
Performance of Cloud Computing Centers with
Multiple Priority Classes

Wendy Ellens, Miroslav Živković, Jacob Akkerboom, Remco Litjens, Hans van den Berg
Performance of Networks and Systems

TNO
Delft, the Netherlands

Email: wendy.ellens@tno.nl, miroslav.zivkovic@tno.nl, jacob.akkerboom@tno.nl, remco.litjens@tno.nl, j.l.vandenberg@tno.nl

Abstract—In this paper we consider the general problem of
resource provisioning within cloud computing. We analyze the
problem of how to allocate resources to different clients such
that the service level agreements (SLAs) for all of these clients
are met. A model with multiple service request classes generated
by different clients is proposed to evaluate the performance of
a cloud computing center when multiple SLAs are negotiated
between the service provider and its customers. For each class,
the SLA is specified by the request rejection probabilities of the
clients in that class. The proposed solution supports cloud service
providers in the decision making about 1) defining realistic SLAs,
2) the dimensioning of data centers, 3) whether to accept new
clients, and 4) the amount of resources to be reserved for high
priority clients. We illustrate the potential of the solution by
a number of experiments conducted for a large and therefore
realistic number of resources.

Index Terms—cloud computing, performance analysis, queue-
ing theory, rejection probability, Service Level Agreement

I. INTRODUCTION

Cloud computing is the new trend of computing where read-
ily available computing resources are exposed as a service. A
cloud is defined as both the applications delivered as services
over the Internet and the hardware and systems software in
the data centers that provide those services [1]. According
to this definition, delivery of application as services (SaaS
— Software as a Service) over the Internet and hardware
services (IaaS — Infrastructure as a Service) are both parts of
cloud computing phenomena. From hardware service (utility
computing) point of view, there are a few new aspects in
cloud computing [1], the most prominent being the illusion
of infinite computing resources and the ability to pay for the
use of computing resources on a short-term basis.

As consumers move towards adopting such a Service-
Oriented Architecture, the quality and reliability of the ser-
vices become important aspects. However the demands of the
consumers vary significantly. It is not possible to fulfill all
consumer expectations from the service provider perspective
and hence a balance needs to be made via a negotiation
process. At the end of the negotiation process, provider and
consumer commit to an agreement, usually referred to as a
Service Level Agreement (SLA). The SLA serves as the foun-
dation for the expected level of service between the consumer

Fig. 1. Considered cloud computing infrastructure

and the provider. The quality of service (QoS) attributes that
are generally part of an SLA (such as response time and
throughput) however change constantly and to enforce the
agreement, these parameters need to be closely monitored [2].
Accurately predicting customer service performance based on
system statistics and a customer’s perceived quality allows a
service provider to not only assure QoS but also to avoid over–
provisioning to meet an SLA. Due to a variable load derived
from customer requests, dynamically provisioning computing
resources to meet an SLA and allow for an optimal resource
utilization is an important but complicated task.

As stated in [3], the majority of the current cloud computing
infrastructure consists of services that are offered up and
delivered through a service center such as a data center that
can be accessed from a web browser anywhere in the world.
In this paper we study a model for the cloud infrastructure
shown in Figure 1, where a service provider offers multiple
resources to its clients. In order to accommodate the clients’
needs and to serve N clients, the service provider may decide,
depending upon the agreed SLAs (one per client), to reserve
a certain amount of resources exclusively for certain clients.

In our example at Figure 1, the service provider has decided
to reserve Creserved 1 for client 1 and Creserved 2 for clients
1 and 2, of the total Ctotal resources at its disposal. Besides,
all N clients can use Cshared resources. In such a way service
provider could offer better service to “more significant” clients



(e.g. business clients) who are probably willing to pay more
for the negotiated service. If there are no available resources
the request is rejected. This scheme corresponds to the trunc
reservation policy as proposed earlier in ATM systems [8].
For our example, in case of requests originating from e.g.
client 1, a request is rejected when all Ctotal resources are
busy, while for client 2, this would occur when all Creserved 2

and Cshared resources are busy. Other clients’ requests will be
rejected when all Cshared resources are occupied. This means
that high priority clients are more likely to get resources at
busy times, in other words, the rejection probabilities are lower
for requests from high priority clients. In cloud computing
accepted requests indicate rewards for the administrator, while
rejected requests can lead to penalties. We do not explicitely
model these costs, instead we use the request rejection proba-
bilities for different clients (higher priority clients are entitled
to lower rejection probability) as main performance parameter
of the considered system.

The proposed framework is of great value for cloud com-
puting service providers as it supports them in the decision
making about 1) defining realistic SLAs, 2) the dimensioning
of data centers, i.e. determining the total resource capacity that
is needed to meet the SLAs, 3) whether to accept new clients
and how many, and 4) the amount of resources to be reserved
for high priority clients. We develop a model to obtain the
answers to the following specific questions:

1) What are realistic rejection probabilities that could be
specified in SLAs offered by the cloud provider to its
clients, when the arrival rates of service requests (for
both classes), the mean service time at a single server
in the cloud, Ctotal and Creserved (total and reserved
resources) are known?

2) For given arrival rates of service requests, a given mean
service time and a given number of reserved resources,
what should be the value of Ctotal in order to assure
previously negotiated rejection probabilities for both
classes?

3) In case the values of Ctotal and the fraction of high
priority requests are known, and Creserved is chosen in
an optimal way, what is the maximum arrival rate of
service requests such that previously negotiated rejection
probabilities can be guaranteed?

4) In case the values of Ctotal and the fraction of high
priority requests are known and the arrival rate of
service requests is maximal (meeting the target rejection
probabilities), what is the optimal value of Creserved?

The model we use to describe cloud centers with several
clients holding different SLAs corresponds to a M/M/C/C
queueing system with different priority classes. The arrivals
are Poissonian, the service time is exponentially distributed,
there are C servers and the system capacity is C (there are
no buffers). In the literature queueing systems like the basic
M/M/C queue have been applied to cloud computing centers.
Variations on this basic queueing system by changing the
service time distribution, the buffer length, or considering

batch arrivals can also be found, see e.g. [4], [5], [6]. We
propose a model that can deal with different performance
criteria for different clients by reserving parts of the computing
capacity for specific clients.

Hu et al. [7] describe a cloud computing model close to
ours. They also have two priority classes with different SLAs.
One of our goals corresponds theirs, namely determining the
minimal needed capacity for a given load, but we consider also
other questions. However, their model is different in terms
of resource allocation. They compare two setups: 1) both
classes have their own resources and 2) both classes share
the resources. We consider the following setup: 3) part of the
resource is shared by both classes and part of the resources
is reserved for the class with the SLA that is most difficult to
meet.

The paper is organized as follows: in Section II we describe
the model of the cloud computing system we used for our
analysis. Section III covers the mathematical approach for
calculating the rejection probabilities. Next, in Section IV, we
give some numerical examples in order to show the potential
of our framework for cloud computing management. We
conclude the paper with a summary of our main achievements
and indicate the possible directions for further research in
Section V.

II. A CLOUD COMPUTING MODEL

In this section we describe a model of a cloud computing
center with multiple priority classes. A schematic representa-
tion of the model has been depicted in Figure 2.

We consider a cloud computing environment that serves
requests from a total of N clients. The clients’ requests are
served by provider that has a total of Ctotal resources. The
available resources Ctotal, are split into shared resources,
Cshared, and reserved resources, Creserved, i.e. Ctotal =
Cshared + Creserved. Shared resources are used to serve the
requests originating from any client, while the reserved re-
sources Creserved j are exclusively used to process the requests
originating from clients i ≤ j. The total of reserved resources
is Creserved =

∑N
j=1 Creserved j . We assume in our model that

Cshared, Creserved > 0 while Creserved j ≥ 0, j = 1, . . . , N .
The concept of reserved resources allows the provider

to prioritize requests originating from different clients. Re-
quests from high priority clients (clients i for which∑N
j=i Creserved j > 0) are accepted as long as there are less

than Cshared +
∑N
j=i Creserved j = Ctotal−

∑i−1
j=1 Creserved j

request being processed at the moment, while other requests
(from clients for which

∑N
j=i Creserved j = 0) are accepted

whenever less than Cshared resources are used. For an illus-
tration of the principle see Figure 2.

As the number of potential clients that independently gener-
ate requests is large, we assume that requests arrive according
to a Poisson process. The rate at which new requests from
client i arrive is denoted by λi. The time it takes to process
a request is modeled following an exponential distribution,
with the same average process time 1/µ for all requests.



Fig. 2. Schematic representation of the general model

The exponential distribution of the process time allows exact
analysis of the rejection probabilities.

In order to evaluate whether the SLA for client i will be
met for the given configuration of the cloud computing center
(i.e. for the given values of Ctotal, Creserved j , j = 1, . . . , N )
and given arrival and departure processes (characterized by
λi, i = 1, . . . , N and µ), the service provider needs to know
the rejection probability pi for request of client i. In the next
section we discuss a method to analytically determine the
rejection probabilities pi, i = 1, . . . , N for all clients.

In order to simplify the notation, we use the above-described
model with two priority classes, as illustrated in Figure 3. In
this case, we have that Creserved 1 > 0, Creserved 2 = 0, thus
Creserved = Creserved 1. We therefore consider high priority
clients and low priority clients, and we define high (low)
priority requests as requests originated by a high (low) priority
client. In case λ is the overall request arrival rate and q is
the fraction of high priority requests, the arrival rate for high
priority requests is λhigh = qλ while the arrival rate for low
priority requests is λlow = (1− q)λ.

III. THEORETICAL ANALYSIS

This section briefly discusses the mathematical theory of
Markov chains, birth-death processes and queueing system [8],
[9], [10]. We use this framework to calculate the probability
that a cloud service request is rejected.

A Markov chain is a memoryless random process on a
countable number of states, i.e. a system that moves between

Fig. 3. Schematic representation of the model with two priority classes as
used in the experiments of Section IV

a countable number of states and for which the transition
probability from one state to another only depends on the
current state, not on the system’s history. Birth-death processes
are continuous-time Markov processes — Markov chains
with transitions that occur at random moments — where a
state corresponds to a number 0, 1, 2, . . . and only transitions
between state i and i + 1 (and reverse) are possible. An
important application of birth-death processes are queueing
systems, because in most queueing systems, the number of
individuals/jobs in the system follows a birth-death process.

For birth-death processes it is possible to calculate the
stationary distribution — giving the probability that the system
is in a certain state in the long run. The rate at which transitions
from i to i + 1 occur is denoted λ(i) (the arrival rate if i
individuals/jobs are in the system) and the departure rate in
state i is denoted µ(i). The stationary probability p(k) for state
k can be determined by solving the set of balance equations
(which state that the flux into a state should be equal to the
flux out of this state when the system is stationary):

λ(0)p(0) = µ(1)p(1)

and

(λ(k) + µ(k)) p(k) = λ(k − 1)p(k − 1) + µ(k + 1)p(k + 1)

for k > 0. Solving these equations gives

p(k) =

∏k−1
i=0 λ(i)∏k
i=1 µ(i)

p(0),

with
p(0) =

1

1 +
∑
k>0

∏k−1
i=0 λ(i)∏k
i=1 µ(i)

.

Using the theory of birth-death processes, we are able to
calculate the rejection probabilities for our model (see Section
II), for given values of the class i arrival rates λi the service



rate µ, the total capacity Ctotal and the reserved capacities
Creserved i (i = 1, . . . , N ). We will give an example of the
calculation for the case of two priority classes. In terms of
birth-death processes we have λ(k) = λ = λ1 + λ2 if k (the
number of requests being processed) is less than Cshared. If k
is equal to or greater than Cshared then λ(k) = λ1, i.e. only
high priority requests are admitted. The departure rate is kµ
if there are k requests in process. The stationary probabilities
are therefore

p(k) =


λk

k!µk
p(0) if k ≤ Cshared

λCsharedλk−Cshared
1

k!µk
p(0) if k > Cshared,

with

p(0) =
1

1 +
∑Cshared

k=1
λk

k!µk +
∑Ctotal

k=Cshared+1
λCsharedλ

k−Cshared
1

k!µk

.

The rejection probabilities are given by

phigh = p(Ctotal) and plow =

Ctotal∑
k=Cshared

p(k).

The rejection probabilities are computed using the following
recursion:

r(0) = 1

and for k > 0

r(k) =


λ

kµ
r(k − 1) if k ≤ Cshared

λ1
kµ
r(k − 1) if k > Cshared,

The stationary probabilities are

p(k) =
r(k)∑N
k=0 r(k)

,

for all k. This recursive computational method allowed us to
perform the simulations for a large number of resources. We
present the results of these in the next section.

Although we have chosen to work with two priority
classes, analytical results are also available for the case of
N classes. It is also possible to perform similar analyses for
an M/M/C/C + R queueing system with different client
classes, where a buffer of size R is present. In the case of
“exclusive reserved resources” (meaning that clients cannot
use the resources reserved for lower ranked clients), a multi-
dimensional Markov chain needs to be solved to calculate the
rejection probabilities, because we need to keep track of the
class that requests in process belong to. Therefore no closed-
form formula for the rejection probabilities is available, but
they can be calculated by solving a system of equations. Also
for the case where requests from different classes have a dif-
ferent process time, a multi-dimensional Markov chain arises.
For the case we considered — where reserved resources are
also available for higher ranked clients and all requests have
the same process time distribution — closed-form formulas are

available because it is enough to know the number of requests
in process in order to decide whether an incoming request of
a specific class is accepted.

IV. NUMERICAL EXAMPLES

In this section we use the model described in Section II
and the analytical results of Section III to give the answers
to the questions posted in Section I. The numerical examples
given in this section show how our framework can assist in
solving practical cloud management issues. Subsection IV-A
describes the scenario we considered in our numerical exam-
ples, including the values (or ranges) of the model parameters.
The following subsections each answer one of the following
questions:

1) What are realistic rejection probabilities that could be
specified in SLAs offered by the cloud provider to its
clients, when the arrival rates of service requests (for
both classes), the mean service time at a single server
in the cloud, Ctotal and Creserved (total and reserved
resources) are known? (Subsection IV-B)

2) For given arrival rates of service requests, a given mean
service time and a given number of reserved resources,
what should be the value of Ctotal in order to assure
previously negotiated rejection probabilities for both
classes? (Subsection IV-C)

3) In case the values of Ctotal and the fraction of high
priority requests q are known, and Creserved is chosen
in an optimal way, what is the maximum arrival rate of
service requests such that previously negotiated rejection
probabilities can be guaranteed? (Subsection IV-D)

4) In case the values of Ctotal and q are known and the
arrival rate of service requests is maximal (meeting the
target rejection probabilities), what is the optimal value
of Creserved? (Subsection IV-E)

A. Scenario Description

Due to the fact that we used efficient calculations of the
rejection probabilities based on the recursive formulas given
in section III, we have been able to run the simulations for
high numbers of servers. Therefore, different from e.g. [7],
[6] we could perform our simulations for numbers of servers
that better reflect the actual numbers. In practice, large cloud
computing service providers have a total amount of servers
of the order of tens of thousands [11]. We performed the
simulations for a total number of servers up to Ctotal = 40000.
In order to illustrate the importance of the number of requests
generated by clients in different priority classes, parameter
q that represents the fraction of the service requests made
by high priority customers has been set to change between
0.2 and 0.8 with step 0.2 i.e. 20%, 40%, 60% and 80%
of the total requests. Without loss of generality (by scaling
the arrival rate λ) the parameter that represents the expected
service time is set to one, i.e. µ = 1. The rejection probabilities
promised by the service providers to its higher priority and
lower priority clients are p∗high = 0.5% and p∗low = 5%,
respectively. This means that the rejection probability for the



0 5 10 15 20 25 30
Creserved0.00

0.01

0.02

0.03

0.04

0.05

0.06

probability

q=0.8

q=0.6

q=0.4

q=0.2

Fig. 4. The rejection probabilities for high (lower curves) and low (upper
curves) priority jobs as a function of the reserved resources Creserved. Here
Ctotal = 40000, λ = 1.03 ·Ctotal and µ = 1. The curves have been drawn
for q = 0.2, 0.4, 0.6, 0.8.

high (lower) priority clients is never higher than p∗high (p∗low).
It could be lower depending on the dimensioning of the data
center, i.e. the concrete values for Ctotal and Creserved.

B. Determination of Realistic Rejection Probabilities

In this scenario, we calculate the rejection probabilities
phigh and plow for high and low priority requests as a function
of the reserved resources Creserved, in order to determine
realistic target rejection probabilities for both classes. In Figure
4 we give the results for Ctotal = 40000 servers, and
the total arrival rate of all requests (high and low priority)
λ = 1.03 · Ctotal. The rejection probability curves have
been drawn for the four above-mentioned values of q, the
fraction of high priority requests. We have shown the most
informative part of the curves, which corresponds to the
interval 0 ≤ Creserved ≤ 30.

The following observations can be made from the figure:
• It always holds that plow ≥ phigh, with equality when

number of reserved resources Creserved is zero.
• When Creserved increases, plow increases, while phigh

decreases.
• The probability a high priority customer is rejected

vanishes quickly as the number of reserved resources
increases. Even when the percentage of requests gener-
ated by high priority customers is 80% it is enough to
have only nine reserved servers (out of 40 thousand) to
guarantee rejection probability p∗high = 0.5%.

• For fixed Creserved the rejection probabilities for both
classes, phigh and plow, are increasing in the fraction of
high priority requests q, because the more high prior-
ity requests (relatively), the lower the overall rejection
probability (for a random incoming request which can
have high priority as well as low priority), the fuller the
system (i.e. the higher the probability of having between
Cshared and Ctotal requests in process) and the higher the
probability that a new high or low priority request (i.e. a
request of a given class) is rejected.

• When the majority of requests is generated by high

Fig. 5. The minimal number of resources Ctotal as a function of the arrival
rate of high priority requests λ1. The overall arrival rate λ is 300, µ = 1,
p∗high = 0.5% and p∗low = 5%. The curves have been drawn for Creserved =
1, 3, 5.

priority clients, more specifically when q ≥ 0.6, service
provider cannot guarantee the target rejection probabili-
ties of p∗high = 0.5% and p∗low = 5%. For example, when
q = 0.6 the rejection probability plow can be guaranteed
only when number of reserved resources is less than 2. On
the other hand, when q = 0.6 rejection probability phigh
can be guaranteed only when of the number of shared
resources is greater than 4. These two requirements
cannot both be satisfied, which means respective SLAs
should allow higher rejection probabilities. The graph
can be used to determine the minimal target rejection
probabilities, the minimal p∗high and p∗low, for a given
value of Creserved.

• For q = 0.4, Ctotal = 40000, λ = 1.03 · Ctotal and
µ = 1, p∗high = 0.5% and p∗low = 5% are realistic target
rejection probabilities if 2 ≤ Creserved ≤ 6. Similarly,
for q = 0.2, the given target probabilities are realistic if
2 ≤ Creserved ≤ 424.

Let us illustrate how figures like Figure 4 can be used: The
above observations show that a data center with 40000 servers
that handles 1.03 ·40000 = 41200 requests per second with an
average service time of 1 second, having 40% of high priority
clients, can guarantee rejection probabilities of 0.5% and 5%
for high and low priority requests respectively if it reserves
only 2 (up to 6) servers for high priority clients.

C. Determination of the Minimal Number of Servers that
Guarantees Rejection Probabilities Smaller than the Targets

In the second scenario we determine what should be the
value of Ctotal in order to prevent SLA violations, for a given
rate of service requests per customer class and a given number
of reserved resources for high priority requests Creserved. We
have set the total arrival rate λ to 300 (which means that
requests arrives 300 times as fast as they can be processed
as µ = 1), and rejection probability targets are, as usual,
p∗high = 0.5% and p∗low = 5% for high, respectively low, prior-
ity requests. We have considered values λ1 (the arrival rate of



high priority requests) from zero to 300, with increments of 10.
Therefore varying the percentage of the high priority requests
within the range 0% – 100%. For each value of λ1 and given
value of Creserved from the set {1, 3, 5}, we have determined
the minimal Ctotal for which the rejection probability targets
are met.

These results are illustrated in Figure 5. We draw the
following conclusions from the figure:

• The minimal number of servers needed increases almost
linearly with the high priority arrival rate λ1. The only
exception is when the number of reserved resources,
Creserved is very small, i.e. one.

• The endpoints of the curves show us the following. If
all clients have the same low priority (λ1 = 0) we
need approximately 300 servers to serve 300 requests per
second if the process time is 1 second. If we want to
decrease the rejection probability for all the clients from
5% to 0.5% (i.e. if we only have high priority clients) we
need approximately 330 servers.

• The minimal number of servers depends strongly on the
number of reserved servers — the more high priority
requests, the higher the number of reserved resources
should be in order to minimize the total number of
resources.

• We can roughly identify three areas in the graph. In the
first area, which represents the area with very low arrival
rate of high priority customers, the number of reserved
resources should be kept as low as possible, which gives
the lowest number of Ctotal. This results from the fact
that, in order to serve many requests originating from low
priority clients, the number of resources that serve them
(Ctotal − Creserved) should be as high as possible. The
higher Creserved, the smaller Ctotal − Creserved and the
harder it becomes to guarantee plow. Therefore, the only
option for the provider(s) is to increase Ctotal.

• In the second area, which represents the area of moderate
arrival rate of high priority requests, Creserved = 1 is
inferior to the other values of Creserved considered. We
see that, for Creserved = 1, Ctotal should be high in order
to accommodate relatively many high priority requests.
For Creserved = 3 and Creserved = 5 the situation is
similar to that of the first region — the number of
reserved resources is over-dimensioned for Creserved = 5
leading to increase of Ctotal in order to accommodate
low priority requests as well.

• In the last area, which represents the area of high arrival
rate of high priority requests, the number of reserved re-
sources plays an important role in order to accommodate
all high priority requests. Therefore, Ctotal is smallest for
the highest values of Creserved.

Figure 5 shows that 312 servers are enough to accommodate
150 high priority and 150 low priority requests per second if
the average process time is 1 second and not more than 0.5%,
respectively 5% of the requests, for high and low priority
clients, may be rejected.

Fig. 6. The maximal arrival rate λ as a function of the available resources
Ctotal such that the target rejection probabilities are met. Here, Creserved

is chosen in an optimal way, µ = 1, p∗high = 0.5%, p∗low = 5% and
q = 0.2, 0.4, 0.6, 0.8 for the different curves.

D. Determination of the Maximal Arrival Rate that Guaran-
tees Rejection Probabilities Smaller than the Targets

In this simulation scenario we determine the maximal total
arrival rate, λ, for a given number of resources Ctotal and the
optimal value of Creserved. The criterion for the determination
of λ is that the target rejection probabilities for all client
classes are satisfied. Therefore, for µ = 1, a given fraction
of high priority requests q (again we have four graphs for q =
0.2, 0.4, 0.6, 0.8), and given target probabilities p∗high = 0.5%
and p∗low = 5%, we have determined λ as a function of the
total number of available resources Ctotal. We illustrate the
results for Ctotal that varies in the range 100–200 in Figure 6.

From this figure, one notices that there is an almost linear
relation between λ and Ctotal, with a linearity coefficient of
1. For every extra server, the arrival rate can increase by one
unit. For example, when the average process time is 1 second
and the available resources increase from 150 to 200, the data
center can accommodate 50 more requests per second. The
other way around, when a service provider needs to process
more requests (i.e. higher arrival rates) than initially given,
the necessary increase in number of resources is linear in the
number of extra arrivals per time unit.

Using these results, and based on the exact number of
resources at its disposal, a cloud provider can determine the
number of requests they can serve. Knowing the actual number
of clients, the method gives a way to calculate how many new
clients can be accommodated.

E. Determination of the Number of Resources to be Reserved
for High Priority Clients

The last scenario is related to the third scenario. Again the
arrival rate λ is maximized for a given number of servers Ctotal

such that the rejection probabilities do not exceed the targets
of p∗high = 0.5% and p∗low = 5%. We are now interested in the
value of Creserved, the amount of resources reserved for high
priority clients, for which the maximal arrival rate is attained.



50 100 150 200
Ctotal

1

2

3

4

optimal Cres

q=0.6

Fig. 7. The number of reserved resources Creserved, that maximizes the
arrival rate λ as a function of the available resources Ctotal such that the
target rejection probabilities are met. We have p∗high = 0.5%, p∗low = 5%
and q = 0.6 for the different curves.

50 100 150 200
Ctotal

1

2

3

4

optimal Cres

q=0.8

Fig. 8. The number of reserved resources Creserved, that maximizes the
arrival rate λ as a function of the available resources Ctotal such that the
target rejection probabilities are met. We have p∗high = 0.5%, p∗low = 5%
and q = 0.8 for the different curves.

The results are illustrated in Figures 7 and 8 for values q = 0.6
and q = 0.8, respectively.

In general we see that the higher the total number of re-
sources, the higher the optimal number of reserved resources,
but the lower the optimal fraction of reserved resources. We
see that there are “overlapping intervals”, i.e. that the optimal
number of reserved resources is not increasing in the total
number of resources. For example, in Figure 7 we see that
Creserved = 2 for Ctotal = 19, and Creserved = 1 for
Ctotal = 20. It would be advisable to have the number of
Creserved as given in Table I.

Another conclusion that can be drawn from Figures 7 and 8
is that the higher the percentage of requests generated by high
priority customers, the more resources need to be reserved for
these (for a fixed number of total resources).

We have seen in Subsection IV-D that a cloud center with

TABLE I
THE NUMBER OF RESOURCES Creserved THAT SHOULD BE RESERVED FOR

HIGH PRIORITY CLIENTS, FOR THE GIVEN VALUES OF Creserved AND q.
THE TARGET REJECTION PROBABILITIES ARE p∗high = 0.5% AND

p∗low = 5%.

q Interval Ctotal Creserved

0.8 1–12 1
0.8 13–38 2
0.8 39–118 3
0.8 119–200 4
0.6 1–18 1
0.6 19–62 2
0.6 63–200 3

an average process time of 1 second can serve 50 more clients
per second if it increases its resources from 150 to 200. Figure
7 shows that it does not have to change the number of reserved
resources if it has 60% of high priority clients.

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed the general problem of resource
provisioning within cloud computing. In order to support
decision making with respect to resource allocation for a cloud
resource provider when different clients negotiated different
service level agreements (SLAs) we have modeled a cloud
center using the M/M/C/C queueing system with different
priority classes. The main performance criterion in our analysis
is the rejection probability for different customer classes,
which can be analytically determined. We have shown that
a number of common questions providers may have — about
realistic SLAs, dimensioning of data centers, acceptance of
new clients and reservation of resources — can be answered
using this result.

We have conducted a number of experiments for the case
of two priority classes (corresponding to high and low priority
clients) with realistic (i.e. high) number of available resources.
These experiments show that 1) it is possible to offer a mi-
nority of important clients request rejection probabilities that
are ten times smaller than the request rejection probabilities
of other clients by only reserving a small fraction of the
available resources for important requests, 2) the minimal
number of servers increases approximately linearly with the
fraction of high priority requests, 3) the maximal number of
clients increases almost linearly with the available resources
and 4) the higher the number of servers, the smaller the
fraction that needs to be reserved.

Our model assumes class-dependent arrival rates and a high
number of resources, in contrast to traditional applications of
queueing theory and rejection probability formulas, such as
telecommunication, in which the total capacity is generally
small. The main reason for the simplicity of our model is
that we consider situations in which different priority classes
have the same average process time. In further research we
plan to relax this assumption. No closed-form formulas for
the rejection probabilities are available for this case, but a
system of equations has to be solved. We further plan to
investigate batch arrivals and time-dependent arrival processes.



In addition, we plan to do a cost analysis including rewards
(penalties) for accepted (rejected) calls (which are higher for
high priority clients) and costs for resources.

ACKNOWLEDGMENT

Part of this work has been carried out in the context of the
IOP GenCom project Service Optimization and Quality (Se-
Qual), which is supported by the Dutch Ministry of Economic
Affairs, Agriculture and Innovation via its agency Agentschap
NL. The authors kindly acknowledge initial paper discussions
with Behnaz Shirmohamadi.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view
of cloud computing,” Commun. ACM, vol. 53, pp. 50–58, April 2010.
[Online]. Available: http://doi.acm.org/10.1145/1721654.1721672

[2] A. Keller and H. Ludwig, “The wsla framework: Specifying and
monitoring service level agreements for web services,” J. Netw.
Syst. Manage., vol. 11, pp. 57–81, March 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=635430.635442

[3] http://en.wikipedia.org/wiki/Cloud computing.
[4] B. Yang, F. Tan, Y. Dai, and S. Guo, “Performance evaluation of cloud

service considering fault recovery,” Cloud Computing, pp. 571–576,
2009.

[5] T. Kimura, “Optimal buffer design of an m/g/s queue with finite
capacity*,” Stochastic Models, vol. 12, no. 1, pp. 165–180, 1996.

[6] H. Khazaei, J. Mišić, and V. Mišić, “Performance analysis of cloud cen-
ters under burst arrivals and total rejection policy,” in IEEE Globecom,
2011.

[7] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu, “Resource provisioning for
cloud computing,” in Proceedings of the 2009 Conference of the Center
for Advanced Studies on Collaborative Research. ACM, 2009, pp.
101–111.

[8] J. Roberts, U. Mocci, and J. Virtamo, Eds., Broadband Network Tele-
traffic. Springer, 1996.

[9] H. Tijms and J. Wiley, A first course in stochastic models. Wiley Online
Library, 2003, vol. 2.

[10] L. Kleinrock, “Queueing systems. volume 1: Theory,” 1975.
[11] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art

and research challenges,” Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 7–18, 2010.


