path planning is done by the B-HAVE
module in VR-Forces. However, B-HAVE does not exhibit all the behaviour we would like to
see from military path planning. For example, planning the shortest path while staying as far
away from enemy forces as possible is not a possibility at this moment, while we might like to
include such tactical options in the simulator. Furthermore, this module plans for single units
or platoons while a path is needed for the company level, to ensure correct tactical behaviour.
In the current system, one platoon might take a different route on its own if B-HAVE concludes
that this route is faster. It does not take into consideration that such decisions should be
made on a company level. Therefore, we might need to develop a path planning module in our
agents that will use tactically-interesting information from the environment to plan routes on
the company level.

There are two options: we can either replace the path planning module B-HAVE by a new
path planning algorithm, or our agents can restrict themselves to planning extra waypoints
between those provided by the commander, essentially refining his command. The latter should
allow the lower-level units to move, using B-HAVE, without concerning themselves with tactical
knowledge, while the agents only concern themselves with tactical path planning, leaving the
other details to B-HAVE. To this end, the environment should be abstracted to a set of waypoints
and connections between these waypoints. By adding costs to these connections based on their
length, a minimization algorithm is able find the shortest path between two points. The fastest
route could be computed using the maximum speed possible combined with the length of such
connections. This would provide similar results to what B-HAVE provides. However, extra
information can be added as weights to connections or waypoints. For example, the presence of
enemy units might make travelling along a path more expensive the closer it is to these units.
On the other hand, travelling through canopy might provide a positive bonus. Moreover, by
raising path planning to the level of company agents, the algorithm can plan while keeping in
mind the formation that units have to keep, allowing for a more realistic simulation. Other
additions could include a.o. surrounding terrain (cover), lines of sight, maximum velocities,
weather influences and weights based on the current mission objective.

Perhaps more importantly, dynamic replanning of the path is a possibility currently not
available in B-HAVE. For example, if a bridge would be destroyed along the pre-planned path,
simulated units will stop and await new orders from the user. Instead, replanning could automat-
ically be done on the company level, allowing agents to respond adequately to new information.

A.3 Enemy Behaviour

Another important factor for providing relevant DSS results is that the enemy behaviour /
responses to the friendly COA are good approximations of the reality. One possibility is to
also create agents for the enemy units, providing them with similar reasoning capabilities and

AI Upgrade Possibilities 117

similar reactive capabilities as friendly forces. This way, expert knowlege of combat tactics is
easily reused. Some of these plans might then be turned off to show that the enemy units are
not as expertly trained in these tactics as the friendly units.

Appendix B

Combat Instruction Sets (CISs)

118

Combat Instruction Sets 119

Documents designed for TACTIS1 are available that describe military doctrine on the com-
pany and platoon level, which can be turned into intelligent agent behaviour. Such a document
is called a Combat Instruction Set (CIS). The agent will then reason on when to use what CIS
based on its beliefs about the environment and its own mission. In a second discussion with
the TNO SME, see Section 3.1, we decided upon a specific subset of these CISs, which will be
shown next.

These are the Combat Instruction Sets used during this project:

• Assault

– Company agent: 01329 Assault an enemy position.doc

– Company agent: 02329 Mechinfptn Assault an enemy position.doc

– Company agent: 01328 Fire and movement1.doc

– Company agent: 01324 Final phase of an attack.doc

– Company agent: 01327 Consolidate and reorganize.doc

• Blocking Position

– Company agent: 00414 Hasty occupation of a blocking position.doc

– Platoon agent: 01314 Hasty occupation of a battle position1.doc

• Formations

– Company agent: 00403 Tactical road march.doc

– Company agent: 00404 Column Formation.doc

– Company agent: 00406 Line Formation Traveling.doc

– Platoon agent: 01303 Tactical road march.doc

– Platoon agent: 01304 Column Formation Traveling.doc

– Platoon agent: 01306 Line Formation Traveling.doc

1Tactical Indoor Simulation from Thales. Tailored for combined forces instruction and training, see http:

//www.thalesgroup.com/Portfolio/Defence/D3S_product_simu_tactis/?pid=1568

Appendix C

UML Diagrams

120

UML Diagrams 121

C.1 Order processing

Figure C.1: A UML activity diagram showing how any order from a C2IS is processed.

In Figure C.1, we can see how an order from a C2IS is processed. First, the order is sent in
C-BML and received as such by the HLA Manager. Then, it is forwarded to the Information
Manager as a String, after which it is processed into a task object. The task then travels via the
Battalion agent to the correct Company agent (because we only process company level orders).
Finally at its destination, the task is processed if the agent is not currently busy with another
task. If the agent is not busy, the type of the task will determine future actions.

C.2 UML Activity Diagram - CIS Blocking Position

In Figures C.2 and C.3, we can see the discussed implementation as UML activity diagrams.
Our blocking position is initiated in Figure C.2, along the green or red paths, when the simulator
sends a unit status update to HLA. The HLA Manager always receives these units, stores it
as an Equipment called eq and sends it to its listeners, i.e. the Information Manager. The
Information Manager then receives eq, stores it in a detectedEquipment belief and continues
with the processing of this detectedEquipment. Here the distinction is made between known
and unknown units and enemy and friendly units. Enemy units will cause the Information

UML Diagrams 122

Manager to call Update Commander, which will inform the Battalion Agent, as can be seen in
Figure C.3. The black path shows that friendly equipment are stored, their superior (platoon)
agents are updated and that event listeners are registered for further information for our MOEs.

In Figure C.3, the green line shows us how the Battalion agent processes the received
equipment (from the Information Manager). First it is checked whether the Equipment is
not destroyed and that there are some expectedLocations, either from an initial setup, or stored
from orders previously given. If so, distance is calculated, and when this distance is greater
than expectedDistance, ABORTEXECUTINGTASK task is sent to the Company agent. This is
later followed up with the BLOCKINGPOSITION task and the addition of the newly detected
position to our expectedLocations belief.

The red line shows how a new update of an enemy equipment (see Figure C.2), can stop
the blocking position. This is the case if a destroyed Equipment is updated, which was or-
dered to be blocked earlier. In this case the blocking position is seized not by sending the
ABORTEXECUTINGTASK task but the CONTINUE task.

C.2.1 Unit Detection Update diagram

Figure C.2 shows the start of an extended activity diagram of the implementation of the CIS
Blocking Position.

C.2.2 Blocking Position Battalion diagram

Figure C.3 shows the extended activity diagram part that follows Figure C.2.

UML Diagrams 123

Figure C.2: An activity diagram showing the events leading up to a blocking position. The green path
shows how an update from the simulator of a formerly unknown enemy equipment causes the Information
Manager to Update Commander (Battalion Agent) about the new unit. The red path shows that known
enemy equipments also cause for an Update Commander action. Black paths show what happens when
friendly units are detected.

UML Diagrams 124

Figure C.3: The blocking position reaction from the Battalion agent shown in an UML activity diagram.
The green path shows the decisions that lead up to ordering the company agent to apply a Blocking
Position. The red path shows how a CONTINUE task is sent to the company agent, ending a previous
Blocking Position.

Appendix D

Military Scenario Definition Language
(MSDL)

125

MSDL 126

D.1 MSDL elements

A MSDL file consists of XML elements described in SISO’s MSDL XML schema1. In this section
we shall provide some excerpts from this schema, showing only those that are essential to the
initiation of the Command Agents. XMLSpy 3 Version 4.1 was used by SISO to generate all
the XML schema figures. An optional element is displayed in a rectangle with a dashed border,
while the solid border displays the mandatory elements.

D.1.1 msdl:MilitaryScenario Element

Figure D.1 shows the main structure of the MSDL file.

D.1.2 msdl:Organizations

Figure D.2 shows the structure of the Organizations element available as child of the Mili-
taryScenario element.

D.1.3 msdl:Units

Figure D.3 shows the structure of the Units element available as child of the Organizations
element.

D.1.4 msdl:Unit

Figure D.4 shows the structure of the Unit element available as child of the Units element.

D.1.5 msdl:Equipment

Figure D.5 shows the structure of the Equipment element available as child of the Organizations
element.

D.1.6 msdl:EquipmentItem

Figure D.6 shows the structure of the EquipmentItem element available as child of the Equip-
ment element.

1http://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryId=30830

MSDL 127

Figure D.1: msdl:MilitaryScenario Element Structure

MSDL 128

Figure D.2: msdl:Organizations Element Structure

Figure D.3: msdl:Units Element Structure

MSDL 129

Figure D.4: msdl:Unit Element Structure

MSDL 130

Figure D.5: msdl:Equipment Element Structure

MSDL 131

Figure D.6: msdl:EquipmentItem Element Structure

Appendix E

FOM

132

FOM 133

E.1 FOM changes

The changes we made to the RPR-FOM are shown in Figure E.1, which is the overview of the
BML evolved module. It was done to get the following functionality:

Simulator output

• DetectionEvent

• EntityEvent

– EntityInArea

– EntityCrossedLine

– EntityDestroyed

– EntityFuel

– EntityAmmunition

Simulator input

• MoveIntoFormation

• AbortExecutingTask

• TurnToHeading

• FollowEntity

• SetHeading

• SetSpeed

FOM 134

F
ig

u
re

E
.1

:
H

L
A

(E
vo

lv
ed

)
F

O
M

m
od

u
le

co
n

ta
in

in
g

a
ll

th
e

en
tr

ie
s

n
ee

d
ed

fo
r

th
is

C
2
S

IM
p
ro

je
ct

.

